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Abstract

The aim of this paper is to discuss the existence and uniqueness for a class of
fluid-particle interaction non-Newtonian models which describe the evolution of
particles dispersed in a viscous compressible non-Newtonian fluid. The strong
nonlinearity of the system and the singularity of the viscosity term bring about
difficulties. Also, we admit an initial vacuum.

Keywords: strong solution; fluid-particle interaction model; non-Newtonian fluid;
vacuum

1 Introduction
In this paper, we consider the following non-Newtonian fluids system:

Pt + (pu)y = 0,
(pu)e + (pu?)x — M|uelP2u)x + P+ 1)x = —(n + Bp) Py, (%,8) € Qr, (L1
Nt + (ﬂ(u - q)x))x = Nxxs

with the initial conditions

(107 u, 77)|t:0 = (,00; Uo, 770), X € Q’ (12)

together with the no-slip boundary conditions for the velocity and the no-flux condition
for the density of particles,

ulgg = (N + nPy)ae =0, te[0,T], (1.3)

where p, u, n, P(p) = ap?, ®(x) denote the fluid density, velocity, the density of particles in
the mixture, the pressure, and the external potential, respectively, a >0, y > 1, % <p<2.
A > 0 is the viscosity coefficient and 8 # 0 is a constant, 2 is a one-dimensional bounded
interval, and for simplicity we only consider € = (0,1), Q7 = Q2 x [0, T].

Fluid-particle interaction models arise in a lot of industrial procedures such as the
analysis of the sedimentation phenomenon. These procedures find their applications in
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biotechnology, medicine, mineral processing, and chemical engineering [1-4]. Such in-
teraction systems are also used in combustion theory, when modeling Diesel engines or
rocket propulsors [5, 6].

The coupled microscopic/macroscopic models describe the evolution of particles dis-
persed in a fluid. The system consists in a Vlasov-Fokker-Planck equation to describe
the microscopic motion of the particles coupled to the equations for the fluid. Generally
speaking, at the microscopic scale, the cloud of particles is described by its distribution
function f(x, &, ), a solution to a Vlasov-Fokker-Planck equation. The fluid, on the other
hand, is modeled by macroscopic quantities, namely its density p(x, £) > 0 and its velocity
field u(x, t). If the fluid is compressible and isentropic, then (p, u) solves the compressible
Euler (inviscid case) or Navier-Stokes system (viscous case) of equations. With the dy-
namic viscosity terms taken into consideration, Carrillo et al. [7] discussed the following
system:

oz +div(pu) = 0,
(ou); +div(pu @ u) + V(P(p) + n) — uAu—AVdivu = —(n + Bp)V P, (1.4)
Ny +div(n(u — V®)) — An =0.

They obtained the global existence and asymptotic behavior of the weak solutions to (1.4)
following the framework of Lions [8] and Feireisl et al. [9, 10]. In addition, Mellet and
Vasseur [11] proved the global existence of weak solutions of equations by using the en-
tropy method on the asymptotic regime corresponding to a strong drag force and strong
Brownian motion.

In recent years, there has been an increasing recognition of the importance of non-
Newtonian flow characteristics displayed by most materials encountered in everyday life,
both in nature (gums, proteins, biological fluids such as blood, synovial fluid, etc.) and
in technology (polymers and plastics, emulsions, slurries, etc.) (see [12]). Since there has
been much research in the field of non-Newtonian flows, both theoretically and experi-
mentally, let us briefly recall the related results in the literature. Bellout et al. [13] studied
the non-Newtonian fluids for space periodic problems and showed the Young measure-
valued solutions. In [14], Guo and Zhu investigated the partial regularity of the generalized
solutions to the modified Navier-Stokes equations which describes the dynamics of the in-
compressible monopolar non-Newtonian fluids. Zhao et al. [15] constructed the trajectory
attractor and global attractor for an autonomous two-dimensional non-Newtonian fluid.
Yuan and Xu [16] obtained the existence and uniqueness of solutions for a class of non-
Newtonian fluids with singularity and vacuum. For other results we may refer to [17-23].

