
Li and Liang Boundary Value Problems  (2016) 2016:118 
DOI 10.1186/s13661-016-0624-5

R E S E A R C H Open Access

Sign-changing solution and ground state
solution for a class of (p, q)-Laplacian
equations with nonlocal terms on R

N

Rui Li and Zhanping Liang*

*Correspondence: lzp@sxu.edu.cn
School of Mathematical Sciences,
Shanxi University, Taiyuan, Shanxi
030006, P.R. China

Abstract
In the paper, we investigate the least energy sign-changing solution and the ground
state solution of a class of (p,q)-Laplacian equations with nonlocal terms on R

N .
Applying the constraint variational method, the quantitative deformation lemma, and
topological degree theory, we see that the equation has one least energy
sign-changing solution u. Moreover, we regard c, d as parameters and give a
convergence property of such a solution uc,d as (c,d) → 0. Finally, using the Lagrange
multiplier method, we obtain a ground state solution of the equation and show that
the energy of u is strictly larger than two times the ground state energy.

Keywords: (p,q)-Laplacian equation; sign-changing solution; ground state solution;
nonlocal term

1 Introduction
In this paper, we discuss the existence of a least energy sign-changing solution and a
ground state solution of the following equation:

–
(

a + c
∫
RN

|∇u|p
)

�pu –
(

b + d
∫
RN

|∇u|q
)

�qu + h(x)|u|p–u + g(x)|u|q–u

= f (u), x ∈ R
N , (.)

where  ≤ q < p < q∗, N < p, �m = div(|∇u|m–∇u) is the m-Laplacian operator, m∗ = ∞
for N ≤ m, and m∗ = Nm/(N – m) for N > m. a, b are positive constants, c, d ≥ . We
assume that h, g are continuous, coercive and positive functions.

When c = d = , equation (.) is the following (p, q)-Laplacian equation:

–a�pu – b�qu + h(x)|u|p–u + g(x)|u|q–u = f (u), x ∈ R
N . (.)

A special situation for (.) is the case where p = q > , i.e., a single p-Laplacian equation.
When p = q = , (.) becomes the nonlinear Laplacian type equation

–�u + au = f (x, u), x ∈R
N . (.)
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Equation (.) appears, for example, as the stationary version of a general reaction-
diffusion equation

ut = div
[
D(u)∇u

]
+ f (x, u),

where u describes a concentration, D(u) = |∇u|p– + |∇u|q– is the diffusion coefficient,
and f (x, u) is the reaction term connected with source and loss mechanisms. This equa-
tion has extensive applications in physics and related sciences such as biophysics, plasma
physics, and chemical reaction design. Typically, in chemical and biological applications,
the reaction term f (x, u) is a polynomial of u with variable coefficients (see [–]).

The differential operator �p + �q is known as the (p, q)-Laplacian operator, if p 	= q.
The single p-Laplacian operator has been studied for at least four decades (see [, –]),
whereas a deeper research involving the (p, q)-Laplacian operator has only arisen in the
last decade (see [–, –]).

In [], the authors investigated the existence of a positive solution of equation (.)
where a >  is a constant. In [], the authors proved the existence of sign-changing so-
lutions of equation (.) where a ∈ L∞

loc(RN ) and ess inf a > . We also refer the inter-
ested reader to more related results as regards equation (.) in [, ] and the references
therein. In [], the authors proved the existence of least energy positive, negative, and
sign-changing solutions for the p-Laplacian equation with potentials vanishing at infinity.
In [], the author obtained multiplicity solutions of the p-Laplacian equation with a critical
nonlinearity. Since the (p, q)-Laplacian operator is not homogeneous, some technical dif-
ficulties appear when using the common methods of the elliptic equations. The existence
of a nontrivial solution to equation (.) was obtained in [, , ]. In [], the authors
dealt with the situation  ≤ q ≤ p < N with h ∈ LN/p

+ (RN ) and g ∈ LN/q
+ (RN ), whereas in

[] the authors considered the case  < q < p < N , but there h, g are positive constants. In
[, ], the nonlinearity f (x, s) was suitably controlled by the variable s as s →  and also as
|s| → ∞, uniformly with respect to the variable x. In [], the authors discussed the case
that  < q < p < q∗, p < N with h, g continuous, positive, and coercive functions on R

N and
f (x, s) a Carathéodory function satisfying some conditions.

To the best of our knowledge, there is little work researching the sign-changing solu-
tion and the ground state of the (p, q)-Laplacian equations (.). Recently, Shuai in []
discussed the following Kirchhoff type problem:

⎧⎨
⎩

–(a + b
∫
�

|∇u|)�u = f (u), x ∈ �,

u = , x ∈ ∂�.

Motivated by [], we investigate the sign-changing solution and the ground state solution
of (p, q)-Laplacian equation with nonlocal terms.

In general, the working space to study (p, q)-Laplacian problems in a bounded domain
� is W ,p

 (�), by taking advantage of the compact embedding W ,p
 (�) ↪→ Ls(�) for all

s ∈ [, p∗). When the domain is the whole RN , Sobolev’s embedding loses compactness. In
order to overcome these difficulties, various methods have been developed. The radically
symmetric Sobolev spaces have been applied to (.) (see [, ]), and the concentration-
compactness principle or the constrained minimization method has been used to find
solutions in W ,p(RN ) ∩ W ,q(RN ) (see [, , , , ]).
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In this paper, we intend to choose an appropriate approach by taking into account the
Banach space,

W =
{

u ∈D,p(
R

N) ∩D,q(
R

N)
:
∫
RN

h|u|p,
∫
RN

g|u|q < ∞
}

.

We recall that the space D,m(RN ) is a reflexive Banach space which is characterized by
(see [])

D,m(
R

N)
=

{
u ∈ Lm∗(

R
N)

:
∂u
∂xi

∈ Lm(
R

N)}

and its norm is equivalent to the norm ‖∇u‖Lm(RN ). We denote the norm of Lm(RN ) as
| · |m hereafter. Moreover, W ,m(RN ) ⊂D,m(RN ) ↪→ Lm∗ (RN ).

We take h, g as continuous, coercive, and positive functions on R
N and define normed

spaces (Wp,a,h,‖ · ‖) and (Wq,b,g ,‖ · ‖), respectively, by

Wp,a,h =
{

u ∈D,p(
R

N)
:
∫
RN

h|u|p < ∞
}

,

Wq,b,g =
{

u ∈D,q(
R

N)
:
∫
RN

g|u|q < ∞
}

,

with norms

‖u‖ =
(∫

RN

[
a|∇u|p + h|u|p]

)/p

,

‖u‖ =
(∫

RN

[
b|∇u|q + g|u|q]

)/q

.

Then Wp,a,h and Wq,b,g are reflexive Banach spaces. The embedding Wp,a,h ↪→ Ls(RN ) is
continuous for all s ∈ [p, p∗] and compact for all s ∈ [p, p∗). Similarly, the embedding
Wq,b,g ↪→ Ls(RN ) is continuous if s ∈ [q, q∗] and compact if s ∈ [q, q∗) (see []).

Now we can define our working space W :

W = Wp,a,h ∩ Wq,b,g

endowed with the norm

‖u‖ = ‖u‖ + ‖u‖.

Then it is easy to see that W is a reflexive Banach space and the embedding W ↪→ Ls(RN )
is continuous if s ∈ [q, p∗] and compact if s ∈ [q, p∗).

