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Abstract
We consider a mathematical model describing magnetization dynamics with vertical
spin stiffness. The model consists of a modified form of the Landau-Lifshitz-Gilbert
equation for the evolution of the magnetization vector in a rigid ferromagnet. The
modification lies in the presence in the effective field of a nonlinear term describing
vertical spin stiffness. We prove the global existence of weak solutions to the model
by using the Faedo-Galerkin method and discuss the limit of the obtained solutions
as the vertical spin stiffness parameter tends to zero.
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1 Introduction and preliminary result
Ferromagnetic systems have attracted much interest for a long time because of the intrigu-
ing physics and applications []. Because of the development of information technology,
the research on magnetization dynamics in micro-magnets has become an active field [].
Great efforts have been devoted to this field by aiming to manipulate magnetization more
efficiently []. In [], it is showed that vertical spin stiffness can significantly modify the
domain-wall structure in ferromagnetic semiconductors and hence should be included in
the Landau-Lifshitz-Gilbert (LLG) equation in studying the magnetization dynamics.

The present work deals with magnetization dynamics in the presence of vertical spin
stiffness. We shall adopt the model derived in [], which consists of a modified LLG equa-
tion where the modification lies in the presence of a second-order gradient term in the
effective field. To describe the model equations, we consider � ⊂ R

 a bounded and reg-
ular open set of R. The generic point of R is denoted by x = (x, x, x). We assume that
a ferromagnetic material occupies the domain �.

The magnetization field of the ferromagnetic material which belongs to S (the unit
sphere of R) almost everywhere is denoted by m(x, t). Its evolution is governed by the
following modified LLG equation (see []):

⎧
⎪⎨

⎪⎩

∂tm = αm × ∂tm – ( + α)m ×Heff (m) in Q = (, T) × �,
m(·, ) = m, |m| =  in �,
∂νm =  on (, T) × ∂�,

()
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where T > , the symbol × denotes the vector cross product in R
 and ∂νm denotes the

outward normal derivative of m on the boundary of �. The positive constant α represents
the damping parameter. The effective magnetic field Heff depends on m and is given by

Heff (m) = a�m + bm × �m. ()

The first term on the right-hand side of () is called the exchange magnetic field, where
the positive constant a is the exchange coefficient. The term parameterized by the positive
constant b stands for vertical spin stiffness field.

Remark  Since we will focus on only the new term parameterized by b and for the sake
of simplicity, anisotropy field (which is generally taken linear with respect to m) and de-
magnetizing field are neglected. However, we note that these simplifications do not limit
the proposed analysis.

Throughout, we make use of the following notation. For � an open bounded domain
of R, we denote by L

p(�) = (Lp(�)) and H
(�) = (H(�)) the classical Hilbert spaces

equipped with the usual norm denoted by ‖ · ‖Lp(�) and ‖ · ‖H(�).

Lemma  If m is a regular solution of the problem () then we have for all t ∈ (, T) the
following energy estimate:

β + αλ



∫

�

∣
∣∇m(t)

∣
∣ dx + α

∫ t



∫

�

|∂tm| dx dt ≤ β + αλ



∫

�

|∇m| dx,

where β = a( + α) and λ = b( + α).

Proof By using the saturation constraint, the LLG equation () can be written in the fol-
lowing form:

α∂tm + m × ∂tm – β�m – λm × �m – β|∇m|m = . ()

Taking the inner product of () by ∂tm and �m, respectively, we get

α

∫

�

|∂tm| dx +
β


d
dt

∫

�

|∇m| dx – λ

∫

�

m × �m · ∂tm dx =  ()

and

–
α


d
dt

∫

�

|∇m| dx +
∫

�

m × ∂tm · �m dx

–β

∫

�

|�m| dx + β

∫

�

(m · �m) dx = . ()

Combining () and (), we get

β + αλ


d
dt

∫

�

|∇m| dx + α

∫

�

|∂tm| dx + λβ

∫

�

|�m| dx = λβ

∫

�

(m · �m) dx.
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Since
∫

�

(m · �m) dx ≤
∫

�

|�m| dx,

integrating from  to t, we get

β + αλ



∫

�

∣
∣∇m(t)

