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Abstract
We consider the Sturm-Liouville boundary value problem

⎧
⎨

⎩

y(m)(t) + F(t, y(t), y′(t), . . . , y(q)(t)) = 0, t ∈ [0, 1],
y(k)(0) = 0, 0 ≤ k ≤ m – 3,
ζ y(m–2)(0) – θy(m–1)(0) = 0, ρy(m–2)(1) + δy(m–1)(1) = 0,

wherem ≥ 3 and 1≤ q ≤m – 2. We note that the nonlinear term F involves
derivatives. This makes the problem challenging, and such cases are seldom
investigated in the literature. In this paper we develop a new technique to obtain
existence criteria for one or multiple positive solutions of the boundary value
problem. Several examples with known positive solutions are presented to dwell
upon the usefulness of the results obtained.
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1 Introduction
In this paper we consider the higher-order Sturm-Liouville boundary value problem

⎧
⎪⎨

⎪⎩

y(m)(t) + F(t, y(t), y′(t), . . . , y(q)(t)) = , t ∈ [, ],
y(k)() = ,  ≤ k ≤ m – ,
ζy(m–)() – θy(m–)() = , ρy(m–)() + δy(m–)() = ,

(.)

where m ≥ ,  ≤ q ≤ m – , and F is continuous at least in the domain of interest. The
constants ζ , θ , ρ , and δ are such that

θ ≥ , δ ≥ , θ + ζ > , δ + ρ > , κ ≡ ζρ + ζ δ + θρ > . (.)

These assumptions allow ζ and ρ to be negative.
There is a vast amount of research done on the existence of positive solutions of Sturm-

Liouville boundary value problems. The many interests in (.) may stem from the fact that
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boundary value problems of type (.) model various dynamic systems with m degrees of
freedom in which m states are observed at m times; see Meyer []. For example, when
m = , the boundary value problem (.) describes a vast spectrum of physical phenom-
ena such as gas diffusion through porous media, diffusion of heat generated by positive
temperature-dependent sources, thermal self-ignition of a chemically active mixture of
gases in a vessel, catalysis theory, chemically reacting systems, adiabatic tubular reactors,
fluid dynamics, electrical potential theory, combustion theory, steady-state of oxygen dif-
fusion in a cell with Michaelis-Menten kinetics, cell membrane, and heat conduction in
the human brain; see [–]. Singular boundary value problems of particular and related
cases of (.) have also been the subject matter of many papers; see [–]. For recent de-
velopments in (.) and other types of boundary value problems, the reader is referred to
the monographs [, ] and the hundreds of references cited therein. Note that in most
of these investigations the nonlinear terms considered do not involve derivatives of the
dependent variable, and only a relatively small number of papers tackle nonlinear terms
that involve derivatives, of which we mention some below.

Fink [] has studied the radial symmetric form of the semilinear elliptic equation �y +
λq(|x|)f (y) =  in R

N , which turns out to be a particular second-order Sturm Liouville
eigenvalue problem that has y′ in the nonlinear term, viz.,

{
y′′ + N–

t y′ + λq(t)f (y) = , t ∈ (, ),
y′() = y() = .

Later, Wong [] has considered (.) when q = m –  and obtained the existence of a
solution (not necessarily positive) by assuming that (.) has lower and upper solutions v
and w such that v(m–)(t) ≤ w(m–)(t) on [, ],

F
(
t, v(t), . . . , v(m–)(t), um–

) ≤ F(t, u, . . . , um–, um–) ≤ F
(
t, w(t), . . . , w(m–)(t), um–

)

for t ∈ [, ], and (v(t), . . . , v(m–)(t)) ≤ (u, . . . , um–) ≤ (w(t), . . . , w(m–)(t)). A few years later,
Grossinho and Minhós [] established the existence of a solution to a related problem
of (.) when q = m – ; their method requires again the assumption of lower and upper
solutions, and, in addition, F must satisfy the Nagumo-type condition on some set A ⊂
[, ] ×R

m, viz.,
⎧
⎪⎨

⎪⎩

there exists a continuous function h : [,∞) → (,∞) such that
|F(t, u, . . . , um)| ≤ h(|um|), (t, u, . . . , um) ∈ A;
∫ ∞


s

h(s) ds = ∞.

For infinite interval problems, Lian et al. [, ] have investigated the following problem:

⎧
⎪⎨

⎪⎩

–y(m)(t) = h(t)f (t, y(t), y′(t), . . . , y(m–)(t)), t ∈ (,∞),
y(k)() = Ak ,  ≤ k ≤ m – ,
y(m–)() – ay(m–)() = B, y(m–)(∞) = C.

Here, once again, the method of lower and upper solutions is used, and a Nagumo-type
condition plays an important role in handling the derivatives in the nonlinear term. A rel-
atively small number of papers on problems involving derivative-dependent nonlineari-
ties indicates that problems of this type are more difficult to tackle analytically; we note,
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however, that numerical methods are more developed for this type of problems; see, for
example, [–].

Motivated by the research mentioned, in the current work we develop a different and
new technique to tackle the boundary value problem (.). Note that our technique re-
quires neither the existence of lower and upper solutions nor a Nagumo-type condition;
both of these conditions are not easy to check in practical applications.

The focus of this paper is on the existence of one or more positive solutions of (.). By a
positive solution y of (.) we mean y ∈ C(m)[, ] satisfying (.) and y(t) ≥  for t ∈ [, ].
By using a variety of fixed point theorems we begin with the establishment of the exis-
tence of a solution (not necessary positive) and proceed to the existence of a nontrivial
positive solution, two nontrivial positive solutions, and multiple nontrivial positive solu-
tions. Due to the presence of derivatives in the nonlinear term, our work naturally gen-
eralizes and extends the known results for Sturm-Liouville boundary value problems [,
–] and complements the work of many authors [, , –]. We remark that our
conditions/assumptions, which do not involve lower and upper solutions and a Nagumo-
type condition, are comparatively easy to check. We illustrate this practical usefulness by
examples with known positive solutions.

The paper is organized as follows. In Section  we state the fixed point theorems and
present some properties of a certain Green’s function. The new technique and various
existence criteria are developed in Section . Finally, in Section  we illustrate the useful-
ness of the results obtained by some examples. We remark that in all the examples, known
positive solutions are given to validate the conclusions derived from the theorems.

2 Preliminaries
In this section, we state the fixed point theorems and some inequalities for certain Green’s
function. The first theorem is known as the Leray-Schauder alternative, and the second is
usually called Krasnosel’skii’s fixed point theorem in a cone.

Theorem . (Leray-Schauder alternative) [] Let B be a Banach space with E ⊆ B closed
and convex. Let U be a relatively open subset of E with  ∈ U , and S : U → E be a contin-
uous and compact map. Then either

(a) S has a fixed point in U , or
(b) there exist x ∈ ∂U and λ ∈ (, ) such that x = λSx.

Theorem . (Krasnosel’skii’s fixed point theorem in a cone) [] Let B = (B,‖ · ‖) be a
Banach space, and let C ⊂ B be a cone in B. Let 
, 
 are open subsets of B with  ∈ 
,

 ⊂ 
, and let S : C ∩(
\
) → C be a completely continuous operator such that either

(a) ‖Sx‖ ≤ ‖x‖, x ∈ C ∩ ∂
, and ‖Sx‖ ≥ ‖x‖, x ∈ C ∩ ∂
, or
(b) ‖Sx‖ ≥ ‖x‖, x ∈ C ∩ ∂
, and ‖Sx‖ ≤ ‖x‖, x ∈ C ∩ ∂
.

Then S has a fixed point in C ∩ (
\
).

Let G(t, s) be the Green’s function of the second-order Sturm-Liouville boundary value
problem

{
–w′′(t) = , t ∈ (, ),
ζw() – θw′() = , ρw() + δw′() = .

(.)
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It is known that [, , ]

G(t, s) =

κ

{
(θ + ζ s)[δ + ρ( – t)],  ≤ s ≤ t ≤ ,
(θ + ζ t)[δ + ρ( – s)],  ≤ t ≤ s ≤ .

(.)

Lemma . [, , ] The Green’s function G(t, s) has the following properties:
(a) G(t, s) ≥  for (t, s) ∈ [, ] × [, ] and G(t, s) >  for (t, s) ∈ (, ) × (, ).
(b) G(t, s) ≤ LG(s, s) for (t, s) ∈ [, ] × [, ], where

L = max

{

,
θ

θ + ζ
,

δ

δ + ρ

}

.