For brevity, we omit the integral domain R
N when no confusion arises hereafter.

We assume that f ∈ C(R,R) satisfies the following hypotheses:

(f) lims→ f (s)/|s|q– = ;
(f) for some constant r ∈ (p, p∗), lim|s|→∞ f (s)/|s|r– = ;
(f) lim|s|→∞ F(s)/|s|p = ∞, where F(s) =

∫ t
 f (t) dt for all s ∈R;

(f) f (s)/|s|p– is increasing on (–∞, ) and (,∞), respectively.
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Define the energy functional I : W →R of (.) by

I(u) =

p
‖u‖p

 +

q
‖u‖q

 +
c

p

(∫
|∇u|p

)

+
d
q

(∫
|∇u|q

)

–
∫

F(u), u ∈ W . (.)

Then the functional I is well defined on W and belongs to C(W ,R). Moreover, for any
u,ϕ ∈ W , we have

〈
I ′(u),ϕ

〉
=

∫ [
a|∇u|p–∇u · ∇ϕ + h|u|p–uϕ

]
+

∫ [
b|∇u|q–∇u · ∇ϕ + g|u|q–uϕ

]

+ c
∫

|∇u|p
∫

|∇u|p–∇u · ∇ϕ

+ d
∫

|∇u|q
∫

|∇u|q–∇u · ∇ϕ –
∫

f (u)ϕ. (.)

A critical point of I corresponds to a solution of (.). Furthermore, if u ∈ W is a solution
of (.) with u± 	= , then u is a sign-changing solution of (.), where

u+(x) = max
{

u(x), 
}

, u–(x) = min
{

u(x), 
}

.

Obviously, the energy functional I : W →R of (.) is given by

I(u) =

p
‖u‖p

 +

q
‖u‖q

 –
∫

F(u), u ∈ W .

For u ∈ W ,

I(u) = I
(
u+)

+ I
(
u–)

,
〈
I ′

(u), u±〉
=

〈
I ′


(
u±)

, u±〉
. (.)

When c, d > , the nonlocal terms (
∫ |∇u|p)�pu, (

∫ |∇u|q)�qu are involved in equation
(.), for the functional I given by (.) it is apparent that

I(u) = I
(
u+)

+ I
(
u–)

+
c
p

∫ ∣∣∇u+∣∣p
∫ ∣∣∇u–∣∣p +

d
q

∫ ∣∣∇u+∣∣q
∫ ∣∣∇u–∣∣q, (.)

〈
I ′(u), u±〉

=
〈
I ′(u±)

, u±〉
+ c

∫ ∣∣∇u+∣∣p
∫ ∣∣∇u–∣∣p + d

∫ ∣∣∇u+∣∣q
∫ ∣∣∇u–∣∣q. (.)

Clearly, the functional I does no longer satisfy (.), since it contains two nonlocal terms.
Hence, there may be some differences in investigating the sign-changing solution of equa-
tion (.) between c, d >  and c = d = .

In order to obtain a sign-changing solution of equation (.), we try to seek a minimizer
of the functional I over the following constraint:

M =
{

u ∈ W : u± 	= ,
〈
I ′(u), u+〉

=
〈
I ′(u), u–〉

= 
}

(.)

and

m = inf
{

I(u) : u ∈M
}

. (.)
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Then we show that the minimizer is indeed a sign-changing solution of (.). As we have
mentioned before, the functional I no longer satisfies the properties (.), so it is more
difficult to prove that M 	= ∅. Actually, we will obtain M 	= ∅ by using the Brouwer fixed
point theorem, which is different from the approach in [].

In order to get the ground state solution of equation (.), let

N =
{

u ∈ W \ {} :
〈
I ′(u), u

〉
= 

}
, (.)

and consider the ground state energy

m̃ = inf
{

I(u) : u ∈N
}

. (.)

Now, we state our main results.

Theorem . If the assumptions (f)-(f) hold, then equation (.) has one least energy
sign-changing solution.

Theorem . Suppose the assumptions (f)-(f) hold. For any sequence {(cn, dn)} with
cn, dn ≥ , as (cn, dn) → , there exists a subsequence, still denoted by {(cn, dn)}, such that
ucn ,dn → u in W , and u is a least energy sign-changing solution of equation (.).

Theorem . Suppose the assumptions (f)-(f) hold.
(i) There exists a ground state solution v of equation (.).

(ii) m > m̃. In particular, the ground state solution must maintain the sign unchanged.

Remark . The three results above are also valid for (p, q)-Laplacian problems in a
bounded domain �. Consider the following two problems:

⎧⎪⎪⎨
⎪⎪⎩

–(a + c
∫
�

|∇u|p)�pu – (b + d
∫
�

|∇u|q)�qu

+ h(x)|u|p–u + g(x)|u|q–u = f (u), x ∈ �,

u = , x ∈ ∂�

(.)

and
⎧⎨
⎩

–a�pu – b�qu + h(x)|u|p–u + g(x)|u|q–u = f (u), x ∈ �,

u = , x ∈ ∂�,

where � is a bounded domain in R
N , h, g are continuous and non-negative functions,

including the case h ≡ g ≡ . Because the embedding W ,m
 (�) ↪→ Ls(�) is continuous if

s ∈ [, m∗] and compact if s ∈ [, m∗), we find solutions in the space W ,p
 (�) ∩ W ,q

 (�),
and then can also obtain the same conclusions as Theorems .-. for (.).

Both the conclusions of (.) and of (.) are true when p = q, i.e., these results are true
for a single p-Laplacian equation with nonlocal term.

The paper is organized as follows. In Section , we prove several lemmas, which are
important to prove our main results. In Section , we first show that the minimizer of the
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constrained problem (.) is a sign-changing solution. Then we prove the convergence
property of solutions of (.). Finally, we prove the existence of the ground state solution
and give the energy comparison.

Throughout this paper, C and Ck denote various positive constants, which may vary
from line to line.

2 Preliminaries
We use constraint minimization on M to seek a critical point of I . We begin this section
by doing some preparation work.

Lemma . Assume that (f)-(f) hold. If u ∈ W with u 	= , then
(i) lims→

∫ f (su)u
|s|q– = ;

(ii) lim|s|→∞
∫ f (su)u

|s|p–s = ∞;

(iii) lim|s|→∞
∫ F(su)

|s|p = ∞;
(iv) moreover, if u± 	= , then lim|(s,t)|→∞

∫ F(su+)+F(tu–)
|s|p+|t|p = ∞.

Proof (i) By the conditions (f) and (f), for any given ε > , there exists Cε >  such that

∣∣f (s)
∣∣ ≤ ε|s|q– + Cε|s|r–, s ∈R, (.)

∣∣F(s)
∣∣ ≤ ε

q
|s|q +

Cε

r
|s|r , s ∈R. (.)

By the condition (f), we have, for each η ∈ R,

lim
s→

f (sη)
|s|q– = . (.)

Thus, by (.), (.) and the Lebesgue dominated convergence theorem, the conclusion (i)
holds.

(ii) By the conditions (f) and (f), we have

lim|s|→∞
f (s)

|s|p–s
= ∞. (.)

It follows from (.) that, for any given M > , there exists R >  such that

f (s)s
|s|p ≥ M, |s| > R. (.)

By the condition (f), we have

lim
s→

f (s)s – M|s|p

|s|q = .