It is worth mentioning that most recently, Fang et al. [24] got the global existence of
classical solutions of (1.4) in dimension one, namely p = 2 in (1.1). Compared with the
work of [24], the strong nonlinearity of (1.1) brings us new difficulties in getting the upper
bound of p, which plays an important role throughout their proof. The second equation
of (1.1) is always with singularity and brings us another difficulty. Motivated by Cho et al.’s
[25, 26] work on the Navier-Stokes equations, we establish local existence and uniqueness
of strong solutions of (1.1).

Throughout the paper we assume that a = A =1 for simplicity. In the following sections,
we will use simplified notations for standard Sobolev spaces and Bochner spaces, such as
L? = [P(Q), Hy = Hy($2), C([0, T]; H') = C([0, T; H'(R2)).
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1.1 Main results
Theorem 1.1 Let ® € C*(Q) and assume that the initial data (po,uo,10) satisfy the fol-

lowing conditions:
0<poeH'(Q), uoeHy(QNHRQ),  noeH(RQ),
and the compatibility condition
(l0x"2u0x) . = (P(p0) + M0),, — 0P = po(g + BLx), (L5)

for some g € L2(Q). Then there exist a T, € (0,+00) and a unique strong solution (p,u,n)
to (1.1)-(1.3) such that
p € L®(0, T,; H'(RQ)), pr € L%(0, T L* (),
ueL®(0, T Wy (Q NHARQ)),  u e L*(0, Tw; Hy(),
nel™(0,TsH*(Q),  n.€L®(0, T H(RQ)),
Vour € L2(0, T LA(Q), (el us), € L2(0, Ti; LX(R)).
2 Apriori estimates for smooth solutions
In this section, we will prove the local existence of strong solutions. Because equation
(1.1), always possesses a singularity, we overcome this difficulty by a regularized process,

then taking the limiting process back to the original problem. First of all, we consider the

following system:

pr + (pu)x = 0, (2.1)
2 2

(pu)e + (pu?), - [(i;f;) u} + (P n)e=—(n+ Bp)Ds, (2.2)

Ne + (77(’4 - q)x))x = Nxxs (2.3)

with the initial and boundary conditions,

(10’ u, n)|t=0 = (100) Uuop, 770)’ X € Qr (2'4)
ulpa = Ny + nP)se =0, t€[0,T], (2.5)

and u € H}(2) N H?(2) is the smooth solution of the boundary value problem

w2 +1,2-p
(207 ttosl = (P(p0) + 10)x = 0B = polg + ), 06

Mo(O) = M()(l) =0.

By using the iterative method step by step, the nonlinear coupled system admits a smooth

solution (see Section 3). Provided that (p, u, 1) is a smooth solution of (2.1)-(2.5) and pg >

8, where 0 < § < 1 is a positive number. We denote Mg =1+ wo + fg" + |00l + Ig12-
First we obtain the estimate of |#x,|;2. From (2.6), we have

v~ (suax . 1)’5 (1, + ©)°[(P(po) + 7o) + Mo P + Po(g + BP,)]

ui, +e (eud, +1)Wd, +¢) - 2 -p)(1-e2)ud,
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Then
ols2 < Bt ) b))+ 10+ o+ )
u — + + + +
0xxL2_p 1 eu%x+1 Lo Po) +1o), +1N0Px+ 0o x) |2
1
< p—1(|u0x|L00 +1) (\(P(,Oo) +10), +10Px + polg + BP4)|2)
1 1-
= p—(|u0xx|L2 + 1) (ﬂV|,00|Loo [Poxl2 + [Moxl2 + 10200 | Pl 2

+1polzlgli2 + Bloolioe| Pl p2).
Using Young’s inequality, we have
[t0xxl 12 < C,

where C is a positive constant, depending only on M.
Next, we introduce an auxiliary function,

WO = sup (1+]06) 0 + [46) oo + [VPO)] 2 + 1) 2 + [165)] 1)

0<s<t

Then we estimate each term of W(¢) in terms of some integrals of W(£), apply arguments
of Gronwall-type, and thus prove that W(¢) is locally bounded.