∣
∣ dx + α

∫ t



∫

�

|∂tm| dx dt ≤ β + αλ



∫

�

|∇m| dx

for all t ∈ (, T). This completes the proof of the lemma. �

Before dealing with the existence of finite energy global weak solutions to the problem
(), let us first review some previous results. We limit ourselves to mentioning a handful of
references concerning the existence and we refer to the survey [] for a more detailed bib-
liographical account. The general framework (although without vertical spin stiffness, i.e.
the case where b = ) has been established in earlier papers; see for instance [–], using
the FGP method. This method gives an approximate sequence of solutions converging to a
global solution of the problem. The next results concern systems with further dissipation
terms. For example, in [], the LLG equation with a regularizing term of the type �∂tm is
considered and an existence theorem which rests on a preliminary penalty/regularization
is proved. The modification considered in [] consists in adding to the standard dissi-
pation term in the LLG equation another higher-order term of the type ��m. The FGP
method is also used to solve the problem. In [], a model with dry-friction dissipation
which is accounted by adding a dry-friction-like term to the standard Gilbert damping is
studied. Using the notion of subdifferential of a convex function, this dissipation is writ-
ten as r ∈ ∂Rα,β (∂tm) where Rα,β (a) := α

 |a| + β|a| for all a ∈R
. To prove the existence of

weak solutions, a strategy slightly different from [] is adopted. It consists of a penaliza-
tion of the saturation constraint, adding (for regularization) an exchange-type dissipation
ε�∂tm to the effective field and passing to the limit as ε → . Another LLG model with
inertial effects was considered in [] and global existence established. In this model the
modification lies in the presence of a second-order time derivative of magnetization in
the effective field. Let us mention that in the framework of current-induced magnetiza-
tion switching, [] addresses the global existence of weak solutions to LLG model with a
transport-type term in the effective field. All these proofs are based on some penalization
and using various kind of regularizations. What is new in this work is the last term in equa-
tion (), which has never been previously treated. It represents a perpendicular magnetic
field to the spin stiffness (see []). This term can significantly alter the structure of do-
main walls in ferromagnetic semiconductors. The main problem here is that this stiffness
of rotation cannot be written in terms of free energy, and therefore cannot be established
from a functional derivative from the free energy with respect to the local magnetization.
We finally mention that significant progress was made to design schemes constructing
the weak solutions to the general LLG equation. Several schemes were proposed and their
convergence to weak solutions was proved. A significant step forward in the convergence
theory of numerical schemes has been made recently; see [–]. This will be helpful to
give a strategy for efficient computer implementation which may reflect the true nature of
the augmentation of the LLG model considered in this paper.
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The rest of the paper is divided as follows. In the next section we prove the global exis-
tence of weak solutions to the model by using the Faedo-Galerkin method. The last section
reveals the relationships between the LLG equation we have studied in this paper and the
classical LLG equation i.e., without vertical spin stiffness field.

2 Global existence of weak solutions
Let us first give the definition of weak solutions to problem ().

Definition  Let m ∈ H
(�) with |m| =  a.e., we say that a three dimensional vector

m = (m, m, m) is a weak solution of problem () if
• for all T > , m ∈H

(Q), ∂tm ∈ L
(Q), and |m| =  a.e. in Q;

• for all φ ∈ C∞(Q) with φ(·, ) = φ(·, T) = , we have

∫

Q
∂tm · φ dx dt – α

∫

Q
m × ∂tm · φ dx dt

= β

∫

Q
m × ∇m · ∇φ dx dt + λ

∫

Q
m × �m · m × φ dx dt; ()

• m(x, ) = m(x) in the trace sense;
• for all t ∈ (, T), there holds

β + αλ



∫

�

∣
∣∇m(t)

∣
∣ dx + α

∫ t



∫

�

|∂tm| dx dt

≤ β + αλ



∫

�

|∇m| dx. ()

Remark  We will show in Section . that m × �m makes sense in L
(Q), and for this

reason, it will be clear that () makes sense.

To prove the global existence of weak solutions of the problem () we proceed as in [–].

2.1 The penalty problem
Let ε > . We introduce the following penalty problem.

For initial datum m ∈H
(�), and for each positive number T , find a vector field mε in

Q such as to satisfy the equation

∂tmε × mε + β�mε + λmε × �mε – α∂tmε –

ε

(∣
∣mε

∣
∣ – 

)
mε =  ()

subject to the initial and boundary conditions

{
mε(·, ) = m, |m| =  in �,
∂νmε =  on (, T) × ∂�.

()

The last term of equation () was introduced at the end to represent the constraint |m| = .
We have the following result.
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Theorem  For each fixed positive ε, there is a weak solution mε of Problem ()-() such
that

∫

Q
∂tmε × mε · ϕ dx dt – β

∫

Q
∇mε · ∇ϕ dx dt – λ

∫

Q
mε × ∇mε · ∇ϕ dx dt

– α

∫

Q
∂tmε · ϕ dx dt –


ε

∫

Q

(∣
∣mε

∣
∣ – 

)
mε · ϕ dx dt = 

for any ϕ in H
(Q). Moreover, the following energy estimate holds:

β + αλ



∫

�

∣
∣∇mε

∣
∣(t) dx + α

∫ t



∫

�

∣
∣∂tmε

∣
∣ dx dt

+


ε

(

 +
αλ

β

)∫

�

(∣
∣mε

∣
∣ – 

)(t) dx ≤ β + αλ



∫

�

|∇m| dx ()

for all t ∈ (, T).