Then there exists CM >  such that

f (s)s – M|s|p

|s|q ≥ –CM , |s| ∈ (, R]. (.)
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It follows from (.) and (.) that

f (s)s ≥ M|s|p – CM |s|q, s ∈R. (.)

It follows from (.) that

lim inf|s|→∞

∫ f (su)u
|s|p–s

≥ M

∫
|u|p – lim|s|→∞

CM

|s|p–q

∫
|u|q = M

∫
|u|p.

Then, by the arbitrariness of M, the conclusion (ii) is true.
(iii) By the condition (f), for any given M > , there exists R >  such that

F(s)
|s|p ≥ M, |s| > R. (.)

By the condition (f), we have

lim
s→

F(s) – M|s|p

|s|q = .

Then there exists CM >  such that

F(s) – M|s|p

|s|q ≥ –CM , |s| ∈ (, R]. (.)

It follows from (.) and (.) that

F(s) ≥ M|s|p – CM |s|q, s ∈R. (.)

Then it follows from (.) that

lim inf|s|→∞

∫ F(su)
|s|p ≥ M

∫
|u|p – lim|s|→∞

CM

|s|p–q

∫
|u|q = M

∫
|u|p.

Thus, by the arbitrariness of M, the conclusion (iii) is also true.
(iv) For convenience, we denote functions ψ(s) =

∫
F(su+) and ψ(s) =

∫
F(su–) for all

s ∈R. Then, by (iii), we have

ψ(s) → ∞, ψ(s) → ∞, |s| → ∞. (.)

Because of (.) and the continuity of ψ, ψ, there exists C >  such that

ψ(s) ≥ –C, ψ(s) ≥ –C, s ∈R. (.)

By (iii), for any given M > , there exists R >  such that

ψ(s) + C
|s|p ≥ M,

ψ(s) + C
|s|p ≥ M, |s| ≥ R. (.)



Li and Liang Boundary Value Problems  (2016) 2016:118 Page 8 of 28

When |(s, t)| =
√

s + t ≥ √
R, by the inequality

√
s + t ≤ √

 max
{|s|, |t|},

max{|s|, |t|} ≥ R. We may suppose that |s| ≥ |t|, so that |s| ≥ R. Combining with (.) and
(.), we have

ψ(s) + C + ψ(t) + C
|s|p + |t|p ≥ ψ(s) + C

|s|p ≥ M.

Then we have

lim
|(s,t)|→∞

ψ(s) + C + ψ(t) + C
|s|p + |t|p = ∞. (.)

Therefore, it follows from (.) that (iv) holds. �

Remark . By the condition (f), for each η ∈ R \ {}, we see that f (sη)η/|s|p– is in-
creasing on (–∞, ) and (,∞), respectively. Therefore, for each u ∈ W with u 	= , we see
that

∫ f (su)u
sp– is increasing on (,∞).

Now we start to check that the set M is nonempty.
For each u ∈ W with u± 	= , for convenience, we denote the positive numbers

A,u = (
∫ |∇u+|p), A,u = (

∫ |∇u–|p), A,u =
∫ |∇u+|p ∫ |∇u–|p; B,u = (

∫ |∇u+|q), B,u =
(
∫ |∇u–|q), B,u =

∫ |∇u+|q ∫ |∇u–|q.

Lemma . Assume that (f)-(f) hold. If u ∈ W with u± 	= , then there is a unique pair
(su, tu) of positive numbers such that suu+ + tuu– ∈M.

Proof For any given u ∈ W with u± 	= , we define a function 
u : R+ × R+ → R by

u(s, t) = I(su+ + tu–), where R+ = [,∞), that is,


u(s, t) =

p

sp∥∥u+∥∥p
 +


q

sq∥∥u+∥∥q
 +

c
p

A,usp +
c
p

A,usptp

+
d
q

B,usq +
d
q

B,usqtq –
∫

F
(
su+)

+

p

tp∥∥u–∥∥p
 +


q

tq∥∥u–∥∥q
 +

c
p

A,utp

+
d
q

B,utq –
∫

F
(
tu–)

. (.)

For s, t > , since

∇
u(s, t) =
(

∂
u

∂s
(s, t),

∂
u

∂t
(s, t)

)

=
(〈

I ′(su+ + tu–)
, u+〉

,
〈
I ′(su+ + tu–)

, u–〉)

=
(


s
〈
I ′(su+ + tu–)

, su+〉
,


t
〈
I ′(su+ + tu–)

, tu–〉)
,
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we have su+ + tu– ∈ M if and only if (s, t) is a critical point of 
u. Next we will prove the
existence of a critical point of 
u.

For any given t ∈R+, we have, for s > ,

∂

∂s

u(s, t)

= sp–∥∥u+∥∥p
 + sq–∥∥u+∥∥q

 + cA,usp– + cA,usp–tp


+ dB,usq– + dB,usq–tq
 –

∫
f
(
su+)

u+

= sq–
[

sp–q∥∥u+∥∥p
 +

∥∥u+∥∥q
 + cA,usp–q + cA,usp–qtp



+ dB,usq + dB,utq
 –

∫ f (su+)u+

sq–

]
(.)

= sp–
[


sp

∥∥u+∥∥p
 +


sp–q

∥∥u+∥∥q
 + cA,u +

tp


sp cA,u

+
dB,u

sp–q +
tq
dB,u

sp–q –
∫ f (su+)u+

sp–

]
. (.)

Since u+ 	= , it follows from (.) and Lemma .(i) that ∂
∂s
u(s, t) >  for s >  small. It

follows from (.) and Lemma .(ii) that ∂
∂s
u(s, t) <  for s >  large. Thus there exists

s >  such that ∂
∂s
u(s, t) = .

Suppose that there exist s, s with  < s < s such that ∂
∂s
u(s, t) = ∂

∂s
u(s, t) = .
Then (.) implies that


sp

i

∥∥u+∥∥p
 +


sp–q

i

∥∥u+∥∥q
 + cA,u +

tp


sp
i

cA,u +
dB,u

sp–q
i

+
tq
dB,u

sp–q
i

=
∫ f (siu+)u+

sp–
i

, i = , .

Hence

(

sp


–


sp



)∥∥u+∥∥p
 +

(


sp–q


–


sp–q


)∥∥u+∥∥q
 +

(

sp


–


sp



)
tp
cA,u

+
(


sp–q


–


sp–q



)
dB,u +

(


sp–q


–


sp–q


)
tq
dB,u

=
∫ [

f (su+)u+

sp–


–
f (su+)u+

sp–


]
. (.)

But according to Remark ., the right side of (.) is negative and (.) is absurd. There-
fore there exists a unique s = s(t) >  such that ∂

∂s
u(s, t) = .
Now we can define a map ϕ : R+ → (,∞) by ϕ(t) = s(t), where s(t) satisfies the prop-

erties just mentioned previously, with t in the place of t. By definition, we have

∂
u

∂s
(
ϕ(t), t

)
= , t ∈R+,
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that is, for t ≥ ,

ϕ
p–
 (t)

∥∥u+∥∥p
 + ϕ

q–
 (t)

∥∥u+∥∥q
 + cA,uϕ

p–
 (t) + cA,uϕ

p–
 (t)tp

+ dB,uϕ
q–
 (t) + dB,uϕ

q–
 (t)tq

=
∫

f
(
ϕ(t)u+)

u+. (.)

