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Abstract
In this paper, we study the existence of weak solutions for differential equations of
divergence form

–div(a1(x,Du)) + a0(x,u) = f (x,u,Du),

in � coupled with a Dirichlet or Neumann boundary condition in separable
Musielak-Orlicz-Sobolev spaces where a1 satisfies the growth condition, the coercive
condition, and the monotone condition, and a0 satisfies the growth condition
without any coercive condition or monotone condition. The right-hand side
f :� ×R×R

N →R is a Carathéodory function satisfying a growth condition
dependent on the solution u and its gradient Du. We prove the existence of weak
solutions by using a linear functional analysis method. Some sufficient conditions
guarantee the existence enclosure of weak solutions between sub- and
supersolutions. Our method does not require any reflexivity of the
Musielak-Orlicz-Sobolev spaces.

Keywords: separable Musielak-Orlicz-Sobolev spaces; differential equation;
sub-supersolution

1 Introduction
Let � ⊂ R

N be a bounded domain with Lipschitz boundary. Le [] established a sub-
supersolution method for variational inequalities with Leray-Lions operators in Sobolev
spaces with variable exponents. Following [], Fan [] established a sub-supersolution
method for the differential equations of divergence form

– div
(
a(x, Du)

)
+ a(x, u) = f (x, u), (.)

in � coupled with Neumann or Dirichlet boundary condition in reflexive Musielak-Orlicz-
Sobolev spaces W 

L�(�). Here a and a are supposed to satisfy growth conditions, co-
ercive conditions, and monotone conditions, that is,

∣∣a(x, ξ )
∣∣ ≤ bϕ

(
x, |ξ |) + g(x), (.)

a(x, ξ )ξ ≥ b�
(
x, |ξ |) – h(x), (.)

[
a(x, ξ ) – a(x,η)

]
(ξ – η) ≥ , (.)

© 2016 Dong and Fang. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13661-016-0612-9
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-016-0612-9&domain=pdf
mailto:xfang@tongji.edu.cn


Dong and Fang Boundary Value Problems  (2016) 2016:106 Page 2 of 19

and

∣∣a(x, t)
∣∣ ≤ bϕ

(
x, |t|) + g(x), (.)

a(x, t)t ≥ b�
(
x, |t|) – h(x), (.)

[
a(x, s) – a(x, t)

]
(s – t) ≥ , (.)

for x ∈ �, s, t ∈ R and ξ ,η ∈ R
N , where b, b > , g ∈ E�(�), g ≥ , h ∈ L(�), and h ≥ .

The right-hand side f : � ×R →R is a Carathéodory function.
Liu et al. [] proved the existence of weak solutions for (.) with a =  in reflexive

Musielak-Orlicz-Sobolev spaces.
However, there exist some nonreflexive Musielak-Orlicz-Sobolev spaces. For example,

let �(x, t) = ( + t
p(x) ) ln( + t

p(x) ) – t
p(x) , for x ∈ � and t > , where p : � → R is a mea-

surable function such that  < p– := infx∈� p(x) ≤ p(x) ≤ p+ := supx∈� p(x) < +∞. Then the
Musielak-Orlicz-Sobolev space W L�(�) is separable and nonreflexive.

The purpose of this paper is to weaken the restriction of reflexivity of the Musielak-
Orlicz spaces in [] and study the existence of solutions for the following nonlinear prob-
lem:

– div
(
a(x, Du)

)
+ a(x, u) = f (x, u, Du), (.)

in � coupled with Dirichlet or Neumann boundary condition, where a satisfies the
growth condition, the coercive condition, and the monotone condition, and a satisfies
the growth condition without any coercive condition or monotone condition. The right-
hand side f : � ×R ×R

N → R is a Carathéodory function satisfying a growth condition
dependent on the solution u and its gradient Du.

One needs the following coercive condition of � in []:

�(x,αu) ≥ αG(α)�(x, u), for x ∈ �, t ∈R and α > , (.)

where G : (, +∞) →R is a function such that G(α) → +∞ as α → +∞. We will point out
that the condition (.) can be omitted.

This paper is organized as follows: Section  contains some preliminaries and some
technical lemmas which will be needed. We establish some basic properties for Musielak-
Orlicz functions and some necessary and sufficient conditions for Musielak-Orlicz func-
tions satisfying the � condition. In Section , we establish a linear functional analysis
method for differential equations of divergence form to prove the existence of weak so-
lutions for (.) with Dirichlet boundary or Neumann boundary condition in separable
Musielak-Orlicz-Sobolev spaces. We give the enclosure of weak solutions between sub-
and supersolutions by using a sub-supersolution method. Our method does not require
any monotonicity or coercivity of a. We point out that the coercive condition (.) of �

can be omitted because of the reflexivity of the Musielak-Orlicz-Sobolev spaces in [].
We refer to some results of sub-supersolution methods for variational inequalities and

the existence of solutions for differential equations studied in variable exponent Sobolev
or Orlicz-Sobolev spaces (see, e.g., [–]). For some results we also refer to [–].

In this paper, we always assume that � ⊂R
N is a bounded domain with Lipschitz bound-

ary and denote by L(�) the set of all real measurable functions defined on �.
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2 Preliminaries
Now we list briefly some definitions and facts about Musielak-Orlicz-Sobolev spaces; for
more details see [, , ], and [].

A real function � defined on � ×R+, where R+ = [, +∞), will be said a generalized N-
function (i.e. a Musielak-Orlicz function), denoted by � ∈ N(�), if it satisfies the following
conditions:

(i) �(x, u) is an N-function of the variable u ≥  for every x ∈ �, i.e. is a convex,
nondecreasing, continuous function of u such that �(x, ) = , �(x, u) >  for u > ,
and we have the conditions

lim
u→+

sup
x∈�

�(x, u)
u

= , lim
u→+∞ inf

x∈�

�(x, u)
u

= +∞.