(c) G(t, s) ≥ KηG(s, s) for (t, s) ∈ [η,  – η] × [, ], where η ∈ (, 
 ) is fixed, and

Kη = min

{
δ + ρη

δ + ρ
,
δ + ρ( – η)

δ + ρη
,
θ + ζη

θ + ζ
,
θ + ζ ( – η)

θ + ζη

}

.

(d) gn(t, s), defined by the relation ∂n–

∂tn– gn(t, s) = G(t, s), is the Green’s function of the
nth-order Sturm-Liouville boundary value problem

⎧
⎪⎨

⎪⎩

–w(n)(t) = , t ∈ (, ),
w(k)() = ,  ≤ k ≤ n – ,
ζw(n–)() – θw(n–)() = , ρw(n–)() + δw(n–)() = .

(.)n

(e)  ≤ gn(t, s) ≤ L
(n–)! G(s, s) for (t, s) ∈ [, ] × [, ].

3 Positive solutions of (1.1)
In this section, we establish criteria for the existence of one, two, or multiple nontrivial
positive solutions of (.).

We rewrite (.) in a form suitable for investigation. To begin, we consider the initial
value problem

{
y(q)(t) = x(t), t ∈ [, ],
y() = y′() = y′′() = · · · = y(q–)() = .

(.)

Due to the initial conditions in (.), it is clear that

y(k)(t) =
∫ t



∫ s



∫ s


· · ·

∫ sq–k–


x(sq–k) dsq–k · · · ds,  ≤ k ≤ q – . (.)

We introduce the notation of the k-tuple integral

Jkx(t) =
∫ t



∫ s



∫ s


· · ·

∫ sk–


x(sk) dsk · · · ds, k ≥ .

Then, it follows from (.) and (.) that

y(k)(t) = Jq–kx(t),  ≤ k ≤ q, (.)

where Jx(t) ≡ x(t).
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Denote J̃x(t) = (Jqx(t), Jq–x(t), . . . , Jx(t), x(t)). Noting (.) and (.), we rewrite (.) as
the following (m – q)th-order Sturm-Liouville boundary value problem:

⎧
⎪⎨

⎪⎩

x(m–q)(t) + F(t, J̃x(t)) = , t ∈ [, ],
x(k)() = ,  ≤ k ≤ m – q – ,
ζx(m–q–)() – θx(m–q–)() = , ρx(m–q–)() + δx(m–q–)() = .

(.)

If (.) has a solution x∗, then the boundary value problem (.) has a solution y∗ given by

y∗(k)(t) = Jq–kx∗(t),  ≤ k ≤ q, (.)

and, in particular,

y∗(t) = Jqx∗(t) =
∫ t



∫ s



∫ s


· · ·

∫ sq–


x∗(sq) dsq · · · ds. (.)

Hence, the existence of a solution of (.) follows from the existence of a solution of (.).
Further, it is obvious from (.) that for  ≤ k ≤ q, y∗(k) is positive if x∗ is, and y∗(k) is non-
trivial if x∗ is. We study (.) via (.) and employ a new technique to tackle the nonlinear
term F .

Let the Banach space

B =
{

x ∈ C(m–q)[, ] | x(k)() = ,  ≤ k ≤ m – q – 
}

be equipped with the norm

‖x‖ = sup
t∈[,]

∣
∣x(m–q–)(t)

∣
∣.

Throughout the paper, let η ∈ (, 
 ) be fixed. Define the cone C in B by

C =
{

x ∈ B
∣
∣ x(m–q–)(t) ≥ , t ∈ [, ]; min

t∈[η,–η]
x(m–q–)(t) ≥ γ ‖x‖

}
, (.)

where γ = Kη/L (L and Kη are defined in Lemma .).

Lemma . [, ] Let x ∈ B. For  ≤ i ≤ m – q – , we have

∣
∣x(i)(t)

∣
∣ ≤ tm–q––i

(m – q –  – i)!
‖x‖, t ∈ [, ]. (.)

In particular,

∣
∣x(t)

∣
∣ ≤ 

(m – q – )!
‖x‖, t ∈ [, ]. (.)

Lemma . [, ] Let x ∈ C. For  ≤ i ≤ m – q – , we have

x(i)(t) ≥ , t ∈ [, ], (.)
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and

x(i)(t) ≥ (t – η)m–q––i γ

(m – q –  – i)!
‖x‖, t ∈ [η,  – η]. (.)

In particular, for fixed z ∈ (η,  – η), we have

x(t) ≥ (z – η)m–q– γ

(m – q – )!
‖x‖, t ∈ [z,  – η]. (.)

Remark .
(a) A solution y∗ of (.) can be obtained via (.), where x∗ is a solution of (.). In view

of (.), if x∗ is nontrivial/positive, then so is y∗(k),  ≤ k ≤ q.
(b) If x∗ ∈ C is a solution of (.), then (.) implies that x∗ is a positive solution of

(.).

The next result is useful in handling the nonlinear term F .

Lemma .
(a) Let x ∈ B. For  ≤ k ≤ q, we have

∣
∣Jkx(t)

∣
∣ ≤ tm–q–+k

(m – q –  + k)!
‖x‖ ≤ 

(m – q –  + k)!
‖x‖, t ∈ [, ]. (.)

(b) Let x ∈ C and z ∈ (η,  – η) be fixed. For  ≤ k ≤ q, we have

Jkx(t) ≥ (z – η)m–q–+k γ

(m – q –  + k)!
‖x‖, t ∈ [z,  – η]. (.)

Proof (a) Since x ∈ B, using (.)|i=, we obtain that, for  ≤ k ≤ q and t ∈ [, ],

∣
∣Jkx(t)

∣
∣ ≤

∫ t



∫ s



∫ s


· · ·

∫ sk–



∣
∣x(sk)

∣
∣dsk · · · ds

≤
∫ t



∫ s



∫ s


· · ·

∫ sk–



sm–q–
k ‖x‖

(m – q – )!
dsk · · · ds

=
tm–q–+k‖x‖

(m – q –  + k)!
≤ ‖x‖

(m – q –  + k)!
.

(b) Since x ∈ C, using (.)|i=, we find that, for  ≤ k ≤ q and t ∈ [z,  – η],

Jkx(t) =
∫ t



∫ s



∫ s


· · ·

∫ sk–


x(sk) dsk · · · ds

≥
∫ z

η

∫ s

η

∫ s

η

· · ·
∫ sk–

η

x(sk) dsk · · · ds

≥
∫ z

η

∫ s

η

∫ s

η

· · ·
∫ sk–

η

(sk – η)m–q– γ ‖x‖
(m – q – )!

dsk · · · ds

= (z – η)m–q–+k γ ‖x‖
(m – q –  + k)!

. �

The next result gives the estimate of y∗ = Jqx∗ in terms of ‖x∗‖.
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Lemma . Let x∗ and y∗ be related by (.) and (.).
(a) Let x∗ ∈ B. For  ≤ k ≤ m – , we have

∣
∣y∗(k)(t)

∣
∣ ≤ tm–k–

(m – k – )!
∥
∥x∗∥∥ ≤ 

(m – k – )!
∥
∥x∗∥∥, t ∈ [, ]. (.)

(b) Let x∗ ∈ C. For  ≤ k ≤ m – , we have

y∗(k)(t) ≥ (t – η)m–k– γ

(m – k – )!
∥
∥x∗∥∥, t ∈ [η,  – η]. (.)

Proof (a) Since x∗ ∈ B, using (.) and (.), for  ≤ k ≤ q – , we obtain

∣
∣y∗(k)(t)

∣
∣ =

∣
∣Jq–kx∗(t)

∣
∣ ≤ tm–k–

∥
∥x∗∥∥

(m – k – )!
≤ ‖x∗‖

(m – k – )!
, t ∈ [, ].

Further, since y∗(q)(t) = x∗(t), we have y∗(q+i)(t) = x∗(i)(t) for  ≤ i ≤ m – q – , and so from
(.) it follows that

∣
∣y∗(q+i)(t)

∣
∣ =

∣
∣x∗(i)(t)

∣
∣ ≤ tm–q––i

∥
∥x∗∥∥

(m – q –  – i)!
≤ ‖x∗‖

(m – q –  – i)!
,

t ∈ [, ],  ≤ i ≤ m – q – ,

which is the same as

∣
∣y∗(k)(t)

∣
∣ ≤ tm–k–‖x∗‖

(m – k – )!
≤ ‖x∗‖

(m – k – )!
, t ∈ [, ], q ≤ k ≤ m – .