2.1 Estimate for | o[y
First we need the following estimates for u# and 7. By virtue of (2.2)

92—

cu? +1 =

- Uy | = pus+ putty + (P +n), + (1 + Bo) Dy
u2+e x

Then, we have

1 ) 1_17’
2e| < E(ux +€) }Put + putty + (P + 1)+ (n +/3;0)q>x|~

Taking the L? norm and using Young’s inequality, we get

sty < C(L+ [pttel 2 + |outs 2 + |(P+ 1) o + [0 + Bo) D2 2)

ES 4 1-2
< C(1+ 101 l/Piteli + 1Pl |l oo 1ty By 1ty o2
-1
+ 101 oo | oxlr2 + Inxlp2 + [nlroe | Pl 2 + [plroo | Prlp2)
p  2p-1)
<C[1+ |p|Lm|fut|Lz + (1ol lul oo |l ) 70 + |plhe | ol
1 p-1
+|melg2 + oo | Pl 2 + 1plroo | Dol 2] + 5 el
-1
< qu V(t) += |u,m|1L’2 . (2.7)

Hence, we deduce that

6
gl 2 < CUTE(E). (2.8)
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From (2.3), taking the L? norm, we get

Maxlzz < |me + (n(u = @) |2

< melp2 + [melpz|ulzoe + [mel 2| Palroe + (02 thaxl 2 + [1]200 | Pue| 2

< CwTI(p), (2.9)

Multiplying (2.1) by p, integrating over 2, we have

2
2dt/ [o] dS+/(pu)xpdx 0.

Integrating by parts, using the Sobolev inequality, we deduce that

d
Sl = / il |pI? dx < el 2112 (2.10)
Q

Differentiating (1.1); with respect to x, and multiplying it by p,, integrating over €2, and
using the Sobolev inequality, we have

d 24 3 2
a/g|,0x| dx—_/n[zux(px) +,0quxx:|(t)dx

2
< Cluxlioo | oxl22 + 101100 | oxl 2 thax 12 ]

< Clpl2plthael 2. (2.11)

From (2.10)and (2.11), by Gronwall’s inequality, it follows that

0<t<T

sup (O = 1pol2 exp{ / il ds} < Cexp(c / Cwi ) ds), (212)
we can also get the following estimates. Using (1.1); we obtain

10:(®)| 2 < |02 (O] )2 [(D)] ;o + [P ()] o |14(8) ] ;> < CW(2), (2.13)
where C is a positive constant, depending only on M.
2.2 Estimate for |n¢|,2 and |9|4

Multiplying (1.1)3 by 7, integrating the resulting equation over Qr, using the boundary
conditions (1.3) and Young’s inequality, we have

¢ 1
/ ne@2ads 5 (o)

/f s + In®ss]) dx
Qr

/!nx \L2ds+6/ |ux|Lp|n|H1ds+C/ i+ C

1
<2 fo |nx(s)|jzds+c<1+ /0 \D4(t)ds>. (2.14)
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Multiplying (1.1)3 by 5, integrating (by parts) over Qr, using the boundary conditions
(1.3) and Young’s inequality, we have

t
1
/ me6)ads + 2 o)
0
5/ (s — D2)nx| dacds
Qr

1 t t t
51/|nxt(s)<§2ds+c/ |n|zl|ux|ipds+cf Inl2a ds + C
0 0 0

1 t t
< E./o |nxt(s)’i2 ds+C<1+/0 \114(t)ds>. (2.15)

Differentiating (1.1); with respect to ¢, multiplying the resulting equation by 7, integrating
(by parts) over Qr, we get

t 1
]0 ma9)a s+ 3 0

- / /Q (= 00) e

< C+ff (Ime1ue] + e Pane| + |mctaene| + aemy]) dx ds
Qr

t
< c<1 +/ (Inel22 1l o + Imel22 + 02 1me 22 + |n|i,1|m|§z)dx)
0

1 [t 9 1 [t 9
+§/0 |77xt|L2+§/(; |4xe|]a
t
§C<1+/ \D4(s)ds>. (2.16)
0

Combining (2.14)-(2.16) and (2.28), we get

t t
02 + el + / (|nx|§2+|m|§2+|nxt|§2)<s)dssc(1+ / \V‘(s)ds). (2.17)
0 0

2.3 Estimate for |u| , i
Using (2.1), we rewrite (2 1) as

2-p

eul+1\ 2

e = (250) D]+ @mn=-re pore .18
ux + & x

Multiplying (2.18) by u,, integrating (by parts) over Q7, we have

1
// pluy dxds+// (su * ) Uylhyy dx ds
Qr Qr I/l + &

=— // (,ouux +Py+ny+(n+ ,Bp)CDx)u[ dxds. (2.19)
Qr
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We deal with each term as follows:
2p 2-p
eu +1)\ 2 su +1\ 2
/( 5 ) uxuxtdx—— ( 5 )
e\ U2+ uz+e
1\ 7
£s+
T2 dt ( < s+e ) ) d,
1 2Tp 2
u; p
/ (8S+ ) ds>/ (s+1)Tds [ +1)% -1],
0 s+¢ p
—// Putdxds—// Pu,;dxds = — // Pu, dxds — /f Piu, dxds.
Qr Qr Qr Qr
From (1.1); we have
P, = —yPu, — P,u, (2.20)