(ii) �(x, u) is a measurable function of x for all u ≥ .
Equivalently, � admits the representation

�(x, u) =
∫ u


ϕ(x, τ ) dτ , (.)

where ϕ(x, u) is the right-hand derivative of �(x, ·) at u, for a fixed x ∈ � and all u ≥ .
Then for every x ∈ �, ϕ(x, τ ) is a right-continuous and nondecreasing function of τ ≥ ,
ϕ(x, ) = , ϕ(x, τ ) >  for τ > , and limu→+∞ infx∈� ϕ(x, τ ) = +∞.

Let � ∈ N(�), then �(x, u) ≤ uϕ(x, u) ≤ �(x, u), for x ∈ �, u ≥ .
The complementary function � to a Musielak-Orlicz function � is defined as follows:

�(x, v) = sup
u≥

{
uv – �(x, u)

}
, for all v ≥ , x ∈ �.

Then � is a Musielak-Orlicz function and � is also the complementary function to �.
Equivalently, � admits the representation

�(x, v) =
∫ v


φ(x,σ ) dσ , (.)

where φ is given by

φ(x,σ ) = sup
{
τ : ϕ(x, τ ) ≤ σ

}
, for all x ∈ �. (.)

Similar to the proof in [], we can deduce that

φ
(
x,ϕ(x, u)

) ≥ u, ϕ
(
x,φ(x, v)

) ≥ v, for u ≥ , v ≥  and x ∈ �, (.)

and

φ
(
x,ϕ(x, u) – ε

) ≤ u, for u ≥ ,  < ε ≤ ϕ(x, u) and x ∈ �,

ϕ
(
x,φ(x, v) – ε

) ≤ v, for v ≥ ,  < ε ≤ φ(x, v) and x ∈ �.

For � ∈ N(�), the following inequality is called the Young inequality:

uv ≤ �(x, u) + �(x, v), for all u, v ≥ , x ∈ �, (.)
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and the equality holds if and only if u = φ(x, v) or v = ϕ(x, u), i.e.

uϕ(x, u) = �(x, u) + �
(
x,ϕ(x, u)

)
, φ(x, v)v = �

(
x,φ(x, v)

)
+ �(x, v). (.)

Let � ∈ N(�). � is said to satisfy the � condition (� ∈ �, for short), if there exist a
positive constant K >  and a nonnegative function h ∈ L(�) such that

�(x, u) ≤ K�(x, u) + h(x), for all u ≥  and a.e. x ∈ �. (.)

Clearly, by the proof of Proposition .() in [], if � ∈ �, then there exist K >  and a
nonnegative function h ∈ L(�) such that

�
(
x,ϕ(x, u)

) ≤ (K – )�(x, u) + h(x), for all u ≥  and a.e. x ∈ �. (.)

For each x ∈ �, the inverse function of �(x, ·) is denoted by �–(x, ·), i.e.

�–(x,�(x, u)
)

= �
(
x,�–(x, u)

)
= u, for u ≥ .

Let  ,ϒ ∈ N(�).  � ϒ means that  is weaker than ϒ , i.e., there exist positive con-
stants K, K and a nonnegative function h ∈ L(�) such that

(x, u) ≤ Kϒ(x, Ku) + h(x), for all u ≥  and a.e. x ∈ �. (.)

� is called locally integrable, if
∫
�

�(x, u) dx < ∞ for every u > .
The following assumptions will be used.

(�) infx∈� �(x, ) = c > .
(�) For every t >  there exists c = c(t) >  such that

inf
x∈�

�(x, t)
t

≥ c (.)

and

inf
x∈�

�(x, t)
t

≥ c, (.)

for all t ≥ t.

Obviously, (.) implies (�).
Let � ∈ N(�). The Musielak-Orlicz space (i.e. the generalized Orlicz space) L�(�) is

defined by

L�(�) =
{

u ∈ L(�) :
∫

�

�

(
x,

|u(x)|
λ

)
dx < ∞, for some λ > 

}
,

with the (Luxemburg) norm

‖u‖� = inf

{
λ >  :

∫

�

�

(
x,

|u(x)|
λ

)
dx ≤ 

}
.
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Moreover, the set

K�(�) =
{

u ∈ L(�) :
∫

�

�
(
x,

∣∣u(x)
∣∣)dx < ∞

}
,

will be called the Musielak-Orlicz class (i.e. the generalized Orlicz class). A function u ∈
L(�) will be called a finite element of L�(�), if λu ∈ K�(�) for every λ > . The space of
all finite elements of L(�) will be denoted by E�(�). Then K�(�) is a convex subset of
L�(�), L�(�) is the smallest vector subspace of L(�) containing K�(�), and E�(�) is the
largest vector subspace of L(�) contained in K�(�).

If � is locally integrable, then E�(�) is a separable space, and E�(�) = K�(�) = L�(�)
if and only if � ∈ �.

If � is locally integrable and satisfy (.), then (E�(�))∗ = L�(�). Moreover, if � is
locally integrable satisfying (.), and �,� ∈ �, then L�(�) is reflexive.

The Musielak-Orlicz-Sobolev space W L�(�) is defined by

W L�(�) =
{

u ∈ L�(�) : ∀|α| ≤ , Dαu ∈ L�(�)
}

,

where α = (α, . . . ,αN ) with nonnegative integers αi, i = , . . . , N , |α| = |α|+ |α|+ · · ·+ |αN |
and Dαu denote the distributional derivatives.

Let

��(u) =
∑

|α|≤

∫

�

�
(
x,

∣
∣Dαu(x)

∣
∣)dx and ‖u‖�,� = inf

{
λ >  : ��

(
u
λ

)
≤ 

}
,

for u ∈ W L�(�). ��(u) is a convex modular and ‖u‖�,� is a norm on W L�(�), respec-
tively. The pair (W L�(�),‖u‖�,�) is a Banach space if � is locally integrable and satisfies
(�).

Taking �(x, u) = �(u), W L�(�) is the Orlicz-Sobolev space. Taking �(x, |u|) = |u|p(x),
W L�(�) is the variable exponent Sobolev space W ,p(·)(�).