Combining this with the inequality obtained earlier, we get (.).
(b) Since x∗ ∈ C, noting (.)|i=, we find that, for  ≤ k ≤ q –  and t ∈ [η,  – η],

y∗(k)(t) = Jq–kx∗(t) =
∫ t



∫ s



∫ s


· · ·

∫ sq–k–


x∗(sq–k) dsq–k · · · ds

≥
∫ t

η

∫ s

η

∫ s

η

· · ·
∫ sq–k–

η

x∗(sq–k) dsq–k · · · ds

≥
∫ t

η

∫ s

η

∫ s

η

· · ·
∫ sq–k–

η

(sq–k – η)m–q– γ ‖x∗‖
(m – q – )!

dsq–k · · · ds

= (t – η)m–k– γ ‖x∗‖
(m – k – )!

.

Next, since y∗(q)(t) = x∗(t), we have y∗(q+i)(t) = x∗(i)(t) for  ≤ i ≤ m – q – , and so from
(.) we have

y∗(q+i)(t) = x∗(i)(t) ≥ (t – η)m–q––iγ ‖x∗‖
(m – q –  – i)!

, t ∈ [η,  – η],  ≤ i ≤ m – q – ,

or, equivalently,

y∗(k)(t) ≥ (t – η)m–k–γ ‖x∗‖
(m – k – )!

, t ∈ [η,  – η], q ≤ k ≤ m – .

A combination with the earlier inequality yields (.). �
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Let the operator S : B → B be defined by

Sx(t) =
∫ 


gm–q(t, s)F

(
s, J̃x(s)

)
ds, t ∈ [, ]. (.)

Noting that gm–q(t, s) is the Green’s function of (.)m–q (see Lemma .(d)), it is clear that
a fixed point of S is a solution of (.). Moreover, (.) is equivalent to

(Sx)(m–q–)(t) =
∫ 


G(t, s)F

(
s, J̃x(s)

)
ds, t ∈ [, ], (.)

where G(t, s) is the Green’s function of (.). In view of Remark ., to obtain a positive
solution of (.), we shall seek a fixed point of the operator S in the cone C.

For easy reference, the conditions that will be used further are listed below. In these
conditions, the sets K and K̃ are defined respectively by

K̃ =
{

u ∈ C[, ] | u(t) ≥ , t ∈ [, ]
}

and

K =
{

u ∈ K̃ | u(t) >  on some subset of [, ] of positive measure
}

.

(A) F is continuous on [, ] × K̃q+ with

F(t, u, . . . , uq+) ≥ , (t, u, . . . , uq+) ∈ [, ] × K̃q+,

and

F(t, u, . . . , uq+) > , (t, u, . . . , uq+) ∈ [, ] × Kq+.

(A) There exist continuous functions β : [, ] → [,∞) and f : [,∞)q+ → [,∞)
such that f is nondecreasing in each of its arguments and

F(t, u, . . . , uq+) ≤ β(t)f (u, . . . , uq+), (t, u, . . . , uq+) ∈ [, ] × K̃q+.

(A) There exists a >  such that

a > Mf
(

a
(m – )!

,
a

(m – )!
, . . . ,

a
(m – q – )!

)

,

where M = supt∈[,]
∫ 

 G(t, s)β(s) ds.
(A) Let z ∈ (η,  – η) be fixed. There exists a continuous function α : [z,  – η] → (,∞)

such that

F(t, u, . . . , uq+) ≥ α(t)f (u, . . . , uq+), (t, u, . . . , uq+) ∈ [z,  – η] × Kq+.
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(A) Let z ∈ (η,  – η) be fixed. There exists b >  such that

b ≤ Nf
(

(z – η)m–γ b
(m – )!

,
(z – η)m–γ b

(m – )!
, . . . ,

(z – η)m–q–γ b
(m – q – )!

)

,

where N = supt∈[,]
∫ –η

z G(t, s)α(s) ds and γ = Kη/L.

Remark . The computation of the constants M and N in (A) and (A) can be avoided
by using some upper bound of M and some lower bound of N . As a consequence, stricter
inequalities are obtained. Indeed, using Lemma ., we have

M = sup
t∈[,]

∫ 


G(t, s)β(s) ds ≤

∫ 


LG(s, s)β(s) ds ≡ M′

and

N = sup
t∈[,]

∫ –η

z
G(t, s)α(s) ds ≥ sup

t∈[η,–η]

∫ –η

z
G(t, s)α(s) ds

≥
∫ –η

z
KηG(s, s)α(s) ds ≡ N ′.

Let (A)′ denote condition (A) with M replaced by M′, and (A)′ denote condition (A)
with N replaced by N ′. Obviously, (A) is satisfied if the stronger condition (A)′ is met;
likewise, (A) is satisfied if the stronger condition (A)′ holds.

The first result below gives the existence of a solution, which may not be positive.

Theorem . Let F : [, ] × R
q+ → R be continuous. Suppose that there exists a con-

stant d, independent of λ, such that ‖x‖ �= d for any solution x ∈ B of the equation

x(t) = λ

∫ 


gm–q(t, s)F

(
s, J̃x(s)

)
ds, t ∈ [, ], (.)λ

where  < λ < . Then, (.) has at least one solution y∗ ∈ C(m)[, ] such that, for  ≤ k ≤
m – ,

∣
∣y∗(k)(t)

∣
∣ ≤ tm–k–

(m – k – )!
d ≤ d

(m – k – )!
, t ∈ [, ]. (.)

Proof We recognize that a solution of (.)λ is a fixed point of the equation x = λSx,
where S is defined in (.). Using the Arzelà-Ascoli theorem, we see that S is continuous
and completely continuous. Now, in the context of Theorem ., let U = {x ∈ B | ‖x‖ <
d}. Noting that ‖x‖ �= d, where x is any solution of (.)λ, we see that x /∈ ∂U , and so
conclusion (b) of Theorem . is not valid. Hence, conclusion (a) of Theorem . must
hold, that is, S has a fixed point in U . Hence, (.) has a solution x∗ ∈ U with ‖x∗‖ ≤ d.

By Remark .(a), (.) has a solution y∗ = Jqx∗. Noting that ‖x∗‖ ≤ d, (.) is immediate
from (.). �

Using Theorem ., the next result gives the existence of a positive solution.
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Theorem . Let (A)-(A) hold. Then, (.) has a positive solution y∗ ∈ C(m)[, ] such
that, for  ≤ k ≤ m – ,

 ≤ y∗(k)(t) <
tm–k–

(m – k – )!
a ≤ a

(m – k – )!
, t ∈ [, ]. (.)

Proof Let F̂ : [, ] ×R
q+ →R be defined by

F̂(t, u, . . . , uq+) = F
(
t, |u|, . . . , |uq+|

)
. (.)

Noting (A), we see that the function F̂ is well defined and continuous.
Since we plan to employ Theorem ., we consider the equation

x(t) = λ

∫ 


gm–q(t, s)F̂

(
s, J̃x(s)

)
ds, t ∈ [, ], (.)λ

where  < λ < , and prove that any solution x ∈ B of (.)λ satisfies ‖x‖ �= a.
To proceed, let x ∈ B be any solution of (.)λ. Using (.), Lemma .(e), and (A),

we get

x(t) = λ

∫ 


gm–q(t, s)F̂

(
s, J̃x(s)

)
ds

= λ

∫ 


gm–q(t, s)F

(
s,

∣
∣Jqx(s)

∣
∣, . . . ,

∣
∣Jx(s)

∣
∣,

∣
∣x(s)

∣
∣
)

ds ≥ , t ∈ [, ].

Thus, x is a positive solution.
Similarly, it is easily seen that

x(m–q–)(t) = λ

∫ 


G(t, s)F̂

(
s, J̃x(s)

)
ds ≥ , t ∈ [, ].

Then, applying (A), (.), and (.), we find that, for t ∈ [, ],

∣
∣x(m–q–)(t)

∣
∣ = x(m–q–)(t) ≤

∫ 


G(t, s)F

(
s,

∣
∣Jqx(s)

∣
∣, . . . ,

∣
∣Jx(s)

∣
∣,

∣
∣x(s)

∣
∣
)

ds

≤
∫ 


G(t, s)β(s)f

(∣
∣Jqx(s)

∣
∣, . . . ,

∣
∣Jx(s)

∣
∣,

∣
∣x(s)

∣
∣
)

ds

≤
∫ 


G(t, s)β(s)f

( ‖x‖
(m – )!

,
‖x‖

(m – )!
, . . . ,

‖x‖
(m – q – )!

)

ds.

Taking the suprema of both sides yields

‖x‖ ≤ Mf
( ‖x‖

(m – )!
,

‖x‖
(m – )!

, . . . ,
‖x‖

(m – q – )!

)

. (.)