Proof To show the existence of a solution for the penalized problem using the method of
Faedo-Galerkin and since H

(�) is a separable Hilbert space we can approximate m by
mε,N . We set

mε,N (x, t) =
N∑

i=

ai(t)fi(x),

where {fi}i∈N is an orthonormal basis of L(�) and orthogonal in H(�) consisting of eigen-
functions of –�, i.e.,

{
–�fi = λifi, i = , , . . . ,
∂ν fi =  on ∂�,

()

where ai(t) are R
-valued vectors.

We obtain the following approximate problem:

∂tmε,N × mε,N + β�mε,N + λmε,N × �mε,N

– α∂tmε,N –

ε

(∣
∣mε,N ∣

∣ – 
)
mε,N = , ()

on Q with the following initial and boundary conditions:

mε,N (·, ) = mN (·, ) in �,

∂νmε,N =  on ∂�,

and
∫

�

mN (·, )fi dx =
∫

�

mfi dx.

Multiplying equation () by fi and integrating over �, we get an ordinary differential
system. In fact, we have

∂tmε,N × mε,N – α∂tmε,N = M
(
mε,N)

∂tmε,N ,
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where

M
(
mε,N)

=

⎛

⎜
⎝

–α mε,N
 –mε,N



–mε,N
 –α mε,N



mε,N
 –mε,N

 –α

⎞

⎟
⎠ .

We can write equation () in the form

M
(
mε,N)

∂tmε,N = –β�mε,N – λmε,N × �mε,N +

ε

(∣
∣mε,N ∣

∣ – 
)
mε,N .

Note that

detM
(
mε,N)

= –α
(
α +

∣
∣mε,N ∣

∣) 	= .

Hence M(mε,N ) is invertible.
The resulting system is then locally Lipschitz. There exists a unique local solution for

the approximate problem that can extend on [, T] using an a priori estimate.
To get bounds on the solutions, we multiply equation () by ∂tmε,N and integrate over

� to obtain

β


d
dt

∫

�

∣
∣∇mε,N ∣

∣ dx – λ

∫

�

mε,N × �mε,N · ∂tmε,N dx

+ α

∫

�

∣
∣∂tmε,N ∣

∣ dx +


ε

d
dt

∫

�

(∣
∣mε,N ∣

∣ – 
) dx = . ()

Multiply again equation () with �mε,N and integrate over �; we get

∫

�

∂tmε,N × mε,N · �mε,N dx + β

∫

�

∣
∣�mε,N ∣

∣ dx

+
α


d
dt

∫

�

∣
∣∇mε,N ∣

∣ dx –

ε

∫

�

(∣
∣mε,N ∣

∣ – 
) · �mε,N dx = . ()

Multiplying () by λ and taking the sum with ()

β


d
dt

∫

�

∣
∣∇mε,N ∣

∣ dx + α

∫

�

∣
∣mε,N ∣

∣ dx +


ε

d
dt

∫

�

(∣
∣mε,N ∣

∣ – 
) dx

+ λβ

∫

�

∣
∣�mε,N ∣

∣ dx +
λα


d
dt

∫

�

∣
∣∇mε,N ∣

∣ dx

=
λ

ε

∫

�

(∣
∣mε,N ∣

∣ – 
) · �mε,N dx. ()

On the other hand, the Young inequality gives

λ

ε

∫

�

(∣
∣mε,N ∣

∣ – 
)
mε,N · �mε,N dx

≤ λ

dε

∫

�

(∣
∣mε,N ∣

∣ – 
)∣∣mε,N ∣

∣ dx +
λd


∫

�

∣
∣�mε,N ∣

∣ dx ()

for any constant d > .
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We multiply () by (|mε,N | – )mε,N and integrate over � to get

β

∫

�

(∣
∣mε,N ∣

∣ – 
)
mε,N · �mε,N dx –

α


d
dt

∫

�

(∣
∣mε,N ∣

∣ – 
) dx

–

ε

∫

�

(∣
∣mε,N ∣

∣ – 
)∣∣mε,N ∣

∣ dx = .

Hence

λ

ε

∫

�

(∣
∣mε,N ∣

∣ – 
)
mε,N · �mε,N dx

=
αλ

βε

d
dt

∫

�

(∣
∣mε,N ∣

∣ – 
) dx +

λ

βε

∫

�

(∣
∣mε,N ∣

∣ – 
)∣∣mε,N ∣

∣ dx.

Therefore

αλ

βε

d
dt

∫

�

(∣
∣mε,N ∣

∣ – 
) dx +

λ

βε

∫

�

(∣
∣mε,N ∣

∣ – 
)∣∣mε,N ∣

∣ dx

≤ λ

dε

∫

�

(∣
∣mε,N ∣

∣ – 
)∣∣mε,N ∣

∣ dx +
λd


∫

�

∣
∣�mε,N ∣

∣ dx.