It is easy to see that

W L�(�) =
{

u ∈ L�(�) : |Du| ∈ L�(�)
}

.

Denote ‖Du‖� = ‖|Du|‖� and ‖u‖,� = ‖u‖� + ‖Du‖�. Then ‖u‖,� and ‖u‖�,� are two
equivalent norms.

The space W L�(�) will always be identified to a subspace of the product
∏

|α|≤ L�(�) =
∏

L�; this subspace is σ (
∏

L�,
∏

E�) closed. Let W 
L�(�) be the σ (

∏
L�,

∏
E�) closure

of the Schwartz space D(�) in W L�(�).
Let W E�(�) = {u ∈ E�(�) : ∀|α| ≤ , Dαu ∈ E�(�)}, and W 

E�(�) is the (norm) closure
of D(�) in W L�(�).

The proof of the following lemma is similar to [].

Lemma . Let meas� be bounded, � ∈ N(�), and ϕ is the right-hand derivative of �.
Then

∫
�

ϕ(x, |Du|)|Du|dx
∫
�

|Du|dx
→ +∞, if

∫

�

|Du|dx → +∞. (.)
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Proof Let us assume that there is a sequence {un} with
∫
�

|Dun(x)|dx → +∞ and K < ∞
such that

∫
�

ϕ(x, |Dun(x)|)|Dun(x)|dx
∫
�

|Dun(x)|dx
≤ K.

Since � ∈ N(�), there exists R >  such that

inf
x∈�

ϕ(x, R) ≥ inf
x∈�

�(x, R)
R

> K.

We define �̃(R, n) := {x ∈ �||Dun(x)| ≥ R} and take for all n with
∫
�

|Dun(x)|dx ≥
R meas�, then

∫
�

ϕ(x, |Dun(x)|)|Dun(x)|dx
∫
�

|Dun(x)|dx

≥ inf
x∈�

ϕ(x, R)

∫
�̃(R,n) |Dun(x)|dx

∫
�̃(R,n) |Dun(x)|dx + R · meas(�)

≥ 


inf
x∈�

ϕ(x, R) > K.

This is a contradiction, thus (.) holds. �

Lemma . (see [], Remark .) Let V be a vector space of finite dimension and A : V →
V ′ be a continuous mapping with

lim‖u‖V →+∞
(A(u), u)
‖u‖V

= +∞,

where V ′ is the dual space of V , then A is surjective.

Lemma . (see [], Lemma .) If u ∈ W L�(�), then u+, u– ∈ W L�(�), and

Du+ =

⎧
⎨

⎩
Du, if u > ,

, if u ≤ ,
and Du– =

⎧
⎨

⎩
, if u ≥ ,

–Du, if u < .

Here u+ = max{u, }, u– = – min{u, }. This lemma holds in W 
L�(�) as well.

Lemma . (see []) If a sequence gn ∈ L�(�) converges in measure to a measur-
able function g and if gn remains bounded in L�(�), then g ∈ L�(�) and gn → g for
σ (L�(�), E�(�)).

The following propositions refer to Theorems .-. in [], Theorem . in [], and
Theorem . in [].

Proposition . Let � ∈ N(�) and

�(x, u) = a�(x, bu) (a, b > ), for all u ≥ , x ∈ �. (.)
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Then � ∈ N(�) and the complementary function � to � is given by

�(x, v) = a�

(
x,

v
ab

)
, for all v ≥ , x ∈ �, (.)

where � is the complementary function to �.

Proof It is easy to see that � ∈ N(�). We only need to show (.). By (.) and (.), we
can deduce that

ϕ(x, τ ) = abϕ(x, bτ ), for all τ ≥ , x ∈ �,

where ϕ and ϕ are the right-hand derivatives of � and �, respectively.
From (.), φ(x,σ ) = 

b sup{bτ : ϕ(x, bτ ) ≤ σ
ab } = 

bφ(x, σ
ab ), ∀σ ≥  and x ∈ �.

For ∀v ≥ , by (.), �(x, v) = a
∫ v

 φ(x, σ
ab ) d σ

ab , ∀v ≥  and x ∈ �. Define s = σ
ab . Then

�(x, v) = a
∫ v

ab
 φ(x, s) ds = a�(x, v

ab ), ∀v ≥  and x ∈ �. �

Proposition . Let �,� ∈ N(�) and

�(x, u) ≤ �(x, u) + h(x), for some h ∈ L(�), all u ≥  and x ∈ �. (.)

Then

�(x, v) ≤ �(x, v) + h(x), for all v ≥  and x ∈ �,

where � and � are the complementary functions to � and �, respectively.

Proof By (.) and (.), one has �(x,φ(x, v)) + �(x, v) = φ(x, v) · v ≤ �(x,φ(x, v)) +
�(x, v), ∀v ≥  and x ∈ �.

In view of (.), �(x,φ(x, v)) + h(x) ≥ �(x,φ(x, v)), ∀v ≥  and x ∈ �. Therefore,
�(x, v) ≤ �(x, v) + h(x), ∀v ≥  and x ∈ �. �

Proposition . Let � ∈ N(�) and its complementary function is �. ϕ and φ are given by
(.) and (.), respectively. Then the following assertions are equivalent.

() � ∈ �.
() ∀l > , there exist K ′ >  and a nonnegative function h̃ ∈ L(�) such that

�(x, lu) ≤ K ′�(x, u) + h̃(x), for all u ≥  and a.e. x ∈ �.

() ∀l > , there exist ε ∈ (, ) and a nonnegative function h̃ ∈ L(�) such that

�
(
x, ( + ε)u

) ≤ l�(x, u) + h̃(x), for all u ≥  and a.e. x ∈ �.

() ∀l > , there exist δ >  and a nonnegative function h̃ ∈ L(�) such that

(l + δ)�(x, v) ≤ �(x, lv) + h̃(x), for all v ≥  and a.e. x ∈ �.
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() ∀l > , there exist l >  and a nonnegative function h̃ ∈ L(�) such that

�(x, v) ≤ 
ll

�(x, lv) + h̃(x), for all v ≥  and a.e. x ∈ �.