d
—// n®,u; dxds = —— // n®udxds + // NP udxds.
Qr de Qr Qr

Substituting the above into (2.19), using the Sobolev inequality and Young’s inequality, we
obtain

t
2
| ol ds ol
0

< / / (|puttyite] + |y P2 + Ptity] + || + 1 ®ya] + | Bp i) e ds

Qr
+ / (1P| + Inug| + In®yul) dx + C

Q

t
< C+f (Iplelulequleluleoc la¢| Lo +V|P|L2|Mx|l}7|ux|Loo |t 12
0

p p
y-1 2 1-3
+ ﬂ)/|10|Loo | ol 2 |thx| 2 |thnx| 2 + |77t|L2|I/‘x|[2,p|’f‘x|Loc2 + el 2 | Pyl 2 |tt| oo

+/3|p|Loo|<I> |i2/Ptelp2) ds + |P| v telrr + |77| v |elir + |77| v | Polrp|ulre

_b

t
2+p 2-p 3
§C<1+/(|P|LZ|MJ¢| |uxx|L +|P|L°°|”x|Lp|Mxx| 2’
0

D
+ |p|L00 |px|L2|ux|Lp|Mxx|L2 + |nt|L2|ux|Lpluxx|L22

+ e 2 |t |1 + |:0|L°°)d5>

+1PI7, +n] _1% /Ifut(S)Ides+ |ux (D[], (2.21)

Lr-1

To estimate (2.21), combining (2.20) we have the following estimates:

/Q|p(t)|z% dx:/9|p(o)|z% dx+/0t%(/gp(s)p”1 dx)ds

> p [ 2
< / |P(0)| 7 dux + —/ / ayp” " P(s)PT (—pyu — pu,) dx ds
Q p-1Jo Ja
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t
§C+C/ lplls |P| 10l 1| p ds
0
toy 1
§C<1+ f Wp1rr (s)ds>, (2.22)
0

following the same method, we get

n(z) f%dxsc 1+ twﬁ*l(s)ds . (2.23)
Q 0

Combining (2.21)-(2.23) yields

t t 18
/ | /Pue(s)[ 2 s) ds + |ua ()]}, < c(1+ / W3 (5) ds>, (2.24)
0 0
where C is a positive constant, depending only on M.

2.4 Estimate for | /pu;|;2
Differentiating (1.1), with respect to ¢, we get

PUy + PUyy + Prlhy + Plbthy + PUly + (P + )yt

2-p
9 2p
eus+1\ 2
= [( > > ux] = (e + Bpe) P
Uz +¢€ xt

Multiplying the result equation by u, integrating over <2, we derive

2—

1d/ wid / e +1\ 7 .
124 X + u 124 X

2dt Jo ™ al\ #2+e¢ o P

. / [(000)s (02 + wttytte) — (P + m)ettzs — (e + Br) D] div. (2.25)
Q

Note that

1

Q Mx+<9
4
2

_ eu? +1 (e + 1)l +e)-2-p)A-e?)u2 ,
-L[(u;+s) “x] s

Z(p—l)/(u +1)Tz|ux,|2dx.