We will prove some properties of the function ϕ.
(a) ϕ has a positive lower bound.
In fact, suppose there exists {tn} ⊂ R+ such that ϕ(tn) → . Then, by (.) and

Lemma .(i), we have

∥∥u+∥∥q
 ≤ lim

n→∞

∫ f (ϕ(tn)u+)u+

ϕ
q–
 (tn)

= .

This is absurd. Thus there exists C >  such that ϕ(s) ≥ C for all s ∈R+.
(a) ϕ is continuous.
In fact, let tn → t in R+. We firstly prove that {ϕ(tn)} is bounded. Suppose, by contra-

diction, that there is a subsequence {tnk } of {tn} such that ϕ(tnk ) → ∞. It follows from
(.) that


ϕ

p
 (tnk )

∥∥u+∥∥p
 +


ϕ

p–q
 (tnk )

∥∥u+∥∥q
 + cA,u +

tp
nk

ϕ
p
 (tnk )

cA,u +
dB,u

ϕ
p–q
 (tnk )

+
tq
nk dB,u

ϕ
p–q
 (tnk )

=
∫ f (ϕ(tnk )u+)

ϕ
p–
 (tnk )

u+. (.)

Letting k → ∞ in (.), according to Lemma .(ii), we have a contradiction cA,u = ∞.
Thus, {ϕ(tn)} is bounded. For any subsequence {ϕ(t′

n)} of {ϕ(tn)}, since {ϕ(t′
n)} is

bounded, there exists a subsequence {ϕ(t′′
n)} of {ϕ(t′

n)} such that ϕ(t′′
n) → s and it follows

from (a) that s > . Passing to the limit as n → ∞ in (.) with t = t′′
n , we get

sp–


∥∥u+∥∥p
 + sq–


∥∥u+∥∥q

 + cA,usp–
 + cA,usp–

 tp
 + dB,usq–

 + dB,usq–
 tq



=
∫

f
(
su+)

u+. (.)

Thus (.) and (.) imply

∂
u

∂s
(s, t) = .

Consequently, by the uniqueness, s = ϕ(t). Therefore ϕ is continuous.
(a) ϕ(t) ≤ t for t large.
In fact, if there exists a sequence {tn} with tn → ∞ such that ϕ(tn) > tn for all n ∈ N,

then ϕ(tn) → ∞ and it follows from (.) that ∞ ≤ cA,u + cA,u. This is a contradiction.
Thus ϕ(t) ≤ t for t large.

Similarly, for each s ∈ R+, we consider the function 
u(s, ·) and consequently, we can
define a map ϕ : R+ → (,∞) which satisfies

∂
u

∂t
(
s,ϕ(s)

)
= , s ∈ R+,
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that is, for s ≥ ,

ϕ
p–
 (s)

∥∥u–∥∥p
 + ϕ

q–
 (s)

∥∥u–∥∥q
 + cA,uϕ

p–
 (s) + cA,uϕ

p–
 (s)sp

+ dB,uϕ
q–
 (s) + dB,uϕ

q–
 (s)sq

=
∫

f
(
ϕ(s)u–)

u–, (.)

and it also satisfies (a), (a), and (a) above.
Now we prove the existence of a critical point of 
u by the Brouwer fixed point theorem.

By (a), there exists C >  such that ϕ(t) ≤ t for all t > C and ϕ(s) ≤ s for all s > C. Let

C = max
{

max
t∈[,C]

ϕ(t), max
s∈[,C]

ϕ(s)
}

.

Let ξ = max{C, C}. We define T : [, ξ ] → R+ as T(s) = ϕ(ϕ(s)). Now we show T(s) ∈
[, ξ ] for all s ∈ [, ξ ]. In fact, let  ≤ s ≤ ξ = max{C, C}. If t = ϕ(s) > C, then

T(s) = ϕ(t) ≤ t = ϕ(s) ≤
⎧⎨
⎩

s, s > C,

maxs∈[,C] ϕ(s), s ≤ C,

so

T(s) ≤ max{C, C}.

If t = ϕ(s) ≤ C, then

T(s) = ϕ(t) ≤ max
t∈[,C]

ϕ(t) ≤ C.

Note that T is continuous. Then, by the Brouwer fixed point theorem, there exists su ∈
[, ξ ] such that ϕ(ϕ(su)) = su. Let tu = ϕ(su). Then we have

su = ϕ(tu), tu = ϕ(su). (.)

Since ϕi > , (.) implies su, tu > . By the definition we have

∂
u

∂s
(su, tu) =

∂
u

∂t
(su, tu) = .

Thus, (su, tu) is a critical point of 
u.
Now we prove the uniqueness of (su, tu). In fact, considering w ∈M we have

∇
w(, ) =
(

∂
w

∂s
(, ),

∂
w

∂t
(, )

)

=
(〈

I ′(w+ + w–)
, w+〉

,
〈
I ′(w+ + w–)

, w–〉)
= (, ),

which implies that (, ) is a critical point of 
w. Now we prove that (, ) is the unique
critical point of 
w with positive coordinates. In fact, we may suppose that (s, t) is also
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a critical point of 
w with  < t ≤ s. Then it follows from (.) and (.) that

sp

∥∥w+∥∥p

 + sq

∥∥w+∥∥q

 + cA,wsp
 + cA,wsp

tp
 + dB,wsq

 + dB,wsq
tq



=
∫

f
(
sw+)

sw+, (.)

tp

∥∥w–∥∥p

 + tq

∥∥w–∥∥q

 + cA,wtp
 + cA,wsp

tp
 + dB,wtq

 + dB,wsq
tq



=
∫

f
(
tw–)

tw–. (.)

From (.) and t ≤ s, we have

sp

∥∥w+∥∥p

 + sq

∥∥w+∥∥q

 + c(A,w + A,w)sp
 + d(B,w + B,w)sq

 ≥
∫

f
(
sw+)

sw+. (.)

On the other hand, since w ∈M, we have

∥∥w+∥∥p
 +

∥∥w+∥∥q
 + cA,w + cA,w + dB,w + dB,w =

∫
f
(
w+)

w+. (.)

Hence, from (.) and (.), we get

(
 –


sp



)∥∥w+∥∥p
 +

(
 –


sp–q



)∥∥w+∥∥q
 +

(
 –


sp–q



)
d(B,w + B,w)

≤
∫ [

f
(
w+)

w+ –
f (sw+)w+

sp–


]
.

From the above inequality and Remark . we conclude that s ≤  and then  < t ≤ s ≤ .
Now we prove that t ≥ . In fact, from (.) and  < t ≤ s, we have

tp

∥∥w–∥∥p

 + tq

∥∥w–∥∥q

 + c(A,w + A,w)tp
 + d(B,w + B,w)tq

 ≤
∫

f
(
tw–)

tw–. (.)

On the other hand, since w ∈M, we get

∥∥w–∥∥p
 +

∥∥w–∥∥q
 + cA,w + cA,w + dB,w + dB,w =

∫
f
(
w–)

w–. (.)

Now from (.) and (.), we obtain
(

 –

tp


)∥∥w–∥∥p
 +

(
 –


tp–q


)∥∥w–∥∥q
 +

(
 –


tp–q


)
d(B,w + B,w)

≥
∫ [

f
(
w–)

w– –
f (tw–)w–

tp–


]
.

By Remark ., we conclude that t ≥ . Consequently, t = s = , this shows that (, ) is
the unique critical point of 
w with positive coordinates.