That is,

αλ

βε

d
dt

∫

�

(∣
∣mε,N ∣

∣ – 
) dx +

λ

ε

(

β

–


d

)∫

�

(∣
∣mε,N ∣

∣ – 
)∣∣mε,N ∣

∣ dx

≤ λd


∫

�

∣
∣�mε,N ∣

∣ dx.

So, for d > β

 ,

λ

dβε

∫

�

(∣
∣mε,N ∣

∣ – 
)∣∣mε,N ∣

∣ dx

≤ λd
(d – β)

∫

�

∣
∣�mε,N ∣

∣ dx –
αλ

βε(d – β)
d
dt

∫

�

(∣
∣mε,N ∣

∣ – 
) dx.

Therefore from (), we have

λ

ε

∫

�

(∣
∣mε,N ∣

∣ – 
)
mε,N · �mε,N dx

≤ λd


(

 +
β

d – β

)∫

�

∣
∣�mε,N ∣

∣ dx –
αλ

ε(d – ε)
d
dt

∫

�

(∣
∣mε,N ∣

∣ – 
) dx

and then from ()

β


d
dt

∫

�

∣
∣∇mε,N ∣

∣ dx + α

∫

�

∣
∣mε,N ∣

∣ dx +


ε

d
dt

∫

�

(∣
∣mε,N ∣

∣ – 
) dx

+ λβ

∫

�

∣
∣�mε,N ∣

∣ dx +
λα


d
dt

∫

�

∣
∣∇mε,N ∣

∣ dx ≤ λd

d – β

∫

�

∣
∣�mε,N ∣

∣ dx.
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That is,

β + αλ


d
dt

∫

�

∣
∣∇mε,N ∣

∣ dx + α

∫

�

∣
∣∂tmε,N ∣

∣ dx + λ

(

β –
d

d – β

)∫

�

∣
∣�mε,N ∣

∣ dx

+


ε

(

 +
αλ

d – β

)
d
dt

∫

�

(∣
∣mε,N ∣

∣ – 
) dx ≤ .

Taking d = β we get β – d

d–β
=  and therefore

β + αλ


d
dt

∫

�

∣
∣∇mε,N ∣

∣ dx + α

∫

�

∣
∣∂tmε,N ∣

∣ dx

+


ε

(

 +
αλ

β

)
d
dt

∫

�

(∣
∣mε,N ∣

∣ – 
) dx ≤ .

We integrate from  to t to get

β + αλ



∫

�

∣
∣∇mε,N ∣

∣(t) dx + α

∫ t



∫

�

∣
∣∂tmε,N ∣

∣ dx dt

+


ε

(

 +
αλ

β

)∫

�

(∣
∣mε,N ∣

∣ – 
)(t) dx

≤ β + αλ



∫

�

∣
∣∇mN ∣

∣() dx +


ε

(

 +
αλ

β

)∫

�

(∣
∣mN ∣

∣ – 
)() dx ()

for all t ∈ (, T).
The right-hand side is uniformly bounded. Indeed H

(�) ↪→ L
(�) with continuous

embedding, therefore
∫

�

(∣
∣mε,N ∣

∣ – 
)() dx =

∫

�

∣
∣mN ()

∣
∣ dx – 

∫

�

∣
∣mN ()

∣
∣ dx + meas(�)

≤ ∥
∥mN ()

∥
∥
L(�) + meas(�)

≤ C
∥
∥mN ()

∥
∥
H(�) + C,

where C et C are two constants independent of ε and N .
Furthermore, note that mε,N () = mN (), and since mN () has the same components as

m in the basis {fi}i∈N and m ∈H
(�), ‖m‖H(�) ≤ C with C >  is a constant indepen-

dent of ε and N . Hence

∥
∥mN ()

∥
∥
H(�) ≤ C.

Therefore

∥
∥∇mN ()

∥
∥
L(�) ≤ C.

Thus for ε fixed, we have

(∣
∣mε,N ∣

∣ – 
)

N is bounded in L∞(
, T , L(�)

)
,

(∇mε,N)

N is bounded in L∞(
, T ,L(�)

)
.
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By the Young inequality
∫

�

∣
∣mε,N ∣

∣ dx ≤ C +
∫

�

(∣
∣mε,N ∣

∣ – 
) dx,

where C is a constant which does not depend on N . Therefore

(
mε,N)

N is bounded in L∞(
, T ,H(�)

)
,

(
∂tmε,N)

N is bounded in L(, T ,L(�)
)

:= L
(Q).