Comparing (.) and (A), it is clear that ‖x‖ �= a.
It now follows from the proof of Theorem . that (.)|λ= has a solution x∗ ∈ B with

‖x∗‖ ≤ a. Using a similar argument as before, it can be easily seen that x∗ is a positive
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solution and ‖x∗‖ �= a. Thus, ‖x∗‖ < a. Moreover, since x∗ is positive, we have |Jkx∗(s)| =
Jkx∗(s) for  ≤ k ≤ q and s ∈ [, ]. Using this we find that, for t ∈ [, ],

x∗(t) =
∫ 


gm–q(t, s)F̂

(
s, J̃x∗(s)

)
ds

=
∫ 


gm–q(t, s)F

(
s,

∣
∣Jqx∗(s)

∣
∣, . . . ,

∣
∣Jx∗(s)

∣
∣,

∣
∣x∗(s)

∣
∣
)

ds

=
∫ 


gm–q(t, s)F

(
s, Jqx∗(s), . . . , Jx∗(s), x∗(s)

)
ds.

Hence, x∗ is actually a positive solution of (.) with ‖x∗‖ < a. By Remark .(a), y∗ = Jqx∗

is a positive solution of (.) satisfying (.), which, in view of ‖x∗‖ < a, leads to (.)
immediately. �

Remark . Note that the last inequality in (A),

F(t, u, . . . , uq+) > , (t, u, . . . , uq+) ∈ [, ] × Kq+,

is not needed in Theorem ..

The positive solution guaranteed in Theorem . may be trivial. Our next result gives
the existence of a nontrivial positive solution.

Theorem . Let (A)-(A) hold. Then, (.) has a nontrivial positive solution y∗ ∈
C(m)[, ] such that, for  ≤ k ≤ m – ,

 ≤ y∗(k)(t)

⎧
⎨

⎩

< tm–k–

(m–k–)! a ≤ a
(m–k–)! , t ∈ [, ], if a > b,

≤ tm–k–

(m–k–)! b ≤ b
(m–k–)! , t ∈ [, ], if a < b,

(.)

and

y∗(k)(t)

⎧
⎨

⎩

≥ (t–η)m–k–

(m–k–)! γ b, t ∈ [η,  – η], if a > b,

> (t–η)m–k–

(m–k–)! γ a, t ∈ [η,  – η], if a < b.
(.)

Proof We apply Theorem . with the operator S and the cone C defined respectively in
(.) and (.). To begin, note that the operator S : B → B is continuous and completely
continuous. Further, from (.) we see that if x ∈ C, then x is nonnegative, and so Jkx ∈ K̃
(or Jkx ∈ K if x is nontrivial) for  ≤ k ≤ q.

First, we show that S maps C into C. Let x ∈ C. Noting (.), Lemma .(a), and (A),
it is clear that

(Sx)(m–q–)(t) =
∫ 


G(t, s)F

(
s, J̃x(s)

)
ds ≥ , t ∈ [, ]. (.)

Using Lemma .(b), we have that, for t ∈ [, ],

∣
∣(Sx)(m–q–)(t)

∣
∣ = (Sx)(m–q–)(t) ≤

∫ 


LG(s, s)F

(
s, J̃x(s)

)
ds,
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which immediately implies

‖Sx‖ ≤
∫ 


LG(s, s)F

(
s, J̃x(s)

)
ds. (.)

Now, using Lemma .(c) and (.), we find that, for t ∈ [η,  – η],

(Sx)(m–q–)(t) ≥
∫ 


KηG(s, s)F

(
s, J̃x(s)

)
ds ≥ Kη

L
‖Sx‖ = γ ‖Sx‖.

It follows that

min
t∈[η,–η]

Sx(t) ≥ γ ‖Sx‖. (.)

Inequalities (.) and (.) imply that S(C) ⊆ C.
Next, let 
a = {x ∈ B | ‖x‖ < a}. Let x ∈ C ∩ ∂
a, so ‖x‖ = a. Applying (A), (.), and

(.), we have, for t ∈ [, ],

∣
∣(Sx)(m–q–)(t)

∣
∣ = (Sx)(m–q–)(t)

≤
∫ 


G(t, s)β(s)f

(
J̃x(s)

)
ds

≤
∫ 


G(t, s)β(s)f

(
a

(m – )!
,

a
(m – )!

, . . . ,
a

(m – q – )!

)

ds.

Taking the suprema and using (A), we get

‖Sx‖ ≤ Mf
(

a
(m – )!

,
a

(m – )!
, . . . ,

a
(m – q – )!

)

< a = ‖x‖. (.)

Hence, we have shown that ‖Sx‖ ≤ ‖x‖ for x ∈ C ∩ ∂
a.
Next, let 
b = {x ∈ B | ‖x‖ < b}. Let x ∈ C ∩ ∂
b, so that ‖x‖ = b. Noting (A), we find

that, for t ∈ [, ],

∣
∣(Sx)(m–q–)(t)

∣
∣ ≥

∫ –η

z
G(t, s)F

(
s, J̃x(s)

)
ds

≥
∫ –η

z
G(t, s)α(s)f

(
J̃x(s)

)
ds

≥
∫ –η

z
G(t, s)α(s)f

(
(z – η)m–γ b

(m – )!
,

(z – η)m–γ b
(m – )!

, . . . ,

(z – η)m–q–γ b
(m – q – )!

)

ds,

where we have used (.) and (.) in the last inequality. Taking the suprema and using
(A) lead to

‖Sx‖ ≥ Nf
(

(z – η)m–γ b
(m – )!

,
(z – η)m–γ b

(m – )!
, . . . ,

(z – η)m–q–γ b
(m – q – )!

)

≥ b = ‖x‖. (.)

Hence, we have ‖Sx‖ ≥ ‖x‖ for x ∈ C ∩ ∂
b.
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In view of (.) and (.), we conclude from Theorem . that S has a fixed point
x∗ ∈ C ∩ (
max{a,b}\
min{a,b}). Thus, min{a, b} ≤ ‖x∗‖ ≤ max{a, b}. We further note that
‖x∗‖ �= a follows from a similar argument as in the first part of the proof of Theorem ..
Hence, we obtain

a <
∥
∥x∗∥∥ ≤ b if a < b and b ≤ ∥

∥x∗∥∥ < a if a > b. (.)

By Remark ., (.) has a nontrivial positive solution y∗ = Jqx∗. Since x∗ ∈ B, y∗ satisfies
(.) which, in view of (.), gives (.). Further, since x∗ ∈ C, using (.) in (.) leads
to (.) immediately. �

The next result gives the existence of two positive solutions.

Theorem . Let (A)-(A) hold with a < b. Then, (.) has (at least) two positive solutions
y, y ∈ C(m)[, ] such that, for  ≤ k ≤ m – ,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

 ≤ y(k)
 (t) < tm–k–

(m–k–)! a ≤ a
(m–k–)! , t ∈ [, ],

 ≤ y(k)
 (t) ≤ tm–k–

(m–k–)! b ≤ b
(m–k–)! , t ∈ [, ],

y(k)
 (t) > (t–η)m–k–

(m–k–)! γ a, t ∈ [η,  – η].

(.)

Proof From the proofs of Theorems . and . we see that (.) has two positive solutions
x ∈ B and x ∈ C (x is nontrivial) such that

 ≤ ‖x‖ < a < ‖x‖ ≤ b. (.)

By Remark ., (.) has two positive solutions y = Jqx and y = Jqx (y is nontrivial).
Using (.) in (.) and (.) gives (.) immediately. �

One of the solutions (y) may be trivial in Theorem .. Our next result guarantees the
existence of two nontrivial positive solutions.

Theorem . Let (A)-(A) and (A)|b=b′ hold, where  < b′ < a < b. Then, (.) has (at
least) two nontrivial positive solutions y, y ∈ C(m)[, ] such that, for  ≤ k ≤ m – ,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

 ≤ y(k)
 (t) < tm–k–

(m–k–)! a ≤ a
(m–k–)! , t ∈ [, ],

y(k)
 (t) ≥ (t–η)m–k–

(m–k–)! γ b′, t ∈ [η,  – η],

 ≤ y(k)
 (t) ≤ tm–k–

(m–k–)! b ≤ b
(m–k–)! , t ∈ [, ],

y(k)
 (t) > (t–η)m–k–

(m–k–)! γ a, t ∈ [η,  – η].

(.)

Proof From the proof of Theorem . (see (.)) we derive that (.) has two nontrivial
positive solutions x, x ∈ C such that

 < b′ ≤ ‖x‖ < a < ‖x‖ ≤ b. (.)