Now we assume that u ∈ W with u± 	=  and (s, t), (s, t) are both critical points with
positive coordinates for the map 
u. Then

w = su+ + tu– ∈M, w = su+ + tu– ∈M.
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Therefore,

w =
(

s

s

)
su+ +

(
t

t

)
tu– =

(
s

s

)
w+

 +
(

t

t

)
w–

 ∈M.

Since w ∈ M and ( s
s

, t
t

) is a critical point of the map 
w with positive coordinates, by
the uniqueness we have

s

s
=

t

t
= ,

which implies that (s, t) = (s, t). �

Lemma . For a fixed u ∈ W with u± 	= , the vector (su, tu), which was obtained in
Lemma ., is the unique maximum point of the function 
u(s, t).

Proof From the proof of Lemma ., (su, tu) is the unique critical point of 
u in (,∞) ×
(,∞). By (.), we have


u(s, t) =
(
sp + tp)[ 

p
sp

sp + tp

∥∥u+∥∥p
 +


q

sq

sp + tp

∥∥u+∥∥q
 +


p

tp

sp + tp

∥∥u–∥∥p


+

q

tq

sp + tp

∥∥u–∥∥q


]

+
(
sp + tp)[ d

q
B,u

sq

sp + tp +
d
q

B,u
sqtq

sp + tp +
d
q

B,u
tq

sp + tp

]

+
(
sp + tp)[ c

p
A,u

sp

sp + tp +
c
p

A,u
sptp

sp + tp +
c

p
A,u

tp

sp + tp

]

–
(
sp + tp)∫ F(su+) + F(tu–)

sp + tp

:=
(
sp + tp)[
(s, t) + 
(s, t) + 
(s, t) –

∫ F(su+) + F(tu–)
sp + tp

]
.

It is clear that 
(s, t),
(s, t) →  as |(s, t)| → ∞ and 
(s, t) is bounded. Then, by
Lemma .(iv), we deduce that 
u(s, t) → –∞ as |(s, t)| → ∞. So it is sufficient to check
that a maximum point cannot be obtained on the boundary of R+ × R+. Without loss of
generality, we may assume that (, t̄) is a maximum point of 
u. Similar to (.), we can
get ∂

∂s
u(s, t̄) >  for s small. Then 
u(s, t̄) is an increasing function with respect to s if s is
small enough, the pair (, t̄) is not a maximum point of 
u in R+ ×R+. �

Lemma . Let (f)-(f) hold. Suppose that u ∈ W with u± 	=  such that 〈I ′(u), u+〉 ≤ ,
〈I ′(u), u–〉 ≤ . Then the unique pair (su, tu) of positive numbers obtained in Lemma .
satisfies  < su, tu ≤ .

Proof We may suppose that su ≥ tu > . Since suu+ + tuu– ∈M,

sp
u
∥∥u+∥∥p

 + sq
u
∥∥u+∥∥q

 + cA,usp
u + cA,usp

u + dB,usq
u + dB,usq

u

≥ sp
u
∥∥u+∥∥p

 + sq
u
∥∥u+∥∥q

 + cA,usp
u + cA,usp

utp
u + dB,usq

u + dB,usq
utq

u

=
∫

f
(
suu+)

suu+. (.)
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The assumption 〈I ′(u), u+〉 ≤  gives

∥∥u+∥∥p
 +

∥∥u+∥∥q
 + cA,u + cA,u + dB,u + dB,u ≤

∫
f
(
u+)

u+. (.)

Combining (.) and (.), we get
(


sp

u
– 

)∥∥u+∥∥p
 +

(


sp–q
u

– 
)∥∥u+∥∥q

 +
(


sp–q

u
– 

)
(dB,u + dB,u)

≥
∫ [

f (suu+)u+

sp–
u

– f
(
u+)

u+
]

.

If su > , then the left side of this inequality is negative. But by Remark ., the right side
is positive, thus we must have su ≤ . Then the proof is completed. �

From Lemma . and M ⊂ N , we know that N is nonempty and m, m̃ is well defined.
Now we prove the following lemma.

Lemma . Assume that (f)-(f) hold. If v ∈ W with v 	= , then there is a unique sv ∈
(,∞) such that svv ∈N . Moreover, if 〈I ′(v), v〉 ≤ , then sv ∈ (, ].

Proof For fixed v ∈ W with v 	=  and s ∈ (,∞), sv ∈N if and only if 〈I ′(sv), sv〉 = , where

〈
I ′(sv), sv

〉
= sq

[
sp–q‖v‖p

 + ‖v‖q
 + csp–q

(∫
|∇v|p

)

+ dsq
(∫

|∇v|q
)

–
∫ f (sv)v

sq–

]
(.)

= sp
[


sp ‖v‖p

 +


sp–q ‖v‖q
 + c

(∫
|∇v|p

)

+
d

sp–q

(∫
|∇v|q

)

–
∫ f (sv)v

sp–

]
. (.)

Since v 	= , it follows from (.) and Lemma . (i) that 〈I ′(sv), sv〉 >  for s >  small. On
the other hand, it follows from (.) and Lemma .(ii) that 〈I ′(sv), sv〉 <  for s >  large.
Thus there exists sv >  such that 〈I ′(svv), svv〉 = .

Now we prove the uniqueness of sv. Suppose that there exist s, s with  < s < s such
that 〈I ′(sv), sv〉 = 〈I ′(sv), sv〉 = . Then (.) implies that


sp

i
‖v‖p

 +


sp–q
i

‖v‖q
 + c

(∫
|∇v|p

)

+
d

sp–q
i

(∫
|∇v|q

)

=
∫ f (siv)v

sp–
i

, i = , .

Hence,

(

sp


–


sp



)
‖v‖p

 +
(


sp–q


–


sp–q



)
‖v‖q

 +
(

d
sp–q


–

d
sp–q



)(∫
|∇v|q

)

=
∫ [

f (sv)v
sp–


–

f (sv)v
sp–



]
.

Similar to (.), it is absurd in view of Remark ..
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Now we claim that sv ∈ (, ]. It follows from (.) that


sp

v
‖v‖p

 +


sp–q
v

‖v‖q
 + c

(∫
|∇v|p

)

+
d

sp–q
v

(∫
|∇v|q

)

=
∫ f (svv)v

sp–
v

. (.)

The assumption 〈I ′(v), v〉 ≤  gives

‖v‖p
 + ‖v‖q

 + c
(∫

|∇v|p
)

+ d
(∫

|∇v|q
)

≤
∫

f (v)v. (.)

Combining (.) and (.), we have

(
 –


sp

v

)
‖v‖p

 +
(

 –


sp–q
v

)
‖v‖q

 +
(

 –


svp–q

)
d
(∫

|∇v|q
)

≤
∫ [

f (v)v –
f (svv)v
sp–

v

]
.

According to Remark ., it is absurd if sv > . Thus sv ∈ (, ]. �

Lemma . Assume that (f)-(f) hold. Then m ≥ m̃ > , and m, m̃ can both be obtained.

Proof (i) For any given ε > , by (.), we have

∫
f (u)u ≤ ε

∫
|u|q + Cε

∫
|u|r , u ∈ W . (.)

Hence, for some ε >  small, by the continuous embedding of Wp,a,h ↪→ Lr(RN ) and
Wq,b,g ↪→ Lq(RN ), we get

∫
f (u)u ≤ 


‖u‖q

 + C‖u‖r
, u ∈ W . (.)

For every v ∈N , we have 〈I ′(v), v〉 = , that is,

‖v‖p
 + ‖v‖q

 + c
(∫

|∇v|p
)

+ d
(∫

|∇v|q
)

=
∫

f (v)v. (.)