Then we have the following convergences for a subsequence further noted mε,N for any
 < p < ∞:

mε,N ⇀ mε weakly in Lp(, T ,H(�)
)
, ()

mε,N −→ mε strongly in L(, T ,L(�)
)

and a.e., ()

∂tmε,N ⇀ ∂tmε weakly in L(, T ,L(�)
)
, ()

∣
∣mε,N ∣

∣ –  ⇀ ζ weakly in Lp(, T , L(�)
)
. ()

The convergence () is a consequence of () and the compactness embedding of
L(, T ,H(�)) in L(, T ,L(�)). On the other hand ζ = |mε| – . This is provided by
the following lemma.

Lemma  Let  be a bounded open subset of Rd
x × Rt , hn, and h are functions of Lq()

with  < q < ∞ such as ‖hn‖Lq() ≤ C, hn −→ h a.e. in ; then hn ⇀ h weakly in Lq().

The proof of Lemma  can be found in []. In our case  = Q, hN = |mε,N | – , h =
|mε| – , and q = , and from () |mε,N | –  −→ |mε| –  a.e., and we have in particular
|mε,N | –  ∈ L(), |mε| –  ∈ L(), and ‖|mε| – ‖L() ≤ C.

Now, we pass to the limit as N → ∞. Multiplying the equation () by ϕ ∈ C∞(Q) and
integrating on Q,

∫

Q
∂tmε,N × mε,N · ϕ dx dt – β

∫

Q
∇mε,N · ∇ϕ dx dt – α

∫

Q
∂tmε,N · ϕ dx dt

– λ

∫

Q
mε,N × ∇mε,N · ∇ϕ dx dt –


ε

∫

Q

(∣
∣mε,N ∣

∣ – 
)
mε,N · ϕ dx dt = . ()

We have

∂tmε,N ⇀ ∂tmε weakly in L
(Q)

and

mε,N −→ mε strongly in L(, T ,L(�)
)
.

Thus
∫

Q
∂tmε,N × mε,N · ϕ dx dt −→

∫

Q
∂tmε × mε · ϕ dx dt.
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On the other hand

∇mε,N ⇀ ∇mε weakly in L
(Q).

Therefore
∫

Q
∇mε,N · ∇ϕ dx dt −→

∫

Q
∇mε · ∇ϕ dx dt

and
∫

Q
mε,N × ∇mε,N · ∇ϕ dx dt −→ –

∫

Q
mε × ∇mε · ∇ϕ dx dt,

and from ()
∫

Q
∂tmε,N · ϕ dx dt −→

∫

Q
∂tmε · ϕ dx dt.

Taking into account (), we have
∫

Q

(∣
∣mε,N ∣

∣ – 
)
mε,N · ϕ dx dt −→

∫

Q

(∣
∣mε

∣
∣ – 

)
mε · ϕ dx dt.

Using the previous convergences and passing to the limit (N → ∞) in (), we get
∫

Q
∂tmε × mε · ϕ dx dt – β

∫

Q
∇mε · ∇ϕ dx dt – λ

∫

Q
mε × ∇mε · ∇ϕ dx dt

– α

∫

Q
∂tmε · ϕ dx dt –


ε

∫

Q

(∣
∣mε

∣
∣ – 

)
mε · ϕ dx dt =  ()

for all ϕ in C∞(Q), and this relation holds for all ϕ ∈H
(Q) by a density argument. Inequal-

ity () follows from (), and Theorem  is now completely proved. �

2.2 Convergence of the approximate solutions
To pass to the limit as ε → , we need the first estimate () and the following lemma.

Lemma  If mε satisfies () then |mε| ≤ a.e. in Q.

Proof Noting that
∫

�

g · ϕ dx =
∫

{|mε |>}
g · ϕ dx +

∫

{|mε |≤}
g · ϕ dx

for all g, ϕ in L
(�).

So if we choose

ϕ =
(
max

(∣
∣mε

∣
∣, 

)
– 

)
mε

we have
{

ϕ = , if |mε| ≤ ,
ϕ = (|mε| – )mε , if |mε| > .
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Let A = {|mε| > }, then () becomes

–β

∫ T



∫

A
∇mε · ∇((∣

∣mε
∣
∣ – 

)
mε

)
dx dt – α

∫ T



∫

A

(
∂tmε · mε

)(∣
∣mε

∣
∣ – 

)
dx dt

–

ε

∫ T



∫

A

(∣
∣mε

∣
∣ – 

)∣∣mε
∣
∣ dx dt = .

That is,

–
β



∫ T



∫

A

∣
∣∇(∣

∣mε
∣
∣ – 

)∣
∣ dx dt – β

∫ T



∫

A

(∣
∣mε

∣
∣ – 

)∣
∣∇mε

∣
∣ dx dt

–
α



∫ T



d
dt

∫

A

(∣
∣mε

∣
∣ – 

) dx dt –

ε

∫ T



∫

A

(∣
∣mε

∣
∣ – 

)∣∣mε
∣
∣ dx dt = .

Then

α



∫ T



d
dt

∫

A

(∣
∣mε

∣
∣ – 

) dx dt ≤ .