() There exist l >  and a nonnegative function h̃ ∈ L(�) such that

�(x, v) ≤ 
l

�(x, lv) + h̃(x), for all v ≥  and a.e. x ∈ �.

() There exist l >  and a nonnegative function h̃ ∈ L(�) such that

uϕ(x, u) ≤ luϕ(x, u) + h̃(x), for all u ≥  and a.e. x ∈ �.

() ∀m > , there exist l >  and a nonnegative function h̃ ∈ L(�) such that

uϕ(x, mu) ≤ luϕ(x, u) + h̃(x), for all u ≥  and a.e. x ∈ �.

Proof ()⇒(). Since � ∈ �, by (.), there exist K >  and a nonnegative function h ∈
L(�) such that �(x, u) ≤ K�(x, u) + h(x), ∀u ≥  and a.e. x ∈ �. For every l > , there
exists n ∈ N such that n ≥ l. Then

�(x, lu) ≤ �
(
x, nu

) ≤ K�
(
x, n–u

)
+ h(x)

≤ K�
(
x, n–u

)
+ (K + )h(x)

≤ · · · ≤ Kn�(x, u) +
(
Kn– + · · · + K + 

)
h(x)

= Kn�(x, u) +
Kn – 
K – 

h(x),

∀u ≥  and a.e. x ∈ �. Taking K ′ = Kn and h̃ = Kn–
K– h(x), we can deduce the assertion ().

()⇒(). For every l > , by the assertion (), there exist K ′ > l and a nonnegative func-
tion h̃ ∈ L(�) such that

�(x, u) ≤ K ′�(x, u) + h̃(x), for all u ≥  and a.e. x ∈ �.

Take ε = l–
K ′– , then ε ∈ (, ). Hence,

�
(
x, ( + ε)u

)
= �

(
x, ( – ε)u + εu

) ≤ ( – ε)�(x, u) + ε�(x, u)

≤ ( – ε)�(x, u) + K ′ε�(x, u) + εh̃(x) = l�(x, u) + εh̃(x),

for all u ≥  and a.e. x ∈ �. Taking h̃ = εh̃, we complete the assertion ().
()⇒(). By the assertion (), ∀l > , there exist ε ∈ (, ) and a nonnegative function

h̃ ∈ L(�) such that

�
(
x, ( + ε)u

) ≤ l�(x, u) + h̃(x), for all u ≥  and a.e. x ∈ �.
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It implies that 
l

�(x, ( + ε)u) ≤ �(x, u) + 
l

h̃(x). Denote �(x, u) = 
l

�(x, ( + ε)u). By
Proposition ., �(x, v) = 

l
�(x, l

+ε
v), ∀v ≥  and a.e. x ∈ �. By Proposition ., we get

�(x, v) ≤ 
l

�

(
x,

l

 + ε
v
)

+

l

h̃(x) ≤ 
l( + ε)

�(x, lv) +

l

h̃(x),

∀v ≥ , and a.e. x ∈ �. Thus, we have l( + ε)�(x, v) ≤ �(x, lv) + ( + ε)h̃(x). Taking
δ = lε and h̃ = ( + ε)h̃, we complete the assertion ().

()⇒(). By the assertion (), ∀l > , there exist δ >  and a nonnegative function h̃ ∈
L(�) such that

(l + δ)�(x, v) ≤ �(x, lv) + h̃(x), ∀v ≥  and a.e. x ∈ �.

Hence, �(x, v) ≤ 
l(+ δ

l
)
�(x, lv) + 

l(+ δ
l

)
h̃(x). Taking l =  + δ

l
and h̃ = 

l(+ δ
l

)
h̃, we

complete the assertion ().
()⇒(). By the assertion (), ∀l > , there exist l >  and a nonnegative function h̃ ∈

L(�) such that

�(x, v) ≤ 
ll

�(x, lv) + h̃(x), ∀v ≥  and a.e. x ∈ �.

By Proposition . and Proposition ., we obtain �(x, lu) ≤ ll�(x, u)+ llh̃(x), ∀u ≥ 
and a.e. x ∈ �. Take n ∈ N such that ln

 ≥ . Then �(x, u) ≤ �(x, ln
 u) ≤ ln

 ln
 �(x, u) +

ln
 ln

 –
ll– h̃(x). Denote ln

 ln
 = K and ln

 ln
 –

ll– h̃ = h. We deduce (.), i.e. � ∈ �.
()⇒(). Define (x, v) = 

l
�(x, lv). By Proposition ., (x, u) = 

l
�(x, u), ∀u ≥ 

and a.e. x ∈ �. By Proposition ., �(x, u) ≤ l�(x, u) + lh̃(x), ∀u ≥  and a.e. x ∈ �.
Therefore, � ∈ �.

Similarly, () implies ().
()⇒(). By (), there exist K ′ >  and h̃ ∈ L(�) such that

�(x, u) ≤ K ′�(x, u) + h̃(x), for all u ≥  and a.e. x ∈ �.

On the other hand, we have uϕ(x, u) ≤ �(x, u) and �(x, u) ≤ uϕ(x, u), for x ∈ �, u ≥ .
Hence,

uϕ(x, u) ≤ K ′


uϕ(x, u) +




h̃(x), for all u ≥  and a.e. x ∈ �.

Consequently, the assertion () holds by taking l = K ′
 and h̃ = 

 h̃.
()⇒(). For every m > , there is n ∈ N

+ such that n ≥ m. Then uϕ(x, mu) ≤
uϕ(x, n u) ≤ ln

 uϕ(x, u) + ln
 –
l– h̃(x), ∀u ≥  and a.e. x ∈ �. Taking l = ln

 and h̃ =
ln
 –
l– h̃, we complete ().