For every u ∈M, we have 〈I ′(u), u±〉 = , that is,

∥∥u±∥∥p
 +

∥∥u±∥∥q
 + c

∫
|∇u|p

∫ ∣∣∇u±∣∣p + d
∫

|∇u|q
∫ ∣∣∇u±∣∣q =

∫
f
(
u±)

u±. (.)

Hence, for some ε >  small, it follows from (.), (.), (.), and (.) that

‖w‖p
 + ‖w‖q

 ≤ 

‖w‖q

 + C‖w‖r
, w = v, u±, (.)

‖w‖p
 + ‖w‖q

 ≤ ε

∫
|w|q + Cε

∫
|w|r , w = v, u±. (.)

So, by (.), there exists a constant α > , which is not dependent on c, d, such that

‖w‖ ≥ α, w = v, u±, (.)

and then ‖v‖ ≥ α, ‖u±‖ ≥ α.
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By the condition (f) and f ∈ C(R,R), we have

f ′(s)s – (p – )f (s)s ≥ , s ∈R. (.)

By (.), we have

f (s)s – pF(s) ≥ , s ∈R. (.)

Then

I(u) = I(u) –


p
〈
I ′(u), u

〉

=


p
‖u‖p

 +
(


q

–


p

)
‖u‖q

 +
(


q

–


p

)
d
(∫

|∇u|q
)

+


p

∫ [
f (u)u – pF(u)

]

>


p
‖u‖p

 +
(


q

–


p

)
‖u‖q

 ≥ 
p

αp. (.)

This implies that m̃ ≥ αp/(p).
(ii) Let {vn} ⊂ N such that I(vn) → m̃. Then it follows from (.) that {vn} is bounded

in W and there exists v ∈ W such that vn ⇀ v in W .
Let {un} ⊂ M ⊂ N such that I(un) → m. Then it follows from (.) that {un} is

bounded in W and there exists u ∈ W such that u±
n ⇀ u± in W (see Lemma A.).

Since vn ∈N , un ∈M, it follows from (.) that

αp ≤ ‖wn‖p
 ≤ ε

∫
|wn|q + Cε

∫
|wn|r , wn = vn, u±

n .

Using the boundedness of {wn}, there is C >  such that

αp ≤ εC + Cε

∫
|wn|r .

Choosing ε = αp/(C), we get

∫
|wn|r ≥ αp

C
,

where C = Cε . By the compactness of the embedding W ↪→ Lr(RN ), we get

∫
|w|r ≥ αp

C
, w = v, u±. (.)

Thus w 	= . Equations (.) and (.) combined with the Lebesgue dominated convergence
theorem give

lim
n→∞

∫
f (wn)wn =

∫
f (w)w, lim

n→∞

∫
F(wn) =

∫
F(w). (.)
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(iii) By the weak lower semi-continuity of the norm, we have

‖v‖p
 + ‖v‖q

 + c
(∫

|∇v|p
)

+ d
(∫

|∇v|q
)

≤ lim inf
n→∞

{
‖vn‖p

 + ‖vn‖q
 + c

(∫
|∇vn|p

)

+ d
(∫

|∇vn|q
)}

.

Then from (.) we get

‖v‖p
 + ‖v‖q

 + c
(∫

|∇v|p
)

+ d
(∫

|∇v|q
)

≤
∫

f (v)v. (.)

From (.) and Lemma ., there exists sv ∈ (, ] such that v̄ = svv ∈N .
It follows from (.) that G(s) = f (s)s – pF(s) is a non-negative function, increasing on

[,∞), and decreasing on (–∞, ]. Then we have

m̃ ≤ I(v̄) –


p
〈
I ′(v̄), v̄

〉

=


p
‖v̄‖p

 +
(


q

–


p

)
‖v̄‖q

 +
(


q

–


p

)
d
(∫

|∇ v̄|q
)

+


p

∫ [
f (v̄)v̄ – pF(v̄)

]

=


p
sp

v‖v‖p
 +

(

q

–


p

)
sq

v‖v‖q
 +

(


q
–


p

)
dsq

v

(∫
|∇v|q

)

+


p

∫ [
f (svv)svv – pF(svv)

]

≤ 
p

‖v‖p
 +

(

q

–


p

)
‖v‖q

 +
(


q

–


p

)
d
(∫

|∇v|q
)

+


p

∫ [
f (v)v – pF(v)

]

≤ lim inf
n→∞

{
I(vn) –


p

〈
I ′(vn), vn

〉}
= m̃.

We then deduce that sv = . Thus, v̄ = v and I(v) = m̃.
(iv) By the weak lower semi-continuity of the norm, we have

∥∥u±∥∥p
 +

∥∥u±∥∥q
 + c

∫
|∇u|p

∫ ∣∣∇u±∣∣p + d
∫

|∇u|q
∫ ∣∣∇u±∣∣q

≤ lim inf
n→∞

{∥∥u±
n
∥∥p

 +
∥∥u±

n
∥∥q

 + c
∫

|∇un|p
∫ ∣∣∇u±

n
∣∣p + d

∫
|∇un|q

∫ ∣∣∇u±
n
∣∣q

}
.

Then from (.) we get

∥∥u±∥∥p
 +

∥∥u±∥∥q
 + c

∫
|∇u|p

∫ ∣∣∇u±∣∣p + d
∫

|∇u|q
∫ ∣∣∇u±∣∣q ≤

∫
f
(
u±)

u±. (.)

From (.) and Lemma ., there exists (su, tu) ∈ (, ] × (, ] such that

ū = suu+ + tuu– ∈M.
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Note that G(s) = f (s)s – pF(s) is a non-negative function, increasing on [,∞) and de-
creasing on (–∞, ]. Then we have

m ≤ I(ū) –


p
〈
I ′(ū), ū

〉

=


p
‖ū‖p

 +
(


q

–


p

)
‖ū‖q

 +
(


q

–


p

)
d
(∫

|∇ū|q
)

+


p

∫ [
f (ū)ū – pF(ū)

]

=


p
sp

u
∥∥u+∥∥p

 +
(


q

–


p

)
sq

u
∥∥u+∥∥q

 +
(


q

–


p

)
dsq

u

(∫ ∣∣∇u+∣∣q
)

+


p

∫ [
f
(
suu+)

suu+ – pF
(
suu+)]

+
(


q

–

p

)
dsq

utq
u

∫ ∣∣∇u+∣∣q
∫ ∣∣∇u–∣∣q

+


p
tp
u
∥∥u–∥∥p

 +
(


q

–


p

)
tq
u
∥∥u–∥∥q

 +
(


q

–


p

)
dtq

u

(∫ ∣∣∇u–∣∣q
)

+


p

∫ [
f
(
tuu–)

tuu– – pF
(
tuu–)]

≤ 
p

‖u‖p
 +

(

q

–


p

)
‖u‖q

 +
(


q

–


p

)
d
(∫

|∇u|q
)

+


p

∫ [
f (u)u – pF(u)

]

≤ lim inf
n→∞

{
I(un) –


p

〈
I ′(un), un

〉}
= m.

We then deduce that su = tu = . Thus, ū = u and I(u) = m. �

3 Proof of the main results
The purpose of this section is to prove our main results. We start to prove that the min-
imizer u for the minimization problem (.) is indeed a sign-changing solution of (.),
that is, I ′(u) = .