Therefore
∫

A

(∣
∣mε

∣
∣ – 

)(T) dx ≤
∫

A

(∣
∣mε

∣
∣ – 

)() dx,

and as |mε()| = , we get
∫

A

(∣
∣mε

∣
∣ – 

)(T) dx ≤ ,

which implies that |mε| ≤ a.e. on Q. �

Now we will look for an estimate of the term mε × �mε . Going back to () and taking
into account the previous convergences in N , we get

β + αλ



∫

�

∣
∣∇mε

∣
∣(t) dx + α

∫ t



∫

�

∣
∣∂tmε

∣
∣ dx dt

+


ε

(

 +
αλ

β

)∫

�

(∣
∣mε

∣
∣ – 

)(t) dx ≤ β + αλ



∫

�

|∇m| dx ()

for all t ∈ (, T).
Thus

(
∂tmε

)

ε
is bounded in L

(Q),
(∣
∣mε

∣
∣ – 

)

ε
is bounded in L∞(

, T , L(�)
)
,

(
mε

)

ε
is bounded in L∞(

, T ,H(�)
)
.

Multiplying equation () by mε × ∂tmε and integrating over �, we get

–
∫

�

∣
∣mε × ∂tmε

∣
∣ dx + β

∫

�

�mε · mε × ∂tmε dx

+ λ

∫

�

mε × �mε · mε × ∂tmε dx = . ()
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Multiply this time equation () by mε × �mε and integrating over � we obtain

–α

∫

�

mε × �mε · ∂tmε dx –
∫

�

mε × �mε · mε × ∂tmε dx

+ λ

∫

�

∣
∣mε × �mε

∣
∣ dx = . ()

Multiplying equation () by λ and taking the sum with (), we get

–
∫

�

∣
∣mε × ∂tmε

∣
∣ dx + (β + αλ)

∫

�

�mε · mε × ∂tmε dx + λ
∫

�

∣
∣mε × �mε

∣
∣ dx = .

Then

λ
∫

�

∣
∣mε × �mε

∣
∣ dx =

∫

�

∣
∣mε × ∂tmε

∣
∣ dx – (β + αλ)

∫

�

�mε · mε × ∂tmε dx. ()

Multiplying () by ∂tmε , integrating over �, replacing
∫

�
�mε · mε × ∂tmε dx by its value

in () and using Lemma , we have

λ
∫

�

∣
∣mε × �mε

∣
∣ dx

=
∫

�

∣
∣mε × ∂tmε

∣
∣ dx +

α(β + αλ)
λ

∫

�

∣
∣∂tmε

∣
∣ dx

+
β(β + αλ)

λ

d
dt

∫

�

∣
∣∇mε

∣
∣ dx +

(β + αλ)
ελ

d
dt

∫

�

(∣
∣mε

∣
∣ – 

) dx

≤
∫

�

∣
∣mε

∣
∣∣∣∂tmε

∣
∣ dx +

α(β + αλ)
λ

∫

�

∣
∣∂tmε

∣
∣ dx +

β(β + αλ)
λ

d
dt

∫

�

∣
∣∇mε

∣
∣ dx

+
(β + αλ)

ελ

d
dt

∫

�

(∣
∣mε

∣
∣ – 

) dx

≤
(

 +
α(β + αλ)

λ

)∫

�

∣
∣∂tmε

∣
∣ dx +

β(β + αλ)
λ

d
dt

∫

�

∣
∣∇mε

∣
∣ dx

+
(β + αλ)

ελ

d
dt

∫

�

(∣
∣mε

∣
∣ – 

) dx.

We integrate from  to t, and using (), we get

λ
∫ t



∫

�

∣
∣mε × �mε

∣
∣ dx dt ≤ C, ()

where C is a constant independent of ε. Hence

(
mε × �mε

)

ε
is bounded in L

(Q). ()

Up to a subsequence, we have the following convergences for  < p < ∞:

mε ⇀ m weakly in Lp(, T ,H(�)
)
,

∂tmε ⇀ ∂tm weakly in L
(Q),
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∣
∣mε

∣
∣ –  −→  strongly in L(, T , L(�)

)
and |m| =  a.e.,

mε × �mε ⇀ χ weakly in L
(Q). ()

By the compactness embedding of H(Q) into L
q(Q) with  ≤ q < , we have

mε −→ m strongly in L
(Q) and in L

(Q). ()

In the following, we show

χ = m × �m ∈ L
(Q). ()

Letting ϕ ∈H
(Q), using the Green formula,

∫

Q
mε × �mε · ϕ dx dt = –

∫

Q
mε × ∇mε · ∇ϕ dx dt.

By the previous convergences,

∫

Q
mε × ∇mε · ∇ϕ dx dt −→

∫

Q
m × ∇m · ∇ϕ dx dt

= –
∫

Q
m × �m · ϕ dx dt,

and therefore () is proved. In particular, we have

mε × �mε ⇀ m × �m weakly in L
(Q).