By Remark ., (.) has two nontrivial positive solutions y = Jqx and y = Jqx. Using
(.) in (.) and (.) gives (.) immediately. �
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Note that in Theorem ., both (A) and (A) are required to obtain the existence of two
nontrivial positive solutions. In the next two theorems, only one of (A) and (A) is used
to ensure the existence of two nontrivial positive solutions. Define

f = lim
ui→+,≤i≤q+

f (u, . . . , uq+)
uq+

and

f∞ = lim
ui→∞,≤i≤q+

f (u, . . . , uq+)
uq+

.

Theorem . Let (A)-(A) hold and  <
∫ –η

z G(s, s)α(s) ds < ∞.
(a) If f = ∞, then (.) has a nontrivial positive solution y ∈ C(m)[, ] such that, for

 ≤ k ≤ m – ,

 ≤ y(k)
 (t) <

tm–k–

(m – k – )!
a ≤ a

(m – k – )!
, t ∈ [, ]. (.)

(b) If f∞ = ∞, then (.) has a nontrivial positive solution y ∈ C(m)[, ] such that, for
 ≤ k ≤ m – ,

y(k)
 (t) >

(t – η)m–k–

(m – k – )!
γ a, t ∈ [η,  – η]. (.)

(c) If f = f∞ = ∞, then (.) has (at least) two nontrivial positive solutions
y, y ∈ C(m)[, ] such that (.) and (.) hold for  ≤ k ≤ m – .

Proof We apply Theorem . with the operator S and the cone C defined respectively in
(.) and (.). As seen in the proof of Theorem ., S maps C into C. Let 
a = {x ∈
B | ‖x‖ < a}. Using (A) and (A) as in the proof of Theorem ., we obtain (.), and
hence

‖Sx‖ ≤ ‖x‖, x ∈ C ∩ ∂
a. (.)

(a) Define

P =
[

(z – η)m–q–γ Kη

(m – q – )!

∫ –η

z
G(s, s)α(s) ds

]–

. (.)

Since f = ∞, there exists  < r < a such that

f (u, . . . , uq+) ≥ Puq+,  < ui ≤ r,  ≤ i ≤ q + . (.)

Let 
r = {x ∈ B | ‖x‖ < r}. Let x ∈ C ∩ ∂
r , so ‖x‖ = r. Note that from (.) and (.) we
have

Jkx(s) ≤ ‖x‖
(m – q –  + k)!

=
r

(m – q –  + k)!
< r, s ∈ [, ],  ≤ k ≤ q. (.)
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For t ∈ [η,  – η], we use (A), Lemma .(c), (.), (.), (.), and (.) successively
to get

∣
∣(Sx)(m–q–)(t)

∣
∣ ≥

∫ –η

z
G(t, s)F

(
s, J̃x(s)

)
ds

≥
∫ –η

z
KηG(s, s)α(s)f

(
J̃x(s)

)
ds

≥
∫ –η

z
KηG(s, s)α(s)Px(s) ds

≥
∫ –η

z
KηG(s, s)α(s)P

(z – η)m–q–γ ‖x‖
(m – q – )!

ds = ‖x‖.

Hence, we have

‖Sx‖ ≥ ‖x‖, x ∈ C ∩ ∂
r . (.)

Having established (.) and (.), by Theorem . we conclude that S has a fixed
point x ∈ C ∩ (
a\
r) such that r ≤ ‖x‖ ≤ a. Using a similar argument as in the first
part of the proof of Theorem ., we see that ‖x‖ �= a. Hence, we get r ≤ ‖x‖ < a (x is
nontrivial). By Remark ., (.) has a nontrivial positive solution y = Jqx. Since ‖x‖ < a,
(.) is immediate from (.).

(b) Since f∞ = ∞, we may choose w > a such that

f (u, . . . , uq+) ≥ Puq+, ui ≥ w,  ≤ i ≤ q + , (.)

where P is defined in (.). Let

w = max

{

w
[

(z – η)m–q–γ

(m – q – )!

]–

, w
[

(z – η)m–q–+kγ

(m – q –  + k)!

]–

,  ≤ k ≤ q
}

=
w(m – )!

γ (z – η)m– .

Clearly, w > w > a. Let 
w = {x ∈ B | ‖x‖ < w}. Let x ∈ C ∩ ∂
w , so that ‖x‖ = w. Note
that from (.), (.), and the definition of w we have that, for s ∈ [z,  – η],

⎧
⎨

⎩

x(s) ≥ (z–η)m–q–γ

(m–q–)! ‖x‖ = (z–η)m–q–γ

(m–q–)! w ≥ w,

Jkx(s) ≥ (z–η)m–q–+kγ

(m–q–+k)! ‖x‖ = (z–η)m–q–+kγ

(m–q–+k)! w ≥ w,  ≤ k ≤ q.
(.)

Using (A), Lemma .(c), (.), (.), (.), and (.) successively, we get that, for
t ∈ [η,  – η],

∣
∣(Sx)(m–q–)(t)

∣
∣ ≥

∫ –η

z
KηG(s, s)α(s)f

(
J̃x(s)

)
ds

≥
∫ –η

z
KηG(s, s)α(s)Px(s) ds

≥
∫ –η

z
KηG(s, s)α(s)P

(z – η)m–q–γ ‖x‖
(m – q – )!

ds = ‖x‖.
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It follows that

‖Sx‖ ≥ ‖x‖, x ∈ C ∩ ∂
w . (.)

With (.) and (.), by Theorem . we conclude that S has a fixed point x ∈ C ∩
(
w\
a) such that a ≤ ‖x‖ ≤ w. Once again, as seen earlier, ‖x‖ �= a, so that a < ‖x‖ ≤
w (x is nontrivial). By Remark ., (.) has a nontrivial positive solution y = Jqx. Since
‖x‖ > a, (.) is immediate from (.).

(c) This follows from Cases (a) and (b). �

Theorem . Let (A), (A), (A), (A) hold, and  <
∫ 

 G(s, s)β(s) ds < ∞.
(a) If f = , then (.) has a nontrivial positive solution y ∈ C(m)[, ] such that, for

 ≤ k ≤ m – ,

 ≤ y(k)
 (t) ≤ tm–k–

(m – k – )!
b ≤ b

(m – k – )!
, t ∈ [, ]. (.)

(b) If f∞ = , then (.) has a nontrivial positive solution y ∈ C(m)[, ] such that, for
 ≤ k ≤ m – ,

y(k)
 (t) ≥ (t – η)m–k–

(m – k – )!
γ b, t ∈ [η,  – η]. (.)

(c) If f = f∞ = , then (.) has (at least) two nontrivial positive solutions
y, y ∈ C(m)[, ] such that (.) and (.) hold for  ≤ k ≤ m – .

Proof Once again, we apply Theorem . with the operator S and the cone C defined
respectively in (.) and (.). Let 
b = {x ∈ B | ‖x‖ < b}. Using (A) and (A) as in the
proof of Theorem ., we obtain (.), and so

‖Sx‖ ≥ ‖x‖, x ∈ C ∩ ∂
b. (.)

(a) Let

T =
[

L
(m – q – )!

∫ 


G(s, s)β(s) ds

]–

. (.)

Since f = , there exists  < r < b such that

f (u, . . . , uq+) ≤ Tuq+,  < ui ≤ r,  ≤ i ≤ q + . (.)

Let 
r = {x ∈ B | ‖x‖ < r}. Let x ∈ C ∩ ∂
r , so ‖x‖ = r. Note that (.) holds. Using (A),
Lemma .(b), (.), (.), (.), and (.) successively, we find that, for t ∈ [, ],

∣
∣(Sx)(m–q–)(t)

∣
∣ ≤

∫ 


LG(s, s)β(s)f

(
J̃x(s)

)
ds

≤
∫ 


LG(s, s)β(s)Tx(s) ds ≤

∫ 


LG(s, s)β(s)T

‖x‖
(m – q – )!

ds = ‖x‖.
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Hence, we have

‖Sx‖ ≤ ‖x‖, x ∈ C ∩ ∂
r . (.)

Noting (.) and (.), it follows from Theorem . that S has a fixed point x ∈
C ∩ (
b\
r) such that r ≤ ‖x‖ ≤ b (x is nontrivial). Hence, we see from Remark .
that (.) has a nontrivial positive solution y = Jqx. Using ‖x‖ ≤ b in (.) yields (.)
immediately.

(b) Since f∞ = , we may choose w > b such that

f (u, . . . , uq+) ≤ Tuq+, ui ≥ w,  ≤ i ≤ q + , (.)

where T is defined in (.). To proceed, we consider two cases, when f is bounded and
when f is unbounded.

Case . Suppose that f is bounded. Then, for some A > ,

f (u, . . . , uq+) ≤ A, ui ∈ [,∞),  ≤ i ≤ q + . (.)