()⇒(). For every l > , we have �(x, lu) ≤ luϕ(x, lu). By (), there exist l >  and
h̃ ∈ L(�) such that

uϕ(x, lu) ≤ luϕ

(
x,

u


)
+ h̃(x), for all u ≥  and a.e. x ∈ �.
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It follows that �(x, lu) ≤ lluϕ(x, u
 ) + lh̃(x) ≤ ll�(x, u) + lh̃(x), for all u ≥  and a.e.

x ∈ �. Taking K ′ = ll and h̃ = lh̃, we deduce (). Immediately, () holds. �

Example . Let �(x, |t|) = (+ |t|
p(x) ) ln(+ |t|

p(x) )– |t|
p(x) , for x ∈ � and t ∈R, where p : � →R

is a measurable function such that  < p– ≤ p(x) ≤ p+ < +∞. Then ϕ(x, |t|) = 
p(x) ln(+ |t|

p(x) ),
φ(x, |s|) = p(x)(exp(p(x)|s|) – ) and �(x, |s|) = exp(p(x)|s|) – p(x)|s| – . It follows that � ∈
N(�) and � ∈ �. But � /∈ �. Moreover, both � and � are locally integrable. Therefore,
L�(�) is separable, but L�(�) is not reflexive.

Remark . Let �(x, |t|) = exp(p(x)|t|) – , for x ∈ � and t ∈ R, where p : � → R is a
measurable function such that  < p– ≤ p(x) ≤ p+ < +∞. It is worth noting that � does not
satisfy the condition limu→+ supx∈�

�(x,u)
u = . Therefore, � /∈ N(�).

Clearly, by (.), Proposition . and Proposition ., we can deduce the following
proposition.

Proposition . If � �  , then  � �.

3 Existence theorems
Let � ∈ N(�), and satisfy the condition

(�) � ∈ �, � is a complementary function to �, both � and � are locally integrable and
satisfy (�).

We assume that there exists  ∈ N(�) satisfying the condition

()  ∈ �,  is a complementary function to  , both  and  are locally integrable and
satisfy (�), � �  , and the embedding W L�(�) ↪→ L (�) is compact.

Note that, in this case, the spaces L�(�), L (�), W L�(�), W 
L�(�) are separable Ba-

nach spaces.
For u, v ∈ L(�), we denote u ∧ v = min{u, v}, u ∨ v = max{u, v}, u+ := u ∨ , u– := –u ∧ ,

u ≤ v ⇔ u(x) ≤ v(x) for a.e. x ∈ �.
Let a : � ×R

N →R
N be a Carathéodory function satisfying the following conditions:

(A) For a.e. x ∈ � and all ξ ,η ∈R
N ,

∣∣a(x, ξ )
∣∣ ≤ b�

–(x,�
(
x, |ξ |)) + g(x), (.)

a(x, ξ )ξ ≥ b�
(
x, |ξ |) – g(x), (.)

[
a(x, ξ ) – a(x,η)

]
(ξ – η) > , ξ �= η, (.)

where b, b > , g ∈ E�(�), g ≥ , g ∈ L(�), and g ≥ .

Let a : � ×R →R be a Carathéodory function satisfying the following conditions:

(A) For a.e. x ∈ � and all t ∈R,

∣∣a(x, t)
∣∣ ≤ b�

–(x,�
(
x, |t|)) + g(x), (.)

where b > , g ∈ E�(�), and g ≥ .
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Example .
() Let �(x, |t|) = 

p(x) |t|p(x), a(x, ξ ) = |ξ |p(x)–ξ , for x ∈ � and t ∈R, where p : � → R is
a measurable function such that  ≤ p– ≤ p(x) ≤ p+ < +∞. Then � satisfies (�) and
we get the p(x)-Laplace operator div(|Du|p(x)–Du).

() Let �(x, |t|) = 
p(x) [( + |t|)p(x)/ – ], a(x, ξ ) = ( + |ξ |)(p(x)–)/ξ , for x ∈ � and

t ∈R, where p : � → R is a measurable function such that  ≤ p– ≤ p(x) ≤ p+ < +∞.
Then � satisfies (�) and we obtain the generalized mean curvature operator
div(( + |Du|)(p(x)–)/Du). Moreover, by Proposition .(), � ∈ �.

() Let �(x, |t|) = ( + |t|
p(x) ) ln( + |t|

p(x) ) – |t|
p(x) , for x ∈ � and t ∈R, where p : � →R is a

measurable function such that  < p– ≤ p(x) ≤ p+ < +∞. Clearly, it can be verified
that � satisfies (�). Put a(x, ξ ) = ϕ(x, |ξ |) ξ

|ξ | , and a(x, t) = ϕ(x, |t|), for x ∈ �, t ∈R

and ξ ∈ R
N , where ϕ(x, |t|) = 

p(x) ln( + |t|
p(x) ). Then a and a satisfy (A) and (A),

respectively.

Remark . Clearly, the condition (.) (resp. (.)) implies (.) (resp. (.)).

Consider the following Dirichlet boundary value problem:

⎧
⎨

⎩
– div(a(x, Du)) + a(x, u) = f (x, u, Du), in �,

u = , on ∂�,
(.)

where f : � ×R×R
N →R is a Carathéodory function. Denote by F the Nemytskii oper-

ator associated to f , that is,

F(u)(x) = f
(
x, u(x), Du(x)

)
, for x ∈ �.

A function u is called a (weak) solution of (.) if u ∈ W 
L�(�), F(u) ∈ L (�) and u

satisfies the equation
∫

�

a(x, Du)Dv dx +
∫

�

a(x, u)v dx =
∫

�

f (x, u, Du)v dx, for all v ∈ W 
L�(�). (.)

A function u is called a subsolution (resp. supersolution) of (.) if u ∈ W 
L�(�), F(u) ∈

L (�) and (.) holds with ‘=’ replaced by ‘≤’ (resp. ‘≥’) for every nonnegative functions
v in W 

L�(�) (see []).

Theorem . Suppose that u, . . . , uk and u, . . . , um are subsolutions and supersolutions
of (.), respectively, that satisfy

u := u ∨ u ∨ · · · ∨ uk ≤ u ∧ u ∧ · · · ∧ um := u.