Proof of Theorem . Using the quantitative deformation lemma and topological degree
theory, we prove that I ′(u) = .

It is clear that 〈I ′(u), u+〉 = 〈I ′(u), u–〉 = . It follows from Lemma . that, for (s, t) ∈
R+ ×R+ and (s, t) 	= (, ),

I
(
su+ + tu–)

< I
(
u+ + u–)

= m. (.)

It follows from (.) that
∫ |u±|r ≥ αp/(C) := τ r . Then |u±|r ≥ τ . We denote by γr the

embedding constant of W ↪→ Lr(RN ).
If I ′(u) 	= , then there exist r,ρ >  such that

∥∥I ′(v)
∥∥ ≥ ρ, ‖v – u‖ ≤ r. (.)

Let δ ∈ (, min{τ /(γr), r/}) and let σ ∈ (, min{/, δ/(‖u‖), δ/(‖u‖)}). Let D = ( –
σ ,  + σ ) × ( – σ ,  + σ ) and ϕ(s, t) = su+ + tu– for all (s, t) ∈ D. It follows from (.) that

m̄ = max
(s,t)∈∂D

I
(
ϕ(s, t)

)
< m. (.)
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Let ε = min{(m – m̄)/,ρδ/} and S = B(u, δ). Then it follows from (.) that

∥∥I ′(v)
∥∥ ≥ ε/δ, v ∈ I–([m – ε, m + ε]

) ∩ Sδ . (.)

Applying (.) and Lemma . in [], p., there exists a deformation η ∈ C([, ] ×
W , W ) such that

(b) η(, v) = v if v /∈ I–([m – ε, m + ε]) ∩ Sδ ;
(b) η(, Im+ε ∩ S) ⊂ Im–ε ;
(b) ‖η(, v) – v‖ ≤ δ for all v ∈ W .

By Lemmas . and ., for (s, t) ∈ D, we know I(ϕ(s, t)) ≤ m < m + ε, that is, ϕ(s, t) ∈ Im+ε .
Since

∥∥ϕ(s, t) – u
∥∥p

 =
∥∥su+ + tu– – u+ – u–∥∥p



= |s – |p∥∥u+∥∥p
 + |t – |p∥∥u–∥∥p



≤ σ p‖u‖p


< (δ/)p,

and similarly ‖ϕ(s, t) – u‖q
 < (δ/)q, we have ‖ϕ(s, t) – u‖ = ‖ϕ(s, t) – u‖ + ‖ϕ(s, t) – u‖ < δ.

Thus ϕ(s, t) ∈ S. By (b), we have I(η(,ϕ(s, t))) < m – ε. Then it is clear that

max
(s,t)∈D

I
(
η
(
,ϕ(s, t)

)) ≤ m – ε < m. (.)

We will prove that η(,ϕ(D)) ∩ M 	= ∅, which is a contradiction with (.). Therefore,
I ′(u) = , that is, u is a sign-changing solution for equation (.). In fact, on D we also
define ψ(s, t) = η(,ϕ(s, t)) and

�(s, t) =
(〈

I ′(ϕ(s, t)
)
, su+〉

,
〈
I ′(ϕ(s, t)

)
, tu–〉)

=
(〈

I ′(su+ + tu–)
, su+〉

,
〈
I ′(su+ + tu–)

, tu–〉)
,

�(s, t) =
(〈

I ′(ψ(s, t)
)
,ψ+(s, t)

〉
,
〈
I ′(ψ(s, t)

)
,ψ–(s, t)

〉)
.

Let

P(s, t) =
〈
I ′(su+ + tu–)

, su+〉
= sp∥∥u+∥∥p

 + sq∥∥u+∥∥q
 + cA,usp + cA,usptp

+ dB,usq + dB,usqtq –
∫

f
(
su+)

su+,

Q(s, t) =
〈
I ′(su+ + tu–)

, tu–〉
= tp∥∥u–∥∥p

 + tq∥∥u–∥∥q
 + cA,utp + cA,usptp

+ dB,utq + dB,usqtq –
∫

f
(
tu–)

tu–.
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By direct calculation, we have

∂P(s, t)
∂s

∣∣∣∣
(,)

= (p – )
∥∥u+∥∥p

 + (q – )
∥∥u+∥∥q

 + (p – )cA,u + (p – )cA,u

+ (q – )dB,u + (q – )dB,u –
∫

f ′(u+)∣∣u+∣∣,

∂P(s, t)
∂t

∣∣∣∣
(,)

= pcA,u + qdB,u,
∂Q(s, t)

∂s

∣∣∣∣
(,)

= pcA,u + qdB,u,

∂Q(s, t)
∂t

∣∣∣∣
(,)

= (p – )
∥∥u–∥∥p

 + (q – )
∥∥u–∥∥q

 + (p – )cA,u + (p – )cA,u

+ (q – )dB,u + (q – )dB,u –
∫

f ′(u–)∣∣u–∣∣.

By (.), we get

∂P(s, t)
∂s

∣∣∣∣
(,)

< –(pcA,u + qdB,u)

and

∂Q(s, t)
∂t

∣∣∣∣
(,)

< –(pcA,u + qdB,u).

Set the matrix

M =

[
∂P(,)

∂s
∂P(,)

∂t
∂Q(,)

∂s
∂Q(,)

∂t

]
.

Then we get

J� (, ) = det M > .

Since � is C, (, ) is the unique isolated zero of �, by Lemmas . and . in [], p.,
we have

deg(�, D, ) = ind
(
�, (, )

)
= sgn J� (, ) = .

It follows from (.), m̄ < m – ε, and (b) above that ϕ = ψ on ∂D. Hence deg(�, D, ) =
deg(�, D, ) = . Thus there exists a pair (s, t) ∈ D such that �(s, t) = . Since |u±|r ≥
τ , (s, t) ∈ D, we have |ϕ+(s, t)|r = s|u+|r ≥ τ / and |ϕ–(s, t)|r = t|u–|r ≥ τ /. By (b),
we have

∣∣ψ(s, t) – ϕ(s, t)
∣∣
r ≤ γr

∥∥ψ(s, t) – ϕ(s, t)
∥∥ ≤ γrδ.

This implies that

∣∣ψ±(s, t) – ϕ±(s, t)
∣∣
r ≤ ∣∣ψ(s, t) – ϕ(s, t)

∣∣
r ≤ γrδ.
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Thus we have

∣∣ψ±(s, t)
∣∣
r ≥ ∣∣ϕ±(s, t)

∣∣
r – γrδ ≥ τ


– γrδ > .

That is, ψ±(s, t) 	= . Then η(,ϕ(s, t)) = ψ(s, t) ∈M. �

Now, we are in a situation to prove Theorem .. We first claim that equation (.) has
one least energy sign-changing solution.

Remark . The proof of equation (.) is still suited to (.) where c = d =  although the
proof for equation (.) may be easier than (.). So, if the assumptions (f)-(f) hold, there
exists a least energy sign-changing solution of (.).

In the following, we regard c, d ≥  as parameters in equation (.). Let uc,d ∈ W be the
least energy sign-changing solution of (.) obtained in Theorem .. The relative func-
tional and constraint are denoted by Ic,d and Mc,d , respectively. We will analyze the con-
vergence property of uc,d as (c, d) → .