2-p
2

Let
p-2

c=wi+1) 7,

from (2.8), it follows that

2-p
e = (2 +1) T | < Clttl 2 +1) < CUB (o)
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Combining (2.20), (2.25) can be rewritten as

d
E/prtﬁdmfﬂmxtﬂdx

52/p|u||uz||uxt|dx+/ |px||u|2|ux||ut|dx+/p|u||ux|2|ut|dx
Q Q Q

+/ )/P|ux||uxt|dx+/ Ilelulluxtldx+/ |7 | D 15| dx
Q Q Q

8
o [ 1Bty [ 8ol @il ds= 31 (2.26)
Q Q

j1

Using the Sobolev inequality, Young’s inequality, (1.1), (2.8), and (2.9), we obtain

1 B 8y 1
Iy < 20p| o lutl oo | /Pt 21 tae | 12| 7| oo < CU T (2) + §|uxt|§z,

2 1-5 3 1-5 -1
b < 10l 2 |t oo it 1o |t 1o [t 100 < |0l 0kl o ltha 12 1 e 2] 7 o

Loy 1, .,
< CUTF(L) + |ty |22,
8
2 -1
Iy = 1p| oy lwlioo sl oo el oo < 1pluoe tal 2o a2 1€ el 2|7
15y 1
i 2
= CUTE @) + Sl
1 v 1 9
Iy < C|P|L2|”x|L°°|§Mxt|L2|§ ‘Loo < CWa(t) + §|Mxt|L2,
1 Ty 1 9
Is = Pl |l | haal 2 |¢ 7| oo < COF0(6) + Skl
1 Ly 1 9
Is = 2| @xlp2 el < Clnelp2 Gl 27 oo < CUFH (@) + latual o,
-1
I < Blpslp2ul oo |l 2|t oo < Cloalp2 |thl 1018 e |2 07 o
S 1 9
S C"IIS‘BJL (t) + g'uxt|L21
-1
Is < BIpli2 el | sl 2 1] 10 < Clplp2lttel 218 thae 12|07 oo
dy 1 2
SCUH(E) + §|uxt|L2~

Substituting I; (j = 1,2,...,8) into (2.26), and integrating over (t,£) C (0, T) over the time
variable, we have

VB, + /0 el 22 (6) ds < | /ae(0)| s + /O ¥ (5)ds. (2.27)

To obtain the estimate of | /o (£) 22 , we need to estimate lim, ¢ |/0u(7) |§2 . Multiplying

(2.18) by u; and integrating over 2, we get

/p|ut|2dx
Q

52/ (p|u|2|ux|2+ﬂzp|<1>x|2+p-1
Q

e 41\ 2
|:< = ) ux] +(P+1n)y+ndy
X

2
uZ+e

2
) dx.
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According to the smoothness of (p, u, 1), we obtain

e 41\ 2
|:< = ) ux] +(P+1n)y+nDy
X

2
ul+e

2
)dx

lim/(,olbtlzluxlz+}32/0|‘I>x|2+:0_1
T—0 Q

:/<P|M0|2|M0x|2+ﬂzpo|@x|2
Q

P

2-

) 2p

euy, +1Y\ 2

[(%) um} +(Po +10)x + 10 P
M0x+8 x

-1
+ Oy

2
)dx

2 2 2 2 2 2
< |polreelto| oo |Uoxl ;2 + B7|00lLoo|Pul” + 172 + Bl Pxl;» < C.

Therefore, taking the limit on 7 in (2.27), as T — 0, we conclude that

VPO + fo |uxt|i2(s)ds§C<1+ /0 W;;_-y”f(s)ds), (2.28)

where C is a positive constant, depending only on M.
Combining the estimates of (2.8), (2.9), (2.12), (2.13), (2.17), (2.24), (2.28), and the defi-
nition of W(¢), we conclude that

W) < Cexp<é f Cwi ) ds), (2.29)
0

where C, C are positive constant, depending only on M,. This means that there exist a
time 77 > 0 and a constant C, such that

ess sup (|l + [l 1oy + Il + elz2 + 1Pl + el 2)
0<t<Th

T
+/ (|\/5Mt|iz + |uxt|i2 + |77x|22 + |77t|22 + |77xt|22) ds<C, (2.30)
0
where C is a positive constant, depending only on M.

