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Abstract
This paper considers the existence of positive solutions for fractional-order nonlinear
differential equation with integral boundary conditions on the half-infinite interval. By
using the fixed point theorem in a cone, sufficient conditions for the existence of at
least one or at least two positive solutions of a boundary value problem are
established. These theorems also reveal the properties of solutions on the half-line.
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1 Introduction
Boundary value problems are often studies in the areas of applied mathematics and
physics. With the development of technology, applications of boundary value problems
on the infinite interval attract increasing attention; see [–] and the references therein.
Recently, fractional differential equations have also aroused great interest; see [–]. At the
same time, the existence of positive solutions for nonlinear fractional differential equation
boundary value problems have been widely studied by many authors; see [–] and the
references therein.

In [], the authors, using fixed point theorems in a cone, established the existence of one
positive solution and three positive solutions for the following second-order nonlinear
boundary value problems with integral boundary conditions on an infinite interval:

⎧
⎪⎪⎨

⎪⎪⎩


p(t) (p(t)u′(t))′ + f (t, u(t)) = , t ∈ (, +∞),

au() – b limt→+ p(t)u′(t) =
∫ +∞

 g(u(s))ψ(s) ds,

a limt→+∞ u(t) + b limt→+∞ p(t)u′(t) =
∫ +∞

 g(u(s))ψ(s) ds,

where f ∈ C((, +∞) × [, +∞) ×R, [, +∞)), f may be singular at t = , g, g : [, +∞) →
[, +∞) and ψ : [, +∞) → (, +∞) are continuous,

∫ +∞
 ψ(s) ds < +∞, p ∈ C[, +∞) ∩

C(, +∞) with p(t) >  on (, +∞) and
∫ +∞


ds

p(s) < +∞, a + a > , and bi >  for i = , .
Iterative schemes for approximating the solutions of a nonlinear fractional boundary value
problem on the half-line were presented in []. The authors, based on the monotone
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iterative technique, obtained the existence of positive solutions of the following fractional
boundary value problem:

⎧
⎨

⎩

Dα
+u(t) + q(t)f (t, u(t)) = , t ∈ (, +∞),

u() = , limt→+∞ Dα–
+ u(t) = λ > ,

where  < α < , and Dα
+ is the standard Riemann-Liouville fractional derivative. For an

overview of the literature on differential equations boundary value problems, see [–]
and the references therein.

Motivated by all the works mentioned, we study the following fractional boundary value
problem on the half-line:

⎧
⎪⎪⎨

⎪⎪⎩


p(t) (p(t) CDα

+u(t))′ + f (t, u(t)) = , t ∈ (, +∞),

au() – b limt→+ p(t) CDα
+u(t) =

∫ +∞
 g(u(s))ψ(s) ds,

a limt→+∞ u(t) + b limt→+∞ p(t) CDα
+u(t) =

∫ +∞
 g(u(s))ψ(s) ds,

(.)

where CDα is the Caputo fractional derivative of order α ∈ (, ), p ∈ C([, +∞), (, +∞)),
f : (, +∞) × [, +∞) → [, +∞) is a continuous function and may be singular at t = ;
ai > , bi > , gi ∈ C([, +∞), [, +∞)), and ψi ∈ L([, +∞)) is nonnegative for i = , .

We assume that the following conditions are satisfied:
(H) limt→+∞

∫ t


(t–s)α–

p(s) ds < +∞, b
a

> M, where

M =


�(α)
sup

t∈[,+∞)

∫ t



(t – s)α–

p(s)
ds. (.)

(H) There exist functions h ∈ C([, +∞), [, +∞)) and v ∈ C((, +∞), (, +∞)) such
that

f (t, u) ≤ v(t)h(u), t ∈ (, +∞);
∫ +∞


p(s)v(s) ds < +∞.

2 Preliminaries
In this section, we present some useful definitions and the related theorems.

Definition . (See [, ]) Let α > . For a function u : (, +∞) → R, the Riemann-
Liouville fractional integral operator of order α of u is defined by

Iα
+u(t) =


�(α)

∫ t


(t – s)α–u(s) ds,

provided that the integral exists.

Definition . (See [, ]) The Caputo derivative of order α for a function u : (, +∞) →
R is given by

CDα
+u(t) =


�(n – α)

∫ t



u(n)(s)
(t – s)δ+–n ds,
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provided that the right side is pointwise defined on (, +∞), where n = [α] +  and n –  <
α < n.

If α = n, then CDα
+u(t) = u(n)(t).

Lemma . (See []) Let α > . Then the differential equation

CDα
+h(t) = 

has solutions

h(t) = c + ct + ct + · · · + cn–tn–, ci ∈R, i = , , , . . . , n – ,

where n is the smallest integer greater than or equal to α.

Lemma . If (H) holds and y ∈ C((, +∞), [, +∞)) with
∫ +∞

 p(s)y(s) ds < +∞, then the
fractional boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩


p(t) (p(t) CDα

+u(t))′ + y(t) = , t ∈ (, +∞),

au() – b limt→+ p(t) CDα
+u(t) =

∫ +∞
 g(u(s))ψ(s) ds,

a limt→+∞ u(t) + b limt→+∞ p(t) CDα
+u(t) =

∫ +∞
 g(u(s))ψ(s) ds

(.)

has a unique solution

u(t) =
∫ +∞


G(t, s)p(s)y(s) ds + F(t)

∫ +∞


g

(
u(s)

)
ψ(s) ds

+ F(t)
∫ +∞


g

(
u(s)

)
ψ(s) ds,

where

G(t, s) =

ρ

⎧
⎪⎪⎨

⎪⎪⎩

(b + a
∫ t


(t–r)α–

�(α)p(r) dr)(b + alimτ→+∞
∫ τ

s
(τ–r)α–

�(α)p(r) dr),  ≤ t ≤ s < +∞,

(b + a
∫ s


(t–r)α–

�(α)p(r) dr)(b + alimτ→+∞
∫ τ

s
(τ–r)α–

�(α)p(r) dr)

– ba
∫ t

s
(t–r)α–

�(α)p(r) dr,  ≤ s < t < +∞,

ρ = ab + ab + aa lim
τ→+∞

∫ τ



(τ – r)α–

�(α)p(r)
dr,

F(t) =

ρ

(

b + a lim
τ→+∞

∫ τ



(τ – r)α–

�(α)p(r)
dr – a

∫ t



(t – r)α–

�(α)p(r)
dr

)

,

and

F(t) =

ρ

(

b + a

∫ t



(t – r)α–

�(α)p(r)
dr

)

.

Proof It is well known that the fractional differential equation in (.) is equivalent to the
integral equation

p(t) CDα
+u(t) = lim

t→+
p(t) CDα

+u(t) –
∫ t


p(s)y(s) ds. (.)
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Hence,

u(t) =
(

Iα
+


p(t)

)

lim
t→+

p(t) CDα
+u(t) – Iα

+

(


p(t)

∫ t


p(s)y(s) ds

)

+ c

=
∫ t



(t – s)α–

�(α)p(s)
ds lim

t→+
p(t) CDα

+u(t) –
∫ t



(t – s)α–

�(α)p(s)

∫ s


p(s)y(s) dr ds + c, (.)

where c ∈R is any constant. It follows from (.) and (.) that

lim
t→+∞ p(t) CDα

+u(t) = lim
t→+

p(t) CDα
+u(t) –

∫ +∞


p(s)y(s) ds

and

lim
t→+∞ u(t) = lim

t→+
p(t) CDα

+u(t) lim
t→+∞

∫ t



(t – s)α–

�(α)p(s)
ds

– lim
t→+∞

∫ t



(t – s)α–

�(α)p(s)

∫ s


p(s)y(s) dr ds + c.

By the boundary conditions in (.) we have

c =

ρ

[

ab lim
t→+∞

∫ t



(t – s)α–

�(α)p(s)

∫ s


p(r)y(r) dr ds

+ bb

∫ +∞


p(s)y(s) ds + b

∫ +∞


g

(
u(s)

)
ψ(s) ds

+
(

a lim
t→+∞

∫ t



(t – s)α–

�(α)p(s)
ds + b

)∫ +∞


g

(
u(s)

)
ψ(s) ds

]

and

lim
t→+

p(t) CDα
+u(t) =


ρ

(

aa lim
t→+∞

∫ t



(t – s)α–

�(α)p(s)

∫ s


p(r)y(r) dr ds

+ ab

∫ +∞


p(s)y(s) ds

+ a

∫ +∞


g

(
u(s)

)
ψ(s) ds – a

∫ +∞


g

(
u(s)

)
ψ(s) ds

)

.

Substituting them into (.), we get

u(t) =

ρ

∫ t



(t – s)α–

�(α)p(s)
ds

(

aa lim
t→+∞

∫ t



(t – s)α–

�(α)p(s)

∫ s


p(r)y(r) dr ds

+ ab

∫ +∞


p(s)y(s) ds

)

+

ρ

(

ab lim
t→+∞

∫ t



(t – s)α–

�(α)p(s)

∫ s


p(r)y(r) dr ds + bb

∫ +∞


p(s)y(s) ds

)

–
∫ t



(t – s)α–

�(α)p(s)

∫ s


p(r)y(r) dr ds

+ F(t)
∫ +∞


g

(
u(s)

)
ψ(s) ds + F(t)

∫ +∞


g

(
u(s)

)
ψ(s) ds
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=

ρ

(∫ t



(t – s)α–

�(α)p(s)
ds

)[

aa lim
t→+∞

∫ t



(∫ t

s

(t – r)α–

�(α)p(r)
dr

)

p(s)y(s) ds

+ ab

∫ +∞


p(s)y(s) ds

]

+

ρ

[

ab lim
t→+∞

∫ t



(∫ t

s

(t – r)α–

�(α)p(r)
dr

)

p(s)y(s) ds + bb

∫ +∞


p(s)y(s) ds

]

–
∫ t



∫ t

s

(t – r)α–

�(α)p(r)
drp(s)y(s) ds

+ F(t)
∫ +∞


g

(
u(s)

)
ψ(s) ds + F(t)

∫ +∞


g

(
u(s)

)
ψ(s) ds.

By (.), M < b
a

, and
∫ +∞

 p(s)y(s) ds < +∞, we have

p(s)y(s)
∫ t

s

(t – r)α–

�(α)p(r)
dr ≤ Mp(s)y(s) ∈ L([, +∞)

)
.

Hence,

lim
t→+∞

∫ t


p(s)y(s)

∫ t

s

(t – r)α–

�(α)p(r)
dr ds =

∫ +∞


p(s)y(s) lim

t→+∞

∫ t

s

(t – r)α–

�(α)p(r)
dr ds.

Therefore, the unique solution of the fractional boundary value problem (.) is

u(t) =
∫ +∞


G(t, s)p(s)y(s) ds + F(t)

∫ +∞


g

(
u(s)

)
ψ(s) ds

+ F(t)
∫ +∞


g

(
u(s)

)
ψ(s) ds. �

For convenience, we denote

GM =
(b + aM)(b + aM)

ab + ab
, Gm =

b(b – aM)
ab + ab + aaM

,

FM =
b + aM

ab + ab
, Fm =

b – aM
ab + ab + aaM

,

FM =
b + aM

ab + ab
, Fm =

b

ab + ab + aaM
,

γ = min

{
Gm

GM
,

Fm

FM
,

Fm

FM

}

, G =
bb

ρ
,

F =
b

ρ
, F =


ρ

(

b + a lim
τ→+∞

∫ τ



(τ – r)α–

�(α)p(r)
dr

)

.

Lemma . If (H) holds, then G(t, s), F(t), and F(t) defined in Lemma . satisfy
() G(t, s) is a continuous function and G(t, s) >  for (t, s) ∈ [, +∞) × [, +∞);
() F(t), F(t) are continuous functions, and F(t), F(t) ≥  for t ∈ [, +∞);
()

Gm ≤ G(t, s) ≤ GM for (t, s) ∈ [, +∞) × [, +∞),

Fim ≤ Fi(t) ≤ FiM for t ∈ [, +∞), i = , ;
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() there exist constants  < l < l < +∞ such that

G(t, s) ≥ γGM for (t, s) ∈ [l, l] × [, +∞),

Fi(t) ≥ γFiM for t ∈ [l, l] and i = , ;

() for any s ∈ [, +∞), limt→+∞ G(t, s) = G < +∞, limt→+∞ F(t) = F < +∞,
limt→+∞ F(t) = F < +∞.

Proof () For  ≤ t ≤ s, it is easy to see that G(t, s) > .
For  ≤ s < t, by (H) and (.) we have

G(t, s) ≥ 
ρ

(

bb – ba

∫ t

s

(t – r)α–

�(α)p(r)
dr

)

≥ ba

ρ

(
b

a
– M

)

> .

Hence, G(t, s) >  for (t, s) ∈ [, +∞) × [, +∞).
It is easy to see that G(t, s) is a continuous function.
() It follows from (.) and (H) that () holds.
() By (H), for t, s ∈ [, +∞), we have

G(t, s) ≥ 
ρ

(

bb – ba

∫ t

s

(t – r)α–

�(α)p(r)
dr

)

≥ ba

ρ

(
b

a
– M

)

= Gm

and

G(t, s) ≤ 
ρ

(

b + a

∫ t



(t – r)α–

�(α)p(r)
dr

)(

b + a lim
τ→+∞

∫ τ

s

(τ – r)α–

�(α)p(r)
dr

)

≤ GM.

It is easy to see that Fim ≤ Fi(t) ≤ FiM for t ∈ [, +∞), i = , .
() By () there exist constants  < l < l < +∞ such that

G(t, s) ≥ Gm =
Gm

GM
· GM ≥ γGM for (t, s) ∈ [l, l] × [, +∞).

Similarly, we have

Fi(t) ≥ γFiM for t ∈ [l, l] and i = , .

() By (H) and  < α < , for any s ∈ [, +∞), we can show that

lim
t→+∞ G(t, s) =


ρ

lim
t→+∞

((

b + a

∫ s



(t – r)α–

�(α)p(r)
dr

)(

b + a lim
τ→+∞

∫ τ

s

(τ – r)α–

�(α)p(r)
dr

)

– ba

∫ t

s

(t – r)α–

�(α)p(r)
dr

)

=

ρ

((

b + a

∫ s


lim

t→+∞
(t – r)α–

�(α)p(r)
dr

)(

b + a lim
t→+∞

∫ t

s

(t – r)α–

�(α)p(r)
dr

)

– ba lim
t→+∞

∫ t

s

(t – r)α–

�(α)p(r)
dr

)
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=

ρ

(

b

(

b + a lim
t→+∞

∫ t

s

(t – r)α–

�(α)p(r)
dr

)

– ba lim
t→+∞

∫ t

s

(t – r)α–

�(α)p(r)
dr

)

= G.

It is obvious that limt→+∞ F(t) = F < +∞ and limt→+∞ F(t) = F < +∞. �

Let

E =
{

u ∈ C[, +∞) : lim
t→+∞ u(t) < +∞

}
(.)

be a Banach space with the norm ‖u‖ = supt∈[,+∞) |u(t)|, and

P =
{

u ∈ E : u(t) ≥ , t ∈ [, +∞), inf
t∈[l,l]

u(t) ≥ γ‖u‖
}

be a cone in E.
For r > , we denote

Kr =
{

u ∈ P : ‖u‖ < r
}

, ∂Kr =
{

u ∈ P : ‖u‖ = r
}

,

Sr := sup
{

h(u) :  ≤ u ≤ r
}

, S′
r := sup

{
g(u) :  ≤ u ≤ r

}
,

and

S′′
r := sup

{
g(u) :  ≤ u ≤ r

}
.

It follows from (H) that Sr , S′
r , and S′′

r < +∞.
We define the operator T : P → E by

Tu(t) =
∫ +∞


G(t, s)p(s)f

(
s, u(s)

)
ds + F(t)

∫ +∞


g

(
u(s)

)
ψ(s) ds

+ F(t)
∫ +∞


g

(
u(s)

)
ψ(s) ds, t ∈ [, +∞).

We can easily get the following Lemma . from Lemma ..

Lemma . If u ∈ P, then the boundary value problem (.) is equivalent to the integral
equation

u(t) =
∫ +∞


G(t, s)p(s)f

(
s, u(s)

)
ds + F(t)

∫ +∞


g

(
u(s)

)
ψ(s) ds

+ F(t)
∫ +∞


g

(
u(s)

)
ψ(s) ds, t ∈ [, +∞).

Lemma . (See [, ]) Let E be defined by (.), and � ⊂ E. Then � is relatively compact
in E if the following conditions hold:

(a) � is uniformly bounded in E;
(b) the functions belonging to M are equicontinuous on any compact interval of [, +∞);
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(c) the functions from � are equiconvergent, that is, for any given ε > , there exists
T(ε) >  such that |f (t) – f (+∞)| < ε for any t > T(ε) and f ∈ �.

Lemma . If (H) and (H) hold, then T : P → P is completely continuous.

Proof We divide the proof into three steps.
Step : We show that T : P → P is well defined.
For u ∈ P, there exists a constant r >  such that ‖u‖ ≤ r. By (H) and Lemma ., for

t, s ∈ [, +∞), we have

G(t, s)p(s)f
(
s, u(s)

) ≤ G(t, s)p(s)v(s)h(u) ≤ GMp(s)v(s)Sr .

Since G(t, s), F(t), F(t) are continuous with respect to t, by using the Lebesgue dominated
convergence theorem, for t ∈ [, +∞), we have

lim
t→t

Tu(t) = lim
t→t

∫ +∞


G(t, s)p(s)f

(
s, u(s)

)
ds + lim

t→t
F(t)

∫ +∞


g

(
u(s)

)
ψ(s) ds

+ lim
t→t

F(t)
∫ +∞


g

(
u(s)

)
ψ(s) ds

=
∫ +∞


G(t, s)p(s)f

(
s, u(s)

)
ds + F(t)

∫ +∞


g

(
u(s)

)
ψ(s) ds

+ F(t)
∫ +∞


g

(
u(s)

)
ψ(s) ds.

So, Tu ∈ C[, +∞), and we get

lim
t→+∞ Tu(t) =

∫ +∞


Gp(s)f

(
s, u(s)

)
ds + F

∫ +∞


g

(
u(s)

)
ψ(s) ds

+ F

∫ +∞


g

(
u(s)

)
ψ(s) ds < +∞.

It is obvious that Tu(t) ≥ , t ∈ [, +∞), by Lemma .. Moreover,

inf
t∈[l,l]

Tu(t) ≥ inf
t∈[l,l]

∫ +∞


G(t, s)p(s)f

(
s, u(s)

)
ds + inf

t∈[l,l]
F(t)

∫ +∞


g

(
u(s)

)
ψ(s) ds

+ inf
t∈[l,l]

F(t)
∫ +∞


g

(
u(s)

)
ψ(s) ds.

By Lemma . () we have

inf
t∈[l,l]

Tu(t) ≥ γ sup
t∈[,+∞)

(∫ +∞


G(t, s)p(s)f

(
s, u(s)

)
ds + F(t)

∫ +∞


g

(
u(s)

)
ψ(s) ds

+ F(t)
∫ +∞


g

(
u(s)

)
ψ(s) ds

)

≥ γ‖Tu‖.

Hence, T : P → P is well defined.
Step : We can verify that T : P → P is continuous.
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Let un, u ∈ P and ‖un – u‖ →  as n → +∞. Then there exists a constant r >  such that
‖un‖,‖u‖ ≤ r. We have

 ≤ GMp(s)
∣
∣f

(
s, un(s)

)
– f

(
s, u(s)

)∣
∣ + FM

∣
∣g

(
un(s)

)
– g

(
u(s)

)∣
∣ψ(s)

+ FM
∣
∣g

(
un(s)

)
– g

(
u(s)

)∣
∣ψ(s)

≤ GMp(s)v(s)
(
h
(
un(s)

)
+ h

(
u(s)

))
+ FM

(
g

(
un(s)

)
+ g

(
u(s)

))
ψ(s)

+ FM
(
g

(
un(s)

)
+ g

(
u(s)

))
ψ(s)

≤ GMSr p(s)v(s) + FMS′
rψ(s) + FMS′′

rψ(s)

∈ L([, +∞)
)

and, for s ∈ [, +∞),

f
(
s, un(s)

)
– f

(
s, u(s)

) →  as n → +∞,

gi
(
un(s)

)
– gi

(
u(s)

) →  as n → +∞, i = , .

Then, by the Lebesgue dominated convergence theorem we have

‖Tun – Tu‖ ≤
∫ +∞


GMp(s)

∣
∣f

(
s, un(s)

)
– f

(
s, u(s)

)∣
∣ds

+ FM

∫ +∞



∣
∣g

(
un(s)

)
– g

(
u(s)

)∣
∣ψ(s) ds

+ FM

∫ +∞



∣
∣g

(
un(s)

)
– g

(
u(s)

)∣
∣ψ(s) ds

→  as n → +∞.

Therefore, T : P → P is a continuous operator.
Step : We can show that T : P → P is relatively compact.
Let � be a bounded subset of P. Then there exists a constant r >  such that ‖u‖ ≤ r

for each u ∈ �.
By Lemma . and (H) we have

‖Tu‖ = sup
t∈[,+∞)

∣
∣
∣
∣

∫ +∞


G(t, s)p(s)f

(
s, u(s)

)
ds + F(t)

∫ +∞


g

(
u(s)

)
ψ(s) ds

+ F(t)
∫ +∞


g

(
u(s)

)
ψ(s) ds

∣
∣
∣
∣

≤
∫ +∞


GMp(s)v(s)h

(
u(s)

)
ds + FM

∫ +∞


g

(
u(s)

)
ψ(s) ds

+ FM

∫ +∞


g

(
u(s)

)
ψ(s) ds

≤ GMSr

∫ +∞


p(s)v(s) ds + FMS′

r

∫ +∞


ψ(s) ds + FMS′′

r

∫ +∞


ψ(s) ds

< +∞.

So, T(�) is uniformly bounded.
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For any T ∈ (, +∞), since G(t, s), F(t), and F(t) are continuous, we have that G is
uniformly continuous on [, T] × [, T] and F and F are uniformly continuous on [, T].
This implies that, for any ε > , there exists δ >  such that, when t, t ∈ [, T], whenever
|t – t| < δ and s ∈ [, T], we have

∣
∣G(t, s) – G(t, s)

∣
∣ < ε,

∣
∣Fi(t) – Fi(t)

∣
∣ < ε, i = , .

Therefore, for t, t ∈ [, T], whenever |t – t| < δ and u ∈ �, we can show that

∣
∣Tu(t) – Tu(t)

∣
∣

≤
∫ +∞



∣
∣G(t, s) – G(t, s)

∣
∣p(s)f

(
s, u(s)

)
ds

+
∣
∣F(t) – F(t)

∣
∣
∫ +∞


g

(
u(s)

)
ψ(s) ds

+
∣
∣F(t) – F(t)

∣
∣
∫ +∞


g

(
u(s)

)
ψ(s) ds

< ε

(

Sr

∫ +∞


p(s)v(s) ds + S′

r

∫ +∞


ψ(s) ds + S′′

r

∫ +∞


ψ(s) ds

)

.

Hence, T(�) is locally equicontinuous on [, +∞).
Since

Tu(+∞) =
∫ +∞


Gp(s)f

(
s, u(s)

)
ds + F

∫ +∞


g

(
u(s)

)
ψ(s) ds

+ F

∫ +∞


g

(
u(s)

)
ψ(s) ds.

By Lemma . we conclude that

∣
∣Tu(t) – Tu(+∞)

∣
∣

≤
∫ +∞



∣
∣G(t, s) – G

∣
∣p(s)f

(
s, u(s)

)
ds +

∣
∣F(t) – F

∣
∣
∫ +∞


g

(
u(s)

)
ψ(s) ds

+
∣
∣F(t) – F

∣
∣
∫ +∞


g

(
u(s)

)
ψ(s) ds

→  as t → +∞.

Hence, T(�) is equiconvergent at infinity.
By Lemma . we obtain that T : P → P is completely continuous. �

Lemma . (See []) Let E be a Banach space, P ⊆ E be a cone, and �, � be two
bounded open subsets of E with θ ∈ � ⊂ � ⊂ �. Suppose that T : P ∩ (� \ �) → P
is a completely continuous operator such that either

(i) ‖Tx‖ ≤ ‖x‖, x ∈ P ∩ ∂� and ‖Tx‖ ≥ ‖x‖, x ∈ P ∩ ∂�, or
(ii) ‖Tx‖ ≥ ‖x‖, x ∈ P ∩ ∂�, and ‖Tx‖ ≤ ‖x‖, x ∈ P ∩ ∂�,

holds. Then the operator T has at least one fixed point in P ∩ (� \ �).
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3 The existence of positive solutions
For convenience, we give the following notation:

hϕ = lim sup
u→ϕ

h(u)
u

, fϕ = lim inf
u→ϕ

inf
t∈[l,l]

f (t, u)
u

,

gϕ
i = lim sup

u→ϕ

gi(u)
u

, gi,ϕ = lim inf
u→ϕ

gi(u)
u

,

where ϕ =  or +∞, and i = , . We denote

A = max

{

GM

∫ +∞


p(s)v(s) ds, FM

∫ +∞


ψ(s) ds, FM

∫ +∞


ψ(s) ds

}

,

B = γ · min

{

Gm

∫ l

l
p(s) ds, Fm

∫ l

l
ψ(s) ds, Fm

∫ l

l
ψ(s) ds

}

.

Theorem . Suppose that (H) and (H) hold. If

A
(
h + g

 + g

)

<  < B(f+∞ + g,+∞ + g,+∞),

then the boundary value problem (.) has at least one positive solution.

Proof Since A(h + g
 + g

 ) < , then there exists a constant r >  such that, for u ≤ r, we
have

h(u) ≤
(

h +
ε



)

u, gi(u) ≤
(

g
i +

ε



)

u, i = , , (.)

where ε satisfies A(h + g
 + g

 + ε) ≤ .
Therefore, for any t ∈ [, +∞), u ∈ ∂Kr , we can get

∣
∣Tu(t)

∣
∣ =

∣
∣
∣
∣

∫ +∞


G(t, s)p(s)f

(
s, u(s)

)
ds + F(t)

∫ +∞


g

(
u(s)

)
ψ(s) ds

+ F(t)
∫ +∞


g

(
u(s)

)
ψ(s) ds

∣
∣
∣
∣

≤
∫ +∞


GMp(s)v(s)

(

h +
ε



)

u(s) ds + FM

∫ +∞



(

g
 +

ε



)

u(s)ψ(s) ds

+ FM

∫ +∞



(

g
 +

ε



)

u(s)ψ(s) ds

≤ A
(
h + g

 + g
 + ε

)‖u‖
≤ ‖u‖.

On the other hand, since B(f+∞ + g,+∞ + g,+∞) > , there exist constants r >  and Mi,
i = , , , with f+∞ > M > , g,+∞ > M > , g,+∞ > M >  such that, for t ∈ [l, l],

f (t, u) ≥
(

M –
ε



)

u, gi(u) ≥
(

Mi –
ε



)

u, i = , , (.)

where ε satisfies B(M + M + M – ε) ≥ .
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Let r = max{r, r
γ

}. In view of the definition of P,

inf
t∈[l,l]

u(t) ≥ γ‖u‖ for u ∈ P. (.)

According to Lemma ., for u ∈ ∂Kr , we have

‖Tu‖ = sup
t∈[,+∞)

∣
∣
∣
∣

∫ +∞


G(t, s)p(s)f

(
s, u(s)

)
ds + F(t)

∫ +∞


g

(
u(s)

)
ψ(s) ds

+F(t)
∫ +∞


g

(
u(s)

)
ψ(s) ds

∣
∣
∣
∣

≥
∫ l

l
Gmp(s)f

(
s, u(s)

)
ds + Fm

∫ l

l
g

(
u(s)

)
ψ(s) ds

+ Fm

∫ l

l
g

(
u(s)

)
ψ(s) ds.

By (.) and (.) we have

‖Tu‖ ≥
∫ l

l
Gmp(s)

(

M –
ε



)

u(s) ds + Fm

∫ l

l

(

M –
ε



)

u(s)ψ(s) ds

+ Fm

∫ l

l

(

M –
ε



)

u(s)ψ(s) ds

≥ B(M + M + M – ε)‖u‖
≥ ‖u‖.

Therefore, by (i) of Lemma . and Lemma ., the boundary value problem (.) has at
least one positive solution u ∈ Kr \ Kr . �

Remark . It follows from the proof of Theorem . that the boundary value problem
(.) has at least one positive solution u ∈ P if one of the conditions f+∞ = +∞, g,+∞ = +∞,
and g,+∞ = +∞ holds.

Theorem . Suppose that (H) and (H) hold. If

A
(
h+∞ + g+∞

 + g+∞


)
<  < B(f + g, + g,),

then the boundary value problem (.) has at least one positive solution.

Proof It follows from B(f + g, + g,) >  that there exist constants r > , M′
i, i = , , ,

with f > M′
 > , g, > M′

 > , g, > M′
 >  such that, for t ∈ [l, l] and  < u ≤ r, we

have

f (t, u) ≥
(

M′
 –

ε



)

u, gi(u) ≥
(

M′
i –

ε



)

u, (.)

where i = , , and ε satisfies B(M′
 + M′

 + M′
 – ε) ≥ .
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Thus, for any t ∈ [, +∞) and u ∈ ∂Kr , we have inft∈[l,l] u(t) ≥ γ‖u‖ and

‖Tu‖ = sup
t∈[,+∞)

∣
∣
∣
∣

∫ +∞


G(t, s)p(s)f

(
s, u(s)

)
ds + F(t)

∫ +∞


g

(
u(s)

)
ψ(s) ds

+ F(t)
∫ +∞


g

(
u(s)

)
ψ(s) ds

∣
∣
∣
∣

≥
∫ l

l
Gmp(s)f

(
s, u(s)

)
ds + Fm

∫ l

l
g

(
u(s)

)
ψ(s) ds

+ Fm

∫ l

l
g

(
u(s)

)
ψ(s) ds.

It follows from (.) that

‖Tu‖ ≥
∫ l

l
Gmp(s)

(

M′
 –

ε



)

u(s) ds + Fm

∫ l

l

(

M′
 –

ε



)

u(s)ψ(s) ds

+ Fm

∫ l

l

(

M′
 –

ε



)

u(s)ψ(s) ds

≥ B
(
M′

 + M′
 + M′

 – ε
)‖u‖

≥ ‖u‖.

On the other hand, since A(h+∞ + g+∞
 + g+∞

 ) < , there exists a constant r >  such that,
for u ≥ r, we have

h(u) ≤
(

h+∞ +
ε



)

u, gi(u) ≤
(

g+∞
i +

ε



)

u for i = , ,

where ε with A(h+∞ + g+∞
 + g+∞

 + ε) < .
Let

r > max

{

r, r,
GMSr

∫ +∞
 p(s)v(s) ds + FMS′

r

∫ +∞
 ψ(s) ds + FMS′′

r

∫ +∞
 ψ(s) ds

 – A(h+∞ + g+∞
 + g+∞

 + ε)

}

.

For any t ∈ [, +∞), u ∈ ∂Kr , we denote

D =
{

t ∈ [, +∞) : u(t) ≥ r, u ∈ ∂Kr

}
,

D =
{

t ∈ [, +∞) :  ≤ u(t) ≤ ru ∈ ∂Kr

}
.

We have

∣
∣Tu(t)

∣
∣ =

∣
∣
∣
∣

∫ +∞


G(t, s)p(s)f

(
s, u(s)

)
ds + F(t)

∫ +∞


g

(
u(s)

)
ψ(s) ds

+ F(t)
∫ +∞


g

(
u(s)

)
ψ(s) ds

∣
∣
∣
∣

≤
∫

D

GMp(s)v(s)h
(
u(s)

)
ds + F(t)

∫

D

g
(
u(s)

)
ψ(s) ds

+ F(t)
∫

D

g
(
u(s)

)
ψ(s) ds
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+
∫

D

GMp(s)v(s)h
(
u(s)

)
ds + F(t)

∫

D

g
(
u(s)

)
ψ(s) ds

+ F(t)
∫

D

g
(
u(s)

)
ψ(s) ds

≤ A
(
h+∞ + g+∞

 + g+∞
 + ε

)‖u‖ + GMSr

∫ +∞


p(s)v(s) ds

+ FMS′
r

∫ +∞


ψ(s) ds + FMS′′

r

∫ +∞


ψ(s) ds

≤ ‖u‖.

Hence, by using (ii) of Lemma . and Lemma ., the boundary value problem (.) has
at least one positive solution u ∈ Kr \ Kr . �

Remark . It follows from the proof of Theorem . that the boundary value problem
(.) has one positive solution u ∈ P if at least one of the conditions f = +∞, g, = +∞,
and g, = +∞ holds.

Theorem . Suppose that (H) and (H) hold. If
() B(f + g, + g,) > , B(f+∞ + g,+∞ + g,+∞) >  and
() there exists a constant c >  such that max{Sc, S′

c, S′′
c } := S∗ < A–c,

then the boundary value problem (.) has at least two positive solutions.

Proof Since B(f + g, + g,) > , similarly to the proof of Theorem ., there exists a con-
stant  < r < c with

‖Tu‖ ≥ ‖u‖, ‖u‖ = r.

Since B(f+∞ + g,+∞ + g,+∞) > , there also exists a constant R > c such that

‖Tu‖ ≥ ‖u‖, ‖u‖ = R.

On the other hand, by condition (), for any u ∈ ∂Kc,

‖Tu‖ = sup
t∈[,+∞)

∣
∣
∣
∣

∫ +∞


G(t, s)p(s)f

(
s, u(s)

)
ds + F(t)

∫ +∞


g

(
u(s)

)
ψ(s) ds

+ F(t)
∫ +∞


g

(
u(s)

)
ψ(s) ds

∣
∣
∣
∣

≤
∫ +∞


GMp(s)v(s)h

(
u(s)

)
ds + FM

∫ +∞


g

(
u(s)

)
ψ(s) ds

+ FM

∫ +∞


g

(
u(s)

)
ψ(s) ds

≤ GMSc

∫ +∞


p(s)v(s) ds + FMS′

c

∫ +∞


ψ(s) ds + FMS′′

c

∫ +∞


ψ(s) ds

≤ S∗
(

GM

∫ +∞


p(s)v(s) ds + FM

∫ +∞


ψ(s) ds + FM

∫ +∞


ψ(s) ds

)

< c.
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Namely,

‖Tu‖ < c = ‖u‖, u ∈ ∂Kc.

According to Lemma ., the boundary value problem (.) has at least two positive solu-
tions u, u with  < ‖u‖ < c < ‖u‖. �

Remark . It follows from the proof of Theorem . that the boundary value problem
(.) has at least two positive solutions u ∈ P if one of the conditions f = +∞, g, = +∞,
g, = +∞, f+∞ = +∞, g,+∞ = +∞, and g,+∞ = +∞ holds.

Theorem . Suppose that (H) and (H) hold. If
() A(h + g

 + g
 ) < , A(h+∞ + g+∞

 + g+∞
 ) < , and

() there exists a constant C >  such that, for any t ∈ [l, l] and u ∈ [γC, C], we have

min
{

f (t, u), g(u), g(u)
}

> γB–C,

then the boundary value problem (.) has at least two positive solutions.

Proof The proof is similar to that of Theorem ..
It is easy to get the two positive solutions u, u with  < ‖u‖ < C < ‖u‖. �

4 Illustration
Example We consider the following boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩


et (et CD



+u(t))′ + f (t, u(t)) = , t ∈ (, +∞),

u() – limt→+ p(t) CDα
+u(t) =

∫ +∞


g(u(s))
+s ds,

limt→+∞ u(t) +  limt→+∞ p(t) CDα
+u(t) =

∫ +∞


g(u(s))
+s ds,

(.)

where f (t, u) = e–t (+t)(u+e–u)


√
t , a = , a = , b = , b = , p(t) = et , ψ(s) = ψ(s) = 

+s , and

g(u) = g(u) =

⎧
⎨

⎩

u
 ,  ≤ u ≤ ,


√

u – ,  < u < +∞.

It is obvious that f : (, +∞) × [, +∞) → [, +∞) is a continuous function and singular
at t = .

Let

v(t) =
e–t( + t)√

t
, h(u) =

u + e–u


.

Then we have M ≈ ., A = ., h+∞ = 
 , g+∞

 = g+∞
 = , and A(h+∞ + g+∞

 +
g+∞

 ) = . < .
On the other hand, let l = 

 , l = . So we have B ≈ ., f = +∞, gi, = 
 , i = , .

Namely, B(f + g, + g,) = +∞ > .
By using Theorem . the boundary value problem (.) has at least one positive solu-

tion.
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