Let (�), (), (A), (A) hold. Assume the nonlinear term g satisfies the following local
growth condition:

∣
∣f (x, t, ξ )

∣
∣ ≤ q(x) + b�

–(x,�
(
x, |t|)) + b

–(x,�
(
x, |ξ |)), (.)

for a.e. x ∈ � and ∀t ∈ [u(x), u(x)], with q ∈ E (�), b, b > . Then there exists a solution
u of (.) such that u ≤ u ≤ u.
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Proof Denote V = W 
L�(�). For x ∈ �, we put

Tu(x) =

⎧
⎪⎪⎨

⎪⎪⎩

u(x), if u(x) > u(x),

u(x), if u(x) ≤ u(x) ≤ u(x),

u(x), if u(x) < u(x),

for u ∈ V .

Then Tu = u ∨ u + u ∧ u – u. By Remark . in [], T : V → V is continuous. It is easy to
see that T is bounded. From Proposition ., we obtain F(Tu) ∈ L (�), ∀u ∈ V .

We define the cutoff function l : � ×R →R given by

l(x, s) =

⎧
⎪⎪⎨

⎪⎪⎩

�
–(x,�(x, s – u(x))), if s > u(x),

, if u(x) ≤ s ≤ u(x),

–�
–(x,�(x, u(x) – s)), if s < u(x),

for x ∈ �, s ∈R. Then l satisfies the following condition:

∣
∣l(x, s)

∣
∣ ≤ �

–(x,�
(
x, |s|)) + �

–(x,�
(
x, 

∣
∣u(x)

∣
∣)) + �

–(x,�
(
x, 

∣
∣u(x)

∣
∣)), (.)

for x ∈ � and all s ∈R.
For all u ∈ V , since � ∈ �, there exists K >  such that

∫

�

l(x, u)u dx

=
∫

{u>u}
�

–(x,�(x, u – u)
)
(u – u) dx

+
∫

{u>u}
�

–(x,�(x, u – u)
)
u dx

+
∫

{u<u}
�

–(x,�(x, u – u)
)
(u – u) dx

–
∫

{u<u}
�

–(x,�(x, u – u)
)
u dx

≥
∫

{u>u}
�(x, u – u) dx –

∫

{u>u}

[


�(x, u – u) + �

(
x, |u|)

]
dx

+
∫

{u<u}
�(x, u – u) dx –

∫

{u<u}

[


�(x, u – u) + �

(
x, |u|)

]
dx

=



∫

{u>u}
�(x, u – u) dx –

∫

{u>u}
�

(
x, |u|)dx

+



∫

{u<u}
�(x, u – u) dx –

∫

{u<u}
�

(
x, |u|)dx

≥ 


∫

{u>u}

[
�

(
x,

|u|


)
– �

(
x, |u|)

]
dx –

∫

�

�
(
x, |u|)dx

+



∫

{u<u}

[
�

(
x,

|u|


)
– �

(
x, |u|)

]
dx

–
∫

�

�
(
x, |u|)dx
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≥
∫

{u>u}∪{u<u}
�

(
x,

|u|


)
dx – C

+
∫

{u≤u≤u}

[
�

(
x,

|u|


)
– �

(
x,

|u| ∨ |u|


)]
dx

=
∫

�

�

(
x,

|u|


)
dx – C

≥ 
K

∫

�

�
(
x, |u|)dx – C, (.)

for some constant C >  independent of u, where {u < u} = {x ∈ � : u(x) < u(x)}, {u > u} =
{x ∈ � : u(x) > u(x)}, and {u ≤ u ≤ u} = {x ∈ � : u(x) ≤ u(x) ≤ u(x)}.

Let us consider the auxiliary equation of finding u ∈ V such that

∫

�

a(x, Du)Dv dx +
∫

�

a(x, Tu)v dx + λ

∫

�

l(x, u)v dx

=
∫

�

F(Tu)v dx, ∀v ∈ V , (.)

where λ >  is a parameter to be specified later.
Define �T : V → V ∗,

(�T u, v) :=
∫

�

a(x, Du)Dv dx +
∫

�

a(x, Tu)v dx + λ

∫

�

l(x, u)v dx –
∫

�

F(Tu)v dx,

∀v ∈ V . Then �T is well defined.
Since � ∈ �, there exists a sequence {wn} ⊂ V such that {wn} is dense in V . Let Vm =

span{w, . . . , wm} and consider �T |Vm . For every u ∈ Vm, ‖Du‖� and
∫
�

|Du|dx are two
norms of Vm equivalent to the usual norm of finite dimensional vector spaces.

Similar to the proof of Proposition . in [], we can deduce that the mapping u →
�T |Vm u : Vm → V ∗

m is continuous.
In view of (.), one has

∣
∣∣
∣

∫

�

F(Tu)u dx
∣
∣∣
∣

≤ C∗‖q‖‖u‖,� + b

∫

�

�
(
x, |u|)dx + b

∫

�

�
(
x, |u|)dx + b

∫

�

�
(
x, |u|)dx

+ bε

∫

�

�
(
x, |Du|)dx + b

∫

�

ε

(
x,


ε

|u| ∨ |u|
)

dx + b

∫

�


(
x, |u|)dx

+ b

∫

�


(
x, |u|)dx + b

∫

�

�
(
x, |Du|)dx + b

∫

�

�
(
x, |Du|)dx, (.)

for all u ∈ V , where ε = b
b

and the constant C∗ > .
Thanks to (.) and (.), there exist K >  and a nonnegative function h ∈ L(�) such

that
∣
∣∣∣

∫

�

a(x, Tu)u dx
∣
∣∣∣

≤ b(K – )
∫

�

[
�

(
x, |u|) + �

(
x, |u|) + �

(
x, |u|)]dx + b

∫

�

h(x) dx



Dong and Fang Boundary Value Problems  (2016) 2016:106 Page 14 of 19

+ (b + )
∫

�

�
(
x, |u|)dx +

∫

�

�
(
x,

∣∣g(x)
∣∣)dx

= (bK + )
∫

�

�
(
x, |u|)dx + C, (.)