3 Proof of the main theorem

In this section, the existence of strong solutions can be established by a standard argu-
ment, we construct the approximate solutions by using the iterative scheme, derive uni-
form bounds and thus obtain solutions of the original problem by passing to the limit. Our
proof will be based on the usual iteration argument and some ideas developed in [25, 26].
Precisely, we first define #° = 0 and assuming that #*~! was defined for k > 1, let p*, uX, n*
be the unique smooth solution to the following problems:

of + pkult 4 pfut1 = 0, (3.1)
o uf + pFul Uk + Lk + PE o+ = —(n* + Bp¥) s, (3.2)
ny+ (n (@ - @), =0k, (3.3)

with the initial and boundary conditions

(0", 1", 1") =0 = (po, 100, M0), (3.4)
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e = (N8 + nf @) e = 0, (3.5)

where
2
i e(k)? +1 El ‘
Lo =~ 55— ug| .
(uk)? + ¢ .
With the process, the nonlinear coupled system has been reduced to a sequence of de-

coupled problems and each problem admits a smooth solution. The following estimates
hold:

€ss sup (|pk|H1 + |” |W1pﬁH2 + |77k|H2 + |77t |L2 + |\/_”It(|L2 + |p, |L2)
0<t<Tj

T1
+/0 (“//? |L2 . ‘uxt’LZ + |77x|L2 + |'7t |L2 * |nxt|L2)ds =G, (3'6)

where C is a generic constant depending only on M, but independent of k.
In addition, we first find p* from the initial problem

pf +u s+ ul T p =0 and  pNio = po,

with smooth function %1, obviously, there is a unique solution p* on the above problem
and also by a standard argument, we obtain

1
o (x, 1) > Sexp[—/ ]u’;‘l(-,s)hm ds} >0, forallte(0,T)).
0

Next, we will prove that the approximate solution (,ok, uk,nk) converges to a limit
(0%, u%,n°) in a strong sense. To this end, let us define

I5k+1 _ pk+1 _ pk’ Ijlk+1 _ uk+1 _ I/lk, ﬁk+1 _ nk+1 _ nk,
then we easily verify that the functions 5**1, #¥*1, 75+1 satisfy the system of equations
p£(+1 (,5k+1Mk) + (,Okb_tk)x =0, (37)

,0k+1 = k+1 +pk+1 k= k+1 + (Lpuk+1—Lpuk)
pk+1 k p i I/lk pk+lukul;_ (P§+l Pk) k+1 ( k+1 +ﬁnk+1) (3.8)

e (), ¢ (70— 0)), = 75 69
Multiplying (3.7) by 5**!, integrating over  and using Young’s inequality, we obtain

‘ﬁk+1’L2§C| k+1‘L2’uk|L°O ‘pk|H1’uk‘L2|pk+l‘L2

= C|” |L2|pk+1|L2 + C5|pk|H1 |'0k+1|L2 +§|”k|L2

< Ce| g2, + € |at[ (3.10)

2’

where C; is a positive constant, depending on M, and ¢ forall £ < T; and k > 1.
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Multiplying (3.8) by #**!, integrating over €2, and using Young’s inequality, we obtain

i/ pk+1|ﬁk”|2dx+/(Lpuk”—Lpuk)ﬁk”dx
dt Jo Q

SC/(|PM|(|uf| a7+ o[ a5 + [P - P
|7k + |7+ BER || @y ) d

= C(|pk+l|L2|uxt|L2|uk+l|L2 + |'0k+1|L2| k|yf|” |L2|uk+liL2

|pk|L2|\/7uk|L2|u |L2|Mk+1‘L2 + |Pk+1 Pk}L2|Mk+1’L2

|’7k+1|L2 |”k+1|L2 + |pk+1|L2 |”k+1|L2 + |’7k+1|L2 |uk+1|L2) (3.11)

Let

o' (s) = (832 + 1)"2 (es? +1)(s> +¢) - (2 - p)(1 —&?)s? N -1

2 +¢ (s2 +¢&)? (Sz+8)%”'

We estimate the second term of (3.11) as follows:
/(L M Lub) i dx = / / Uk (1-0)uk )d9|uk+1| dx

do k+
Z/[/ kil k2p ]( 1)
elJo |0ukl+ (1-0)uk];< +1

>t f || da. (B3.12)
Q

Using (3.6), (3.12), and Young’s inequality, (3.11) can be rewritten as

d/ k+1|uk+1| dxe + C- /|uk+l| dx
de

< B ()5}, + C(|V ok [}, + |7*]},) + €|,

(3.13)

where B:(t) = C(1 + |u§t(t)|iz), forall £ < T and k > 1. Using (3.6) we derive
t
/ B:(s)ds < C + Ct.
0

Multiplying (3.9) by 7**!, integrating over €2, and using (3.6) and Young’s inequality, we
have