Let

w = max

{

b + , LA
∫ 


G(s, s)β(s) ds

}

.

Clearly, w > b. Let 
w = {x ∈ B | ‖x‖ < w}. Let x ∈ C ∩ ∂
w , so ‖x‖ = w. Using (A),
Lemma .(b), and (.) provides, for t ∈ [, ],

∣
∣(Sx)(m–q–)(t)

∣
∣ ≤

∫ 


LG(s, s)β(s)f

(
J̃x(s)

)
ds

≤
∫ 


LG(s, s)β(s)A ds ≤ w = ‖x‖.

Hence, we have

‖Sx‖ ≤ ‖x‖, x ∈ C ∩ ∂
w . (.)

Case . Suppose that f is unbounded. Then, there exists w > w(m – )! (> b) such that

f (u, . . . , uq+) ≤ f
(

w

(m – )!
,

w

(m – )!
, . . . ,

w

(m – q – )!

)

,

 ≤ ui ≤ w,  ≤ i ≤ q + . (.)

Let 
w = {x ∈ B | ‖x‖ < w}. Let x ∈ C ∩ ∂
w , so ‖x‖ = w. It follows from (.) and (.)
that

Jkx(s) ≤ ‖x‖
(m – q –  + k)!

=
w

(m – q –  + k)!
< w, s ∈ [, ],  ≤ k ≤ q. (.)
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Now, we apply (A), Lemma .(b), (.), (.), (.), and (.) successively to obtain,
for t ∈ [, ],

∣
∣(Sx)(m–q–)(t)

∣
∣ ≤

∫ 


LG(s, s)β(s)f

(
J̃x(s)

)
ds

≤
∫ 


LG(s, s)β(s)f

(
w

(m – )!
,

w

(m – )!
, . . . ,

w

(m – q – )!

)

ds

≤
∫ 


LG(s, s)β(s)T

w

(m – q – )!
ds = w = ‖x‖.

It follows that ‖Sx‖ ≤ ‖x‖ for x ∈ C ∩ ∂
w , that is, (.) holds.
Having established (.) and (.), by Theorem . we see that S has a fixed point

x ∈ C ∩ (
w\
b) such that b ≤ ‖x‖ ≤ w (x is nontrivial). It follows from Remark .
that (.) has a nontrivial positive solution y = Jqx. Using ‖x‖ ≥ b in (.) leads to (.)
immediately.

(c) This follows from Cases (a) and (b). �

Remark . Comparing Theorem . with Theorems .(c) and .(c), we note that all
of them guarantee the existence of two nontrivial positive solutions of (.); also, conclu-
sion (.) in Theorem . gives more details than the conclusions in Theorems .(c)
and .(c). This might be explained by the fact that condition (A) is required in The-
orem . twice but not at all in Theorems .(c) and .(c); further, more effort might
be needed to check (A). Therefore, the ‘more’ details in (.) require possibly greater
efforts.

Using the earlier results, we now give the existence of multiple positive solutions of (.).

Theorem . Let (A), (A), and (A) hold. Suppose that (A) is satisfied for a = a�,
� = , , . . . , k, and (A) is satisfied for b = b�, � = , , . . . , n.

(a) If n = k +  and  < b < a < · · · < bk < ak < bk+, then (.) has (at least) k nontrivial
positive solutions y, . . . , yk ∈ C(m)[, ] such that, for  ≤ i ≤ m –  and � = , , . . . , k,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

 ≤ y(i)
�–(t) < tm–i–

(m–i–)! a� ≤ a�

(m–i–)! , t ∈ [, ],

y(i)
�–(t) ≥ (t–η)m–i–

(m–i–)! γ b�, t ∈ [η,  – η],

 ≤ y(i)
�(t) ≤ tm–i–

(m–i–)! b�+ ≤ b�+
(m–i–)! , t ∈ [, ],

y(i)
�(t) > (t–η)m–i–

(m–i–)! γ a�, t ∈ [η,  – η].

(.)

(b) If n = k and  < b < a < · · · < bk < ak , then (.) has (at least) k –  nontrivial
positive solutions y, . . . , yk– ∈ C(m)[, ] such that, for  ≤ i ≤ m – , � = , , . . . , k,
and j = , , . . . , k – ,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

 ≤ y(i)
�–(t) < tm–i–

(m–i–)! a� ≤ a�

(m–i–)! , t ∈ [, ],

y(i)
�–(t) ≥ (t–η)m–i–

(m–i–)! γ b�, t ∈ [η,  – η],

 ≤ y(i)
j (t) ≤ tm–i–

(m–i–)! bj+ ≤ bj+
(m–i–)! , t ∈ [, ],

y(i)
j (t) > (t–η)m–i–

(m–i–)! γ aj, t ∈ [η,  – η].

(.)
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(c) If k = n +  and  < a < b < · · · < an < bn < an+, then (.) has (at least) n + 
positive solutions y, . . . , yn ∈ C(m)[, ], where y, . . . , yn are nontrivial, such that,
for  ≤ i ≤ m –  and � = , , . . . , n,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

 ≤ y(i)
 (t) < tm–i–

(m–i–)! a ≤ a
(m–i–)! , t ∈ [, ],

 ≤ y(i)
�–(t) ≤ tm–i–

(m–i–)! b� ≤ b�

(m–i–)! , t ∈ [, ],

y(i)
�–(t) > (t–η)m–i–

(m–i–)! γ a�, t ∈ [η,  – η],

 ≤ y(i)
�(t) < tm–i–

(m–i–)! a�+ ≤ a�+
(m–i–)! , t ∈ [, ],

y(i)
�(t) ≥ (t–η)m–i–

(m–i–)! γ b�, t ∈ [η,  – η].

(.)

(d) If k = n and  < a < b < · · · < ak < bk , then (.) has (at least) k positive solutions
y, . . . , yk– ∈ C(m)[, ], where y, . . . , yk– are nontrivial, such that, for
 ≤ i ≤ m – , � = , , . . . , k, and j = , , . . . , k – ,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

 ≤ y(i)
 (t) < tm–i–

(m–i–)! a ≤ a
(m–i–)! , t ∈ [, ],

 ≤ y(i)
�–(t) ≤ tm–i–

(m–i–)! b� ≤ b�

(m–i–)! , t ∈ [, ],

y(i)
�–(t) > (t–η)m–i–

(m–i–)! γ a�, t ∈ [η,  – η],

 ≤ y(i)
j (t) < tm–i–

(m–i–)! aj+ ≤ aj+
(m–i–)! , t ∈ [, ],

y(i)
j (t) ≥ (t–η)m–i–

(m–i–)! γ bj, t ∈ [η,  – η].

(.)

Proof The proof involves repeated usage of Theorems . and .. In (a) and (b), we apply
(.) repeatedly to get multiple positive solutions of (.) as follows.

(a) If n = k +  and  < b < a < · · · < bk < ak < bk+, then (.) has (at least) k nontrivial
positive solutions x, . . . , xk ∈ C such that

 < b ≤ ‖x‖ < a < ‖x‖ ≤ b ≤ · · · < ak < ‖xk‖ ≤ bk+. (.)

(b) If n = k and  < b < a < · · · < bk < ak , then (.) has (at least) k –  nontrivial
positive solutions x, . . . , xk– ∈ C such that

 < b ≤ ‖x‖ < a < ‖x‖ ≤ b ≤ · · · ≤ bk ≤ ‖xk–‖ < ak . (.)

Hence, conclusions (a) and (b) follow from Remark .. Inequalities (.) and (.) are
obtained by using (.) and (.) in (.) and (.).

Next, in (c) and (d), from the proof of Theorem . we see that (.) has a positive solu-
tion x ∈ B with  ≤ ‖x‖ < a. Applying (.) repeatedly again, we get more solutions as
follows.

(c) If k = n +  and  < a < b < · · · < an < bn < an+, then (.) has (at least) n + 
positive solutions x ∈ B, x, . . . , xn ∈ C such that

 ≤ ‖x‖ < a < ‖x‖ ≤ b ≤ ‖x‖ < a < · · · ≤ bn ≤ ‖xn‖ < an+. (.)
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(d) If k = n and  < a < b < · · · < ak < bk , then (.) has (at least) k positive solutions
x ∈ B, x, . . . , xk– ∈ C such that

 ≤ ‖x‖ < a < ‖x‖ ≤ b ≤ ‖x‖ < a < · · · < ak < ‖xk–‖ ≤ bk . (.)

Hence, conclusions (c) and (d) follow from Remark .. Inequalities (.) and (.) are
obtained by using (.) and (.) in (.) and (.). �

4 Examples
In this section, we illustrate the theorems obtained in Section  by some examples. We
remark that in all the examples presented, explicit known solutions are given to validate
the conclusions derived from the theorems.