for all u ∈ V , where the constant C >  is independent of u.
Let λ > K(bK +  + b). Combining (.), (.), (.), and (.), we obtain

(�T u, u) ≥ b



∫

�

�
(
x, |Du|)dx +

(
λ

K
– bK –  – b

)∫

�

�
(
x, |u|)dx

– C – C∗‖q‖‖u‖,�

≥ b



∫

�

�
(
x, |Du|)dx – C – C∗‖q‖‖u‖,�, (.)

for all u ∈ V and some C >  independent of u. By Proposition . in [], there exists C > 
such that ‖u‖� ≤ C‖Du‖�. In view of (.), for all u ∈ Vm, we have

(�T |Vm u, u)
‖u‖,�

≥ b
∫
�

�(x, |Du|) dx
( + C)‖Du‖�

–
C

‖u‖,�
– C∗‖q‖

≥ b
∫
�

�(x, |Du|) dx
C( + C)

∫
�

|Du|dx
–

C
‖u‖,�

– C∗‖q‖ ,

for some constant C > . By Lemma ., we get

(�T |Vm u, u)
‖u‖,�

→ +∞, as ‖u‖,� → +∞. (.)

By Lemma ., there exists a Galerkin solution um ∈ Vm for every m ∈ N such that
(�T um, v) = , v ∈ Vm. Using the density of {wm}, we deduce that

(�T um, v) = , ∀v ∈ V . (.)

For u ∈ V , define ρ(u) =
∫
�

(�(x, |Du|) + �(x, |u|)) dx and ‖u‖ρ = inf{λ >  : ρ( u
λ

) ≤ }.
Then ‖u‖ρ is a norm of V equivalent to ‖u‖,� (see []).

Taking α = min{ b
 , λ

K
– bK –  – b}, we have

(�T u, u) ≥ α

[∫

�

�
(
x, |Du|)dx +

∫

�

�
(
x, |u|)dx

]
– C – C∗‖q‖‖u‖,�

≥ α
(‖u‖ρ – ε

)
[∫

�

�

(
x,

|Du|
‖u‖ρ – ε

)
dx +

∫

�

�

(
x,

|u|
‖u‖ρ – ε

)
dx

]

– C – C∗‖q‖‖u‖,�

≥ α
(‖u‖ρ – ε

)
– C – C∗‖q‖‖u‖,�,

for all u ∈ V , as ‖u‖,� is large enough. Therefore, by (.), we get a sequence {um}
that is bounded in V . Hence, there exist u ∈ V and a subsequence {uk} of {um}, such
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that

uk ⇀ u weakly in V for σ
(∏

L�,
∏

E�

)
, (.)

uk → u strongly in L (�), (.)

uk → u a.e. in �, (.)

as k → ∞.
By (.) and (.), {a(x, Tuk)} and {l(x, uk)} are bounded in L�(�). By Lemma .,

a(x, Tuk) ⇀ a(x, Tu) weakly in L�(�) for σ (L�, E�)

and

l(x, uk) ⇀ l(x, u) weakly in L�(�) for σ (L�, E�),

as k → ∞.
On the other hand, by the Lebesgue theorem, we deduce that

∫

�

a(x, Tuk)(uk – u) dx → ,
∫

�

l(x, uk)(uk – u) dx → , as k → ∞.

Thanks to (.), {F(Tuk)} is bounded in L (�). Hence,

∫

�

F(Tuk)(uk – u) dx → , as k → ∞.

Thus we obtain
∫

�

a(x, Duk)(Duk – Du) dx → , as k → ∞. (.)

Similar to the proof of Proposition . in [], we can construct a subsequence still denoted
by {uk} such that

Duk → Du a.e. in �, as k → ∞. (.)

Hence

a(x, Duk) → a(x, Du) a.e. in �, as k → ∞. (.)

In view of (.), {a(x, Duk)} is bounded in (L�(�))N , then by Lemma ., we have

a(x, Duk) → a(x, Du) weakly in
(
L�(�)

)N for σ
((

L�(�)
)N ,

(
E�(�)

)N)
, (.)

as k → ∞. Similarly,

F(Tuk) ⇀ F(Tu) weakly in L (�) for σ (L , E ), as k → ∞.
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Hence, (�T uk , v) = (�T u, v), ∀v ∈ V . By (.), (�T u, v) = , ∀v ∈ V , i.e., u is a solution
of (.).

For every m ∈ N, taking v = (um – u)+ ∈ V in (.) as a test function, we get

∫

�

[
a(x, Dum) – a(x, Du)

]
D(um – u)+ dx

+
∫

�

[
a(x, Tum) – a(x, u)

]
(um – u)+ dx + λ

∫

�

l(x, um)(um – u)+ dx

≤
∫

�

[
F(Tum) – F(u)

]
(um – u)+ dx. (.)

By (.), we have

∫

�

[
a(x, Dum) – a(x, Du)

]
D(um – u)+ dx

=
∫

{um>u}

[
a(x, Dum) – a(x, Du)

]
D(um – u) dx ≥ .

Since
∫

�

[
a(x, Tum) – a(x, u)

]
(um – u)+ dx = 

and
∫

�

[
F(Tum) – F(u)

]
(um – u)+ dx = ,

we get

 ≥
∫

�

l(x, um)(um – u)+ dx ≥
∫

{um>u}
�(x, um – u) dx ≥ .

It follows that um ≤ u. Using arguments similar to those above we can prove that um ≥ u.
Thanks to (.), one has u ≤ u ≤ u. From the definitions of l(·, u(·)) and Tu, we have

l
(
x, u(x)

)
= , a

(
x, Tu(x)

)
= a

(
x, u(x)

)

and

f
(
x, Tu(x), DTu(x)

)
= f

(
x, u(x), Du(x)

)
,

for a.e. x ∈ �. We note that then (.) reduces to (.), which completes the proof. �

Remark . Our proof does not need the conditions � ∈ � and (�) in [].