2dt/‘—k+l‘ dx+/’nk+l| do

< [ 1 = ks [ (i
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= iﬁk+l|L2|”k - (Dx|L°°|ﬁJ]c(+l|L2 + |n§|L2|ﬁk|Lw|ﬁk+l|L2 + |nk|Lw|L_‘I;|L2|ﬁk+l|L2

< Ce |7, + €|k + &[] (3.14)

Collecting (3.10), (3.13), and (3.14), we obtain

3 (177101 + Vo # @ + [0 ) + |27 @ + 757

_ 2 k12 k112 k12
< Eg(t)|,ok+1(t)|L2 + C|\/,okuk|L2 +Cs |17k+1|L2 + §|u’;|L2, (3.15)
with E,(t) depending only on B, (t) and C, for all £ < T; and k > 1. Using (3.6), we have
t
/ EE(S)dS <C+ C{J&If.
0

Integrating (3.15) over (0, t) C (0, T7) with respect to t, using Gronwall’s inequality, we have

t t
O + Wl 0 [ Ok s [ s
t
< Cexp(Cet) / (IWokaks)[2, + |#5(s)]3) ds. (3.16)
0

From the above recursive relation, choose £ > 0 and 0 < T, < Tj such that Cexp(C; T) < %,

using Gronwall’s inequality, we deduce that

K
Z[ sup (|61 0) 2 + [V @) + [ @) 2)

k=1 L0=t=Tx
T T
= k+1 2 d —k+1 2 d C 31
+ | (0)] ), de + |7 (6)] 2 de | < C, (3.17)
0 0

where C is a positive constant, depending only on M.
Therefore, as k — +00, the sequence (o, uX, n*) converges to a limit (p°, u*,7°) in the

following strong sense:

p* = pf inL®(0, T L*(Q)), (3.18)
uF >t in L%(0, T LA(Q)) N L*(0, T Hy (), (3.19)
n* = inL%(0, Ty; L*(R)) N L*(0, Tos H()). (3.20)

By virtue of the lower semi-continuity of various norms, we deduce from the uniform

estimate (3.6) that (p°, u®, n°) satisfies the following uniform estimate:

ess sup (|0°[;0 + [0 [y + 0|+ 0|2 + [Vo5ue] 2 + [ 07 ] 2)
0<t<T) 0

Tx
+/0 (WP e 1o+ s 1o + el o + 152 + 18| 12) ds < C. (3.21)
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Since all of the constants do not depend on ¢, there exists a subsequence (p%, u%,n%) of
(0%, u®, n®), that, without loss of generality, we denote (p®, u®, °). Let ¢ — 0, then we obtain

the following convergence:

pf = p’  inL®(0, T,sLX(R)), (3.22)

ut — v’ inL®(0, T, LA(R2)) N L*(0, Ty Hy(R)), (3.23)

n° —n’ inL>(0, T,;L*(Q)) NL*(0, T, H (), (3.24)
and also

ess sup (|0° 1 + 1| yroeyo + 1] + 0210 + [V 000 12 + [0 2)
0<t<T) 0

T
e [ il 2 1+ ) s = (325

For each small § > 0, let pj = Js * po + 8, J5 is a mollifier on ©, and u € H}(Q) N H*(RQ) isa

smooth solution of the boundary value problem

Lpug = (P(Pg) + ﬂg)x + ngcpx + log(g(S + BD,),
u3(0) = ud(1) = 0,

(3.26)

where g° € C5° and satisfies [g°|,2 < |g|;2, lims—o+ |g° — gl;2 = 0.
We deduce that (p%, 4, ) is a solution of the following initial boundary value problem:

pe+ (pu)x =0,

(pu)y + (pu?)y = M|t P2 th) + (P + 1)y = —( + ) Pss
N+ (M — @)y = Nz

(0 14,1) 110 = (08, ud, 1),

ulya = (Nx + nPy)aq = 0,

wherepgzé, % <p<2.