Example . Consider the Sturm-Liouville boundary value problem

{
y()(t) + F(t, y(t), y′(t), y′′(t), y′′′(t)) = , t ∈ [, ],
y() = y′() = y′′() = , y()() – y()() = , –y()() + y()() = ,

(.)

where

F
(
t, y, y′, y′′, y′′′) =




(
 + t + t + t – t – t



)–

× (
y + y′ + y′′ + y′′′ + 

). (.)

Here, m = , q = , ζ = , θ = , ρ = – and δ = . Let η = 
 and z = 

 . A direct computation
gives L = 

 , K 


= 
 , and γ = 

 .
Clearly, (A), (A), and (A) are satisfied with

α(t) = β(t) =



(
 + t + t + t – t – t



)–

and

f (u, u, u, u) = (u + u + u + u + ).

It is easy to check that f = f∞ = ∞. Next, let us check if (A) is satisfied, and for this, using
Remark ., we shall check the easier but stricter (A)′, viz.,

a > M′f
(

a
!

,
a
!

, a, a
)

, (.)

where M′ =
∫ 

 LG(s, s)β(s) ds. This inequality reduces to

a > M′
(

a


+ 
a


+ a + a + 
)

,

which can be solved to get a ∈ [., .]. Hence, (A)′ (and so (A)) is satisfied
if a ∈ [., .].
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In summary, (A)-(A) are met (with a ∈ [., .]), and also f = f∞ = ∞. By
Theorem .(c), (.)-(.) has (at least) two nontrivial positive solutions y, y ∈ C()[, ]
such that, for  ≤ k ≤ ,

⎧
⎨

⎩

 ≤ y(k)
 (t) < t–k

(–k)! a ≤ a
(–k)! , t ∈ [, ],

y(k)
 (t) > 

(–k)! (t – 
 )–kγ a, t ∈ [ 

 , 
 ].

(.)

Since a ∈ [., .], it follows from (.) that, for  ≤ k ≤ ,
⎧
⎨

⎩

 ≤ y(k)
 (t) < t–k

(–k)! (.) ≤ .
(–k)! , t ∈ [, ],

y(k)
 (t) > 

(–k)! (t – 
 )–kγ (.), t ∈ [ 

 , 
 ].

(.)

In fact, a positive solution of (.), (.) is known to be

y∗(t) =
t + t – t


. (.)

By direct computation, we find that, for  ≤ k ≤ ,

y∗(k)(t) ≤ ck , t ∈ [, ] and y∗(k)(t) ≥ dk

(

t –



)–k

, t ∈
[




,



]

, (.)

where ck and dk are respectively the smallest and the largest constants for the inequalities
to hold, and they are given as follows:

c = ., c = ., c = ., c = .,

d = ., d = ., d = ., d = ..
(.)

Since dk > γ (.)/( – k)!, this y∗ may be y in (.). This y∗ is certainly not y. Hence,
conclusion (.) is somewhat validated.

Example . Consider the Sturm-Liouville boundary value problem (.)-(.) again. Let
us check if (A) is satisfied. For this, using Remark ., we shall check the easier but stricter
(A)′, viz.,

b ≤ N ′f
(

γ b
!

,
γ b

!
,
γ b


,γ b
)

, (.)

where N ′ =
∫ 





K 


G(s, s)α(s) ds. This inequality reduces to

b ≤ N ′
(

γ b
!

+ 
γ b

!
+ 

γ b


+ γ b + 
)

,

which we solve to get b ∈ (, . × –] ∪ [.,∞). Hence, (A)′ (and so (A)) is
satisfied if b ∈ (, . × –] ∪ [.,∞).

Combining with the investigation in Example ., we have that (A)-(A) is satisfied
with a ∈ [., .] and b ∈ (, . × –] ∪ [.,∞). Now, applying The-
orem . with a ∈ [., .], b′ ∈ (, . × –], and b ∈ [.,∞) (b′ <
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a < b), we see that (.)-(.) has two nontrivial positive solutions y, y ∈ C()[, ] such
that (.) holds. Noting the ranges of a, b′, b, we further deduce from (.) the following
for  ≤ k ≤ :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

 ≤ y(k)
 (t) < t–k

(–k)! (.) ≤ .
(–k)! , t ∈ [, ],

y(k)
 (t) ≥ 

(–k)! (t – 
 )–kγ (. × –), t ∈ [ 

 , 
 ],

 ≤ y(k)
 (t) ≤ t–k

(–k)! (.) ≤ .
(–k)! , t ∈ [, ],

y(k)
 (t) > 

(–k)! (t – 
 )–kγ (.), t ∈ [ 

 , 
 ].

(.)

As seen in Example ., the boundary value problem (.)-(.) has a known positive so-
lution y∗ given in (.), (.). Noting that dk > γ (.)/( – k)! and ck < (.)/( – k)!,
this y∗ may be y in (.). This y∗ is certainly not y. Hence, conclusion (.) is somewhat
validated.

Further, it is obvious that (.) (obtained from Theorem .) gives more details than
(.) (obtained from Theorem .(c)). As noted in Remark ., more details come from
(A) being used twice in Theorem . but not at all in Theorem .(c).

Example . Consider the Sturm-Liouville boundary value problem (.) with

F
(
t, y, y′, y′′, y′′′) =




(
 + t + t + t + t – t



)–.

× (
y + y′ + y′′ + y′′′ + 

).. (.)

Clearly, (A), (A), and (A) are satisfied with

α(t) = β(t) =



(
 + t + t + t + t – t



)–.

and

f (u, u, u, u) = (u + u + u + u + )..

Note that Theorems .(c) or .(c) cannot be applied to this example because f = ∞
and f∞ = .

We proceed with checking (A) and (A). Similarly to Examples . and ., solving the
stricter inequalities (.) and (.), we obtain a ∈ [.,∞) and b ∈ (, .]. Hence,
(A) and (A) are satisfied if a ∈ [.,∞) and b ∈ (, .]. Note that a > b.

Applying Theorem ., we conclude that (.), (.) has a nontrivial positive solution
y ∈ C()[, ] satisfying (.) and (.) for the case a > b. Noting that a ∈ [.,∞)
and b ∈ (, .], we further obtain, for  ≤ k ≤ ,

⎧
⎨

⎩

 ≤ y(k)
 (t) < t–k

(–k)! (.) ≤ .
(–k)! , t ∈ [, ],

y(k)
 (t) ≥ 

(–k)! (t – 
 )–kγ (.), t ∈ [ 

 , 
 ].

(.)
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Now, it is known that (.), (.) has a positive solution y∗ given in (.), (.). Noting
that ck < (.)/( – k)! and dk > γ (.)/( – k)!, this y∗ could just be y in (.).
Hence, conclusion (.) is somewhat validated.

Example . Consider the Sturm-Liouville boundary value problem (.) with

F
(
t, y, y′, y′′, y′′′) =




(
 + t + t + t + t – t



)

×
(

y + y′ + y′′ + y′′′ + 


)

. (.)

Clearly, (A), (A), and (A) are satisfied with

α(t) = β(t) =



(
 + t + t + t + t – t



)

and

f (u, u, u, u) =
u + u + u + u + 


.

Once again, Theorems .(c) or .(c) cannot be applied to this example because f =
∞ and f∞ = ..

Checking (A) and (A) as in Example ., we solve (.) and (.) to get a ∈ [.,∞)
and b ∈ (, .]. Hence, (A) and (A) are satisfied if a ∈ [.,∞) and b ∈
(, .]. Note that a > b.

An application of Theorem . gives a nontrivial positive solution ȳ ∈ C()[, ] of
(.), (.) satisfying (.) and (.) for the case a > b. Since a ∈ [.,∞) and
b ∈ (, .], we further obtain, for  ≤ k ≤ ,

⎧
⎨

⎩

 ≤ ȳ(k)(t) < t–k

(–k)! (.) ≤ .
(–k)! , t ∈ [, ],

ȳ(k)(t) ≥ 
(–k)! (t – 

 )–kγ (.), t ∈ [ 
 , 

 ].
(.)

In fact, (.), (.) has a positive solution y∗ given in (.), (.). Since ck < (.)/( –
k)! and dk > γ (.)/( – k)!, this y∗ could be ȳ in (.). Hence, conclusion (.) is
somewhat validated.

Competing interests
None of the authors have any competing interests in the paper.

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Author details
1Department of Mathematics, Texas A&M University - Kingsville, Kingsville, TX 78363, USA. 2Department of Mathematics,
Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia. 3School of Electrical and Electronic
Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.