Now going back to () and taking ϕ = mε × φ with φ ∈ C∞(Q), we get

∫

Q
∂tmε × mε · mε × φ dx dt + β

∫

Q
mε × ∇mε · ∇φ dx dt

+ λ

∫

Q
mε × �mε · mε × φ dx dt – α

∫

Q
∂tmε · mε × φ dx dt = . ()

For the first term of (), we set Dε =
∫

Q ∂tmε × mε · mε × φ dx dt. We have

Dε =
∫

Q

(
mε · φ)

mε · ∂tmε dx dt –
∫

Q

∣
∣mε

∣
∣

∂tmε · φ dx dt.

On the one hand
∫

Q

∣
∣mε

∣
∣

∂tmε · φ dx dt =
∫

Q

(∣
∣mε

∣
∣ – 

)
∂tmε · φ dx dt

+
∫

Q
∂tmε · φ dx dt

−→
∫

Q
∂tm · φ dx dt.
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On the other hand
∫

Q

(
mε · φ)

mε · ∂tmε dx dt =



∫

Q
∂t

(∣
∣mε

∣
∣ – 

)
mε · φ dx dt

=



[∫

�

(∣
∣mε

∣
∣ – 

)
mε · φ dx

]T



–



∫

Q

(∣
∣mε

∣
∣ – 

)
∂t

(
mε · φ)

dx dt.

We choose φ so that φ =  in t =  and t = T ; then

[∫

�

(∣
∣mε

∣
∣ – 

)
mε · φ dx

]T


= .

Therefore
∫

Q

(
mε · φ)

mε · ∂tmε dx dt = –



∫

Q

(∣
∣mε

∣
∣ – 

)
∂t

(
mε · φ)

dx dt

= –



∫

Q

(∣
∣mε

∣
∣ – 

)
∂tmε · φ dx dt

–



∫

Q

(∣
∣mε

∣
∣ – 

)
mε · ∂tφ dx dt −→ .

Hence

Dε −→ –
∫

Q
∂tm · φ dx dt.

For the second term of (), we have

β

∫

Q
mε × ∇mε · ∇φ dx dt −→ β

∫

Q
m × ∇m · ∇φ dx dt.

For the third term of (), we get

λ

∫

Q
mε × �mε · mε × φ dx dt −→ λ

∫

Q
m × �m · m × φ dx dt.

For the last term of (), we have
∫

Q
∂tmε · mε × φ dx dt −→

∫

Q
∂tm · m × φ dx dt.

Letting ε tend to  in (), we get

–
∫

Q
∂tm · φ dx dt + β

∫

Q
m × ∇m · ∇φ dx dt

+ λ

∫

Q
m × �m · m × φ dx dt – α

∫

Q
∂tm · m × φ dx dt = 

for all φ ∈ C∞(Q). Inequality () follows from (). We proved the following.
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Theorem  Let m ∈ H
(�) with |m| =  a.e., then there exists a global weak solution of

the problem () in the sense of Definition .

3 The limit as b → 0
The main purpose of this section is to reveal to relationships between the LLG equation
we have studied in this paper, and the classical LLG equation (i.e., without vertical spin
stiffness field). We will prove the following theorem.

Theorem  Let b → . The weak solution mb obtained in Section  weakly converges, up
to a subsequence, to a solution of the classical LLG equation in the following sense.

For all φ ∈ C∞(Q) with φ(·, ) = φ(·, T) = , we have

∫

Q
∂tm · φ dx dt – α

∫

Q
m × ∂tm · φ dx dt = β

∫

Q
m × ∇m · ∇φ dx dt.

Proof Using the fact that |mb| =  a.e. in Q and estimate (), we deduce that

(
mb)

b is bounded in L∞(
, T ,H(�)

)

and

(
∂tmb)

b is bounded in L
(Q).

Hence, up to a subsequence, we have

mb ⇀ m weakly in Lp(, T ,H(�)
)

for  < p < ∞,

mb → m strongly in L
(Q),

∂tmb ⇀ ∂tm weakly in L
(Q).

Then |m| =  a.e. in Q. On the other hand, we have

α∂tmb + mb × ∂tmb – β�mb – λmb × �mb – β
∣
∣∇mb∣∣mb =  a.e. in Q.

Multiplying this equation by ∂tmb and mb × �mb, respectively, and integrating over �,
we get

α

∫

�

∣
∣∂tmb∣∣ dx +

β


d
dt

∫

�

∣
∣∇mb∣∣ dx – λ

∫

�

mb × �mb · ∂tmb dx =  ()

and

λ

∫

�

∣
∣mb × �mb∣∣ dx +




d
dt

∫

�

∣
∣∇mb∣∣ dx = α

∫

�

mb × �mb · ∂tmb dx. ()

Combining () and (), we obtain

λ
∫

�

∣
∣mb × �mb∣∣ dx = α

∫

�

∣
∣∂tmb∣∣ dx +

(
αβ – λ



)
d
dt

∫

�

∣
∣∇mb∣∣ dx.