Remark . Our method needs the strict monotonicity (.) of a, but does not require
monotonicity (.) or coercivity (.) of a. However, if � ∈ �, then we can deduce (.)
by following the lines of Theorem . in [] when (.) is replaced by (.).
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Remark . Assume that (.) holds and the assumptions of Theorem . hold. If
f (x, u, Du) = f (x) ∈ L (�), then it is easy to see that (.) has a unique solution.

Remark . Now we consider the following Neumann boundary value problem:

⎧
⎨

⎩
– div(a(x, Du)) + a(x, u) = f (x, u, Du), in �,

a(x, Du) · γ = , on ∂�,
(.)

where γ is the outward unit normal to ∂�.
We also assume that there is a function G : [k, +∞) →R for some k >  such that G(s) →

+∞ as s → +∞ and

�(x, su) ≥ G(s)s�(x, u) – sh(x), for all s > , u ≥ , a.e. x ∈ �, (.)

and some h ∈ L(�), h ≥ .
Assume that (.) holds and the assumptions of Theorem . hold. Replacing V by

W L�(�) in the proof of Theorem ., and (.)-(.) by the following lines, we can de-
duce a similar theorem to Theorem . for the Neumann boundary value problem (.).

(�T u, u) ≥ b



∫

�

�
(
x, |Du|)dx +

(
λ

K
– bK –  – b

)∫

�

�
(
x, |u|)dx

– C – C∗‖q‖‖u‖,�

≥ α

[∫

�

�
(
x, |Du|)dx +

∫

�

�
(
x, |u|)dx

]
– C – C∗‖q‖‖u‖,�, (.)

for all u ∈ V and some C >  independent of u, where α = min{ b
 , λ

K
– bK –  – b}.

Combining (.) and (.), we can deduce that, for any ε > ,

(�T u, u)

≥ α

[∫

�

�

(
x,

(‖u‖ρ – ε
) |Du|
‖u‖ρ – ε

)
dx +

∫

�

�

(
x,

(‖u‖ρ – ε
) |u|
‖u‖ρ – ε

)
dx

]

– C – C∗‖q‖‖u‖,�

≥ α
(‖u‖ρ – ε

)
G

((‖u‖ρ – ε
))

[∫

�

�

(
x,

|Du|
‖u‖ρ – ε

)
dx +

∫

�

�

(
x,

|u|
‖u‖ρ – ε

)
dx

]

– α
(‖u‖ρ – ε

)∫

�

∣∣h(x)
∣∣dx – C – C∗‖q‖‖u‖,�

≥ α
(‖u‖ρ – ε

)
G

((‖u‖ρ – ε
))

– α
(‖u‖ρ – ε

)∫

�

∣
∣h(x)

∣
∣dx – C

– C∗‖q‖‖u‖,�,

∀u ∈ V , as ‖u‖,� is large enough. Since ε is arbitrary, we get

(�T u, u) ≥ α‖u‖ρG
(‖u‖ρ

)
– α‖u‖ρ

∫

�

∣
∣h(x)

∣
∣dx – C – C∗‖q‖‖u‖,�,
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∀u ∈ V , as ‖u‖,� is large enough. Therefore, we obtain

(�T |Vm u, u)
‖u‖,�

→ +∞, as ‖u‖,� → +∞.

Proposition . If � ∈ �, then there are functions h ∈ L(�), h ≥ , and G : [k, +∞) →R

for some k >  such that G(s) → +∞ as s → +∞ and (.) holds.

Proof The proof of (.) is similar to the proof of Lemma . of [].
Since � ∈ �, there exist a positive constant k >  and a nonnegative function h ∈ L(�)

such that �(x, v) ≤ k�(x, v) + h(x), for all v ≥  and a.e. x ∈ �. Necessarily, k > . Defining
a function F : [, +∞) → [k, +∞) by

F(r) = r
(
( – λ)kn + λkn+) if r ∈ [

n, n+] and r = ( – λ)n + λn+,

we obtain

�(x, rv) ≤ [
( – λ)kn + λkn+]�(x, v) +

[
( – λ)

kn – 
k – 

+ λ
kn+ – 

k – 

]
h(x)

≤ [
( – λ)kn + λkn+]�(x, v) +

[
( – λ)kn + λkn+]h(x)

≤ F(r)�(x, v) +
F(r)

r
h(x).

Hence 
F(r)�(x, rv) ≤ �(x, v) + 

r h(x). Taking (x, v) = 
F(r)�(x, rv), by Proposition . and

Proposition ., we have �(x, u) ≤ 
F(r)�(x, F(r)

r u) + 
r h(x), for all u ≥  and a.e. x ∈ �. It fol-

lows that F(r)�(x, u) ≤ �(x, F(r)
r u) + F(r)

r h(x), for all u ≥  and a.e. x ∈ �. Since F(r)
r strictly

increases from k to +∞ as r ∈ [, +∞), its reciprocal function G(s) is well defined and
strictly increases from  to +∞ as s ∈ [k, +∞), and we have sG(s)�(x, u) ≤ �(x, su) + sh(x),
i.e.

�(x, su) ≥ sG(s)�(x, u) – sh(x), for s ≥ k, u ≥  and a.e. x ∈ �. �

Remark . Clearly, (.) can be replaced by (.) in the proof of Theorem . in [].
Therefore, by Proposition ., the condition (.) can be omitted since � ∈ � in [].

Denote S = {u ∈ W 
L�(�) : u is a solution of (.) and u ≤ u ≤ u}. Under the assump-

tions of Theorem ., the solution set S is nonempty and we can deduce the following
corollary.

Corollary . Under the assumptions of Theorem ., the following assertions about S are
true.

(a) The set S is compact in W 
L�(�).

(b) S is a direct set in both directions, that is, if u, u ∈ S then there exist u, v ∈ S such
that u ≥ u ∨ u and v ≤ u ∧ u.

(c) S has least and greatest elements with respect to the ordering ‘≤’, that is, there are
u∗, u∗ ∈ S such that u∗ ≤ u ≤ u∗, for all u ∈ S .
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