Received: 6 November 2015 Accepted: 13 May 2016

References
1. Meyer, GH: Initial Value Methods for Boundary Value Problems. Academic Press, New York (1973)



Agarwal and Wong Boundary Value Problems  (2016) 2016:112 Page 24 of 25

2. Aronson, D, Crandall, MG, Peletier, LA: Stabilization of solutions of a degenerate nonlinear diffusion problem.
Nonlinear Anal. 6, 1001-1022 (1982)

3. Choi, YS, Ludford, GS: An unexpected stability result of the near-extinction diffusion flame for non-unity Lewis
numbers. Q. J. Mech. Appl. Math. 42, part 1, 143-158 (1989)

4. Cohen, DS: Multiple stable solutions of nonlinear boundary value problems arising in chemical reactor theory. SIAM
J. Appl. Math. 20, 1-13 (1971)

5. Dancer, EN: On the structure of solutions of an equation in catalysis theory when a parameter is large. J. Differ. Equ.
37, 404-437 (1980)

6. Fujita, H: On the nonlinear equations �u + eu = 0 and ∂v
∂t =�v + ev . Bull. Am. Math. Soc. 75, 132-135 (1969)

7. Gel’fand, IM: Some problems in the theory of quasilinear equations. Usp. Mat. Nauk 14, 87-158 (1959); English
translation: Trans. Am. Math. Soc. 29, 295-381 (1963)

8. Parter, S: Solutions of differential equations arising in chemical reactor processes. SIAM J. Appl. Math. 26, 687-716
(1974)

9. Agarwal, RP, Wong, PJY: Existence of solutions for singular boundary value problems for higher order differential
equations. Rend. Semin. Mat. Fis. Milano 55, 249-264 (1995)

10. Eloe, PW, Henderson, J: Singular nonlinear boundary value problems for higher order ordinary differential equations.
Nonlinear Anal. 17, 1-10 (1991)

11. Gatica, JA, Oliker, V, Waltman, P: Singular nonlinear boundary value problems for second-order ordinary differential
equations. J. Differ. Equ. 79, 62-78 (1989)

12. Henderson, J: Singular boundary value problems for difference equations. Dyn. Syst. Appl. 1, 271-282 (1992)
13. Henderson, J: Singular boundary value problems for higher order difference equations. In: Lakshmikantham, V (ed.)

Proceedings of the First World Congress on Nonlinear Analysts, pp. 1139-1150. de Gruyter, Berlin (1996)
14. O’Regan, D: Theory of Singular Boundary Value Problems. World Scientific, Singapore (1994)
15. Wong, PJY, Agarwal, RP: On the existence of solutions of singular boundary value problems for higher order

difference equations. Nonlinear Anal. 28, 277-287 (1997)
16. Agarwal, RP, O’Regan, D, Wong, PJY: Positive Solutions of Differential, Difference and Integral Equations. Kluwer

Academic, Dordrecht (1999)
17. Agarwal, RP, O’Regan, D, Wong, PJY: Constant-Sign Solutions of Systems of Integral Equations. Springer, New York

(2013)
18. Fink, AM: The radial Laplacian Gel’fand problem. In: Delay and Differential Equations, Ames, IA, 1991, pp. 93-98. World

Scientific, River Edge (1992)
19. Wong, FH: An application of Schauder’s fixed point theorem with respect to higher order BVPs. Proc. Am. Math. Soc.

126, 2389-2397 (1998)
20. Grossinho, MR, Minhós, F: Upper and lower solutions for higher order boundary value problems. Nonlinear Stud. 12,

165-176 (2005)
21. Lian, H, Wang, P, Ge, W: Unbounded upper and lower solutions method for Sturm-Liouville boundary value problem

on infinite intervals. Nonlinear Anal. 70, 2627-2633 (2009)
22. Lian, H, Zhao, J, Agarwal, RP: Upper and lower solution method for n-th order BVPs on an infinite interval. Bound.

Value Probl. 2014, 100 (2014)
23. Al-Mdallal, QM, Syam, MI: The Chebyshev collocation-path following method for solving sixth-order Sturm-Liouville

problems. Appl. Math. Comput. 232, 391-398 (2014)
24. Celik, I: Approximate calculation of eigenvalues with the method of weighted residual collocation method. Appl.

Math. Comput. 160, 401-410 (2005)
25. Celik, I, Gokmen, G: Approximate solution of periodic Sturm-Liouville problems with Chebyshev collocation method.

Appl. Math. Comput. 170, 285-295 (2005)
26. Lesnic, D, Attili, B: An efficient method for sixth-order Sturm-Liouville problems. Int. J. Sci. Technol. 2, 109-114 (2007)
27. Siyyam, H, Syam, M: An efficient technique for finding the eigenvalues of sixth-order Sturm-Liouville problems. Appl.

Math. Sci. 5(49), 2425-2436 (2011)
28. Yuan, Q, He, Z, Leng, H: An improvement for Chebyshev collocation method in solving certain Sturm-Liouville

problems. Appl. Math. Comput. 195, 440-447 (2008)
29. Agarwal, RP: Boundary Value Problems for Higher Order Differential Equations. World Scientific, Singapore (1986)
30. Chyan, CJ, Henderson, J: Positive solutions for singular higher order nonlinear equations. Differ. Equ. Dyn. Syst. 2,

153-160 (1994)
31. Eloe, PW, Henderson, J: Positive solutions for higher order ordinary differential equations. Electron. J. Differ. Equ. 1995,

3 (1995)
32. Fink, AM, Gatica, JA, Hernandez, GE: Eigenvalues of generalized Gel’fand models. Nonlinear Anal. 20, 1453-1468

(1993)
33. Wong, PJY: Solutions of constant signs of a system of Sturm-Liouville boundary value problems. Math. Comput.

Model. 29, 27-38 (1999)
34. Wong, PJY: Eigenvalues of higher order Sturm-Liouville boundary value problems with derivatives in nonlinear terms.

Bound. Value Probl. 2015, 12 (2015)
35. Wong, PJY, Agarwal, RP: Eigenvalues of boundary value problems for higher order differential equations. Math. Probl.

Eng. 2, 401-434 (1996)
36. Wong, PJY, Agarwal, RP: On eigenvalue intervals and twin eigenfunctions of higher order boundary value problems.

J. Comput. Appl. Math. 88, 15-43 (1998)
37. Agarwal, RP, Henderson, J: Superlinear and sublinear focal boundary value problems. Appl. Anal. 60, 189-200 (1996)
38. Agarwal, RP, Henderson, J: Positive solutions and nonlinear problems for third order difference equations. In:

Advances in Difference Equations II. Comput. Math. Appl, vol. 36, pp. 347-355 (1998)
39. Agarwal, RP, Henderson, J, Wong, PJY: On superlinear and sublinear (n,p) boundary value problems for higher order

difference equations. Nonlinear World 4, 101-115 (1997)
40. Eloe, PW, Henderson, J, Wong, PJY: Positive solutions for two-point boundary value problems. In: Ladde, GS,

Sambandham, M (eds.) Proceedings of Dynamic Systems and Applications, vol. 2, pp. 135-144 (1996)



Agarwal and Wong Boundary Value Problems  (2016) 2016:112 Page 25 of 25

41. Erbe, LH, Wang, H: On the existence of positive solutions of ordinary differential equations. Proc. Am. Math. Soc. 120,
743-748 (1994)

42. Hankerson, D, Peterson, AC: Comparison of eigenvalues for focal point problems for n-th order difference equations.
Differ. Integral Equ. 3, 363-380 (1990)

43. Peterson, AC: Boundary value problems for an n-th order difference equation. SIAM J. Math. Anal. 15, 124-132 (1984)
44. Wong, PJY, Agarwal, RP: On the eigenvalues of boundary value problems for higher order difference equations. Rocky

Mt. J. Math. 28, 767-791 (1998)
45. Wong, PJY, Agarwal, RP: Eigenvalue characterization for (n,p) boundary value problems. J. Aust. Math. Soc. Ser. B,

Appl. Math 39, 386-407 (1998)
46. Wong, PJY, Agarwal, RP: Eigenvalues of an nth order difference equation with (n,p) type conditions. Dyn. Contin.

Discrete Impuls. Syst. 4, 149-172 (1998)
47. Krasnosel’skii, MA: Positive Solutions of Operator Equations. Noordhoff, Groningen (1964)


	Positive solutions of higher-order Sturm-Liouville boundary value problems with derivative-dependent nonlinear terms
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Positive solutions of (1.1)
	Examples
	Competing interests
	Authors' contributions
	Author details
	References