Ayouch et al. Boundary Value Problems  (2016) 2016:110 Page 16 of 17

We integrate from  to t to get

λ
∫ t



∫

�

∣
∣mb × �mb∣∣ dx dt +

(
αβ – λ



)∫

�

|∇m| dx

= α
∫ t



∫

�

∣
∣∂tmb∣∣ dx dt +

(
αβ – λ



)∫

�

∣
∣∇mb∣∣ dx ()

for all t ∈ (, T).
Recall that

β = a
(
 + α) and λ = b

(
 + α).

Since b is small enough, we assume that b < aα i.e., λ < αβ . Using estimate (), we have
∫

�

∣
∣∇mb∣∣ dx ≤

∫

�

|∇m| dx

and

α
∫ t



∫

�

∣
∣∂tmb∣∣ dx dt ≤ αβ( + α)



∫

�

|∇m| dx.

Then () implies that

b
∫ t



∫

�

∣
∣mb × �mb∣∣ dx dt ≤ αa



∫

�

|∇m| dx.

Hence

(
bmb × �mb)

b is bounded in L
(Q).

Therefore

bmb × �mb ⇀ δ weakly in L
(Q).

Let ψ ∈H
(Q). We have

∫

Q
bmb × �mb · ψ dx dt = –b

∫

Q
mb × ∇mb · ∇ψ dx dt,

which tends to zero as b goes to zero. We conclude that δ = .
Now, we can pass to the limit as b →  in the weak formulation,

∫

Q
∂tmb · φ dx dt – α

∫

Q
mb × ∂tmb · φ dx dt

= β

∫

Q
mb × ∇mb · ∇φ dx dt +

(
 + α)

∫

Q
bmb × �mb · mb × φ dx dt.

We get
∫

Q
∂tm · φ dx dt – α

∫

Q
m × ∂tm · φ dx dt = β

∫

Q
m × ∇m · ∇φ dx dt,

and Theorem  is proved. �



Ayouch et al. Boundary Value Problems  (2016) 2016:110 Page 17 of 17

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Author details
1Laboratoire MISI, FST Settat, Univ. Hassan I, 26000, Settat, Morocco. 2M2I Laboratory, MAMCS Group, FST Errachidia, Univ.
Moulay Ismaïl, P.O. Box 509, Boutalamine, 52000, Errachidia, Morocco.

Acknowledgements
The research is supported by the PHC Volubilis program MA/14/301 ‘Elaboration et analyse de modèles asymptotiques
en micro-magnétisme, magnéto-élasticité et électro-élasticité’ with joint financial support from the French Ministry of
Foreign Affairs and the Moroccan Ministry of Higher Education and Scientific Research.

Received: 2 February 2016 Accepted: 31 May 2016

References
1. Hubert, A, Schäfer, R: Magnetic Domains: The Analysis of Magnetic Microstructures. Springer, Berlin (1998)
2. Tserkovnyak, Y, Brataas, A, Bauer, GEW, Halperin, BI: Nonlocal magnetization dynamics in ferromagnetic

heterostructures. Rev. Mod. Phys. 77, 1375-1421 (2005)
3. Parkin, SSP, Hayashi, M, Thomas, L: Magnetic domain-wall racetrack memory. Science 320, 190-194 (2008)
4. Shen, K, Tatara, G, Wu, MW: Existence of vertical spin stiffness in Landau-Lifshitz-Gilbert equation in ferromagnetic

semiconductors. Phys. Rev. B 83, 085203 (2011)
5. Kružík, M, Prohl, A: Recent developments in the modeling, analysis, and numerics of ferromagnetism. SIAM Rev. 48,

439-483 (2006)
6. Alouges, F, Soyeur, A: On global weak solutions for Landau-Lifshitz equations: existence and non uniqueness.

Nonlinear Anal. 18, 1071-1084 (1992)
7. Visintin, A: On the Landau-Lifshitz equation for ferromagnetism. Jpn. J. Appl. Math. 2, 69-84 (1985)
8. Carbou, G, Fabrie, P: Time average in micromagnetism. J. Differ. Equ. 147, 383-409 (1998)
9. Bertsch, M, Podio-Guidugli, P, Valente, V: On the dynamics of deformable ferromagnets. I. Global weak solutions for

soft ferromagnets at rest. Ann. Mat. Pura Appl. (4) 179, 331-360 (2001)
10. Podio-Guidugli, P, Valente, V: Existence of global-in-time weak solutions to a modified Gilbert equation. Nonlinear

Anal. 47, 147-158 (2001)
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