Proof of Theorem . () We first of all claim that, for any sequence {(cn, dn)} with
(cn, dn) →  as n → ∞, {ucn ,dn} := {un} is bounded in W . In fact, choosing a function ϕ ∈
C∞

 (RN ) with ϕ± 	= ,
∫

h|ϕ|p,
∫

g|ϕ|q < ∞. For any c, d ∈ [, ], since c, d ≤ , Lemma .(ii)
implies that there exists a pair (μ,μ) of positive numbers, which does not depend on c,
d, such that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

μ
p
‖ϕ+‖p

 + μ
q
‖ϕ+‖q

 + cA,ϕμ
p
 + cA,ϕμ

p
 μ

p


+ dB,ϕμ
q
 + dB,ϕμ

q
μ

q
 –

∫
f (μϕ

+)μϕ
+ < ,

μ
p
‖ϕ–‖p

 + μ
q
‖ϕ–‖q

 + cA,ϕμ
p
 + cA,ϕμ

p
μ

p


+ dB,ϕμ
q
 + dB,ϕμ

q
μ

q
 –

∫
f (μϕ

–)μϕ
– < .

In view of Lemmas . and ., for any c, d ∈ [, ], there is a unique pair (sϕ(c, d), tϕ(c, d)) ∈
(, ] × (, ] such that

ϕ̄ = sϕ(c, d)μϕ
+ + tϕ(c, d)μϕ

– ∈Mc,d.

Thus, for any c, d ∈ [, ], combining (.) and (.), we have

Ic,d(uc,d) ≤ Ic,d(ϕ̄) –


p
〈
I ′

c,d(ϕ̄), ϕ̄
〉

=


p
‖ϕ̄‖p

 +
(


q

–


p

)
‖ϕ̄‖q

 +
(


q

–


p

)
d
(∫

|∇ϕ̄|q
)

+


p

∫ [
f (ϕ̄)ϕ̄ – pF(ϕ̄)

]

≤ 
p

‖ϕ̄‖p
 +

(

q

–


p

)
‖ϕ̄‖q

 +
(


q

–


p

)
d
(∫

|∇ϕ̄|q
)

+


p

∫ [
C|ϕ̄|q + C|ϕ̄|r]
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≤ 
p

μ
p

∥∥ϕ+∥∥p

 +


p
μ

p

∥∥ϕ–∥∥p

 +
(


q

–


p

)
μ

q

∥∥ϕ+∥∥q

 +
(


q

–


p

)
μ

q

∥∥ϕ–∥∥q



+
(


q

–


p

)[
B,ϕμ

q
 + B,ϕμ

q
μ

q
 + B,ϕμ

q


]

+
C

p

∫ [
μ

q

∣∣ϕ+∣∣q + μ

q

∣∣ϕ–∣∣q] +

C

p

∫ [
μr


∣∣ϕ+∣∣r + μr


∣∣ϕ–∣∣r] := C,

where C does not depend on c, d. It follows from (.) that, for n large enough,

C ≥ In(un) = In(un) –


p
〈
I ′

n(un), un
〉 ≥ 

p
‖un‖p

 +
(


q

–


p

)
‖un‖q

,

where In denotes Icn ,dn . Then {un} is bounded in W .
() There exists a subsequence of {(cn, dn)}, still denoted by {(cn, dn)}, such that un ⇀ u

in W . Now we will prove that u is a sign-changing solution of (.). Indeed, by (.), the
Hölder inequality and the compactness of the embedding W ↪→ Ls(RN ) for s = q, r, we get

∫ ∣∣f (un)(un – u)
∣∣

≤
∫ [

C|un|q–|un – u| + C|un|r–|un – u|
]

≤ C|un|q–
q |un – u|q + C|un|r–

r |un – u|r →  (.)

and
∫ ∣∣f (u)(un – u)

∣∣ → . (.)

We have

〈
I ′

n(un) – I ′
(u), un – u

〉

=
∫

a
(|∇un|p–∇un – |∇u|p–∇u

) · ∇(un – u)

+
∫

h
(|un|p–un – |u|p–u

)
(un – u)

+
∫

b
(|∇un|q–∇un – |∇u|q–∇u

) · ∇(un – u)

+
∫

g
(|un|q–un – |u|q–u

)
(un – u)

+ cn

∫
|∇un|p

∫
|∇un|p–∇un · ∇(un – u)

+ dn

∫
|∇un|q

∫
|∇un|q–∇un · ∇(un – u)

–
∫

f (un)(un – u) +
∫

f (u)(un – u)

≥ C

∫
a
∣∣∇(un – u)

∣∣p + C

∫
h|un – u|p

+ C

∫
b
∣∣∇(un – u)

∣∣q + C

∫
g|un – u|q
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+ cn

∫
|∇un|p

∫
|∇un|p–∇un · ∇(un – u)

+ dn

∫
|∇un|q

∫
|∇un|q–∇un · ∇(un – u)

–
∫

f (un)(un – u) +
∫

f (u)(un – u)

≥ C
(‖un – u‖p

 + ‖un – u‖q

)

+ cn

∫
|∇un|p

∫
|∇un|p–∇un · ∇(un – u)

+ dn

∫
|∇un|q

∫
|∇un|q–∇un · ∇(un – u)

–
∫

f (un)(un – u) +
∫

f (u)(un – u),

where we have used the inequality (|ξ |s–ξ – |η|s–η, ξ – η) ≥ Cs|ξ – η|s for all ξ ,η ∈ R
N

and s ≥  (see []). By (.) and (.), it follows that, passing to the limit on n → ∞,
we deduce ‖un – u‖p

 + ‖un – u‖q
 →  as n → ∞. Then un → u in W . It follows from

(.) that ‖u±
n ‖ ≥ α, where α is not dependent on cn, dn. By Lemma A., we know that

‖u±
 ‖ ≥ α. So u changes sign and u is a solution of (.).

() Now we prove that u is also a least energy sign-changing solution of (.). In fact,
suppose that v is a least energy sign-changing solution of (.). Then by Lemma ., for
each cn, dn ≥ , there is a unique pair (sn, tn) of positive numbers such that

snv+
 + tnv–

 ∈Mn,

where Mn denotes Mcn ,dn . Then we have

sp
n
∥∥v+


∥∥p

 + sq
n
∥∥v+


∥∥q

 + cnsp
n

(∫ ∣∣∇v+

∣∣p

)

+ dnsq
n

(∫ ∣∣∇v+

∣∣q

)

+ cnsp
ntp

n

∫ ∣∣∇v+

∣∣p

∫ ∣∣∇v–

∣∣p + dnsq

ntq
n

∫ ∣∣∇v+

∣∣q

∫ ∣∣∇v–

∣∣q =

∫
f
(
snv+


)
snv+

 (.)

and

tp
n
∥∥v–


∥∥p

 + tq
n
∥∥v–


∥∥q

 + cntp
n

(∫ ∣∣∇v–

∣∣p

)

+ dntq
n

(∫ ∣∣∇v–

∣∣q

)

+ cnsp
ntp

n

∫ ∣∣∇v+

∣∣p

∫ ∣∣∇v–

∣∣p + dnsq

ntq
n

∫ ∣∣∇v+

∣∣q

∫ ∣∣∇v–

∣∣q =

∫
f
(
tnv–


)
tnv–

. (.)

We first claim that (sn, tn) is bounded. Otherwise, we may assume there is a subsequence
such that sn ≥ tn, sn → ∞. Thus, by (.) and Lemma .(ii), we get  = ∞. This is a contra-
diction. Therefore, there are s, t ≥  and a subsequence (sn, tn) such