By the proof of Lemma 2.3 in [16], there exists a subsequence {uf{} of {ug}, as §; — 0%,
u) — up in Hy(Q) NH(RQ), —(|uf)"x|P-2uf{x)x — —(|uox|P 2 10,), in L2(S2), Hence, uy satisfies
the compatibility condition (1.5) of Theorem 1.1. By virtue of the lower semi-continuity of

various norms, we deduce that (p, &, ) satisfies the following uniform estimate:

€ss sup (|:0|H1 + |M|W3:ﬂﬁH2 + 0l + nel2 + [Vpud2 + |pt|L2)
0<t<Ty

T
o [ OBl il s+ s ) d5 = (327)
0
where C is a positive constant, depending only on M,. The uniqueness of the solution

can also be obtained by the same method as the above proof of convergence, we omit the

details here. This completes the proof.
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Appendix
In this section, for the sake of completeness, we give a slightly more particular result for

the previous case.

Lemma A.1 Let uy € Hy(Q) N H*(Q), po € HY(Q), no € H*(Q), ® € C*(Q), g € LX(Q), u,

is a solution of the boundary value problem

s(u‘qx)2+1 2-p
(G 732 ) 2 Hoxls = (P(po) +10)x = 110 P = po(g + BP), A

uy(0) = uf(1) = 0.

Then there are a subsequence {ui)j},j =1,2,3,..., of {uy} and uy € Hy () N H?*(Q) such that,

as e — 0,
ug — uo  in Hy(Q) N H*(K),

Ej 2 2;1’
ei(u +1\ 2 o
[(M) u;’x] — (|u0x|p72uox)x in L2(Q)
x

(uf);)2 +8
Proof According to (A.1), we have

4
2

S e <8(M8x)2 + 1) ((u,)* + &)2((P(po) + Mo)x + NoPx + polg + BD2))
0\ (uby)? +e (e(,)? + ()2 + &) — (2 - p)(1 — £2) (15, )

Then

|(P(po) +10), + no®Px + po(g + BL)|
LOO

|u(g)xxiL2 =

e(us,)? +1 -5
(ug,)> +¢

= (|u8x|i°° +1)1_%|(P('00) + no)x + Uocbx + pO(g"',BCDx)|L2r

then we get

a1
|| 2 < C(L+ [ (P(p0) + m0), + MoPx + po(g + BPs)|;2) 7T < C.
Therefore, by the above inequality, as &; — 0,

; 3
uf)’ —uy inC2(Q),

Ugy — o in L2(R2) weakly.

Thus, we see that {u;"x} is a Cauchy subsequence of c3 (2), for all @; > 0, we find N, as

i,j >N, we have

|u8i —u) | <a
0x 0x | 20(Q) 1

Now, we prove that {ug,,} has a Cauchy sequence in L, norm.
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Let

o= (") = (St 1)

() + &

(S

() + &)

(eilug,)? + D((ug,)? + &) — 2 = p)(1 - &) (ug,)*

For all & > 0, there exists N, as i,j > N, we can deduce that
&

.
|4y — Mo]xx|Lz(Q) < |¢h — Bjlioo@ | (P(po) + mo) , + Mo P + po(g + ,3q>x)|Lz(Q).

With the assumption, we obtain

|(P(po) +110),, + 110®s + po(g + BP) |12 < C

where C is a positive constant, depending only on | 0ol 1(q), 1g112(q) and [170]y2(g)- Use the
following inequality:

) (A2)
(@)

|pi — Pjlroo() <

[0 + -0y i

where 0 <6 < 1.
By a simple calculation, we can get ¢’(s) < p%l(l +57), where C depends only on p, then

2 1 ) ) ) )

9= livie < = (1+ fo (6 (i) + (1—9)(%3;)2)019>((uf);)2 ~ ()
2 |u£i _uJ ’ ’ué‘i ru’ ‘

_1!"ox Ox | Lo () 1% 0x 0x | 00(£2)

L(Q)

IA

AN

. 2P
£ i

4 & | =2 2 €/2%p<
P el i <o

Substituting this into (A.1), we have
& &
|M0xx - MOxx|LOO(Q) <a,
then there is a subsequence {u,} and {u,,}, such that
&j . 2
{thger} = x  InL*(Q).
By the uniqueness of the weak convergence, we have
X = {1}

Since (P(po) + 1n)x + No Py + po(g + BP,) are independent of ¢, in the same way we obtain,
as¢; — 0,
& 2—p
gilul )2 +1\ 2 & - )
[(L u;’x — (|u0x|p 2u0x)x in L2().
X

—
(tg,)* + €

This completes the proof of Lemma A.1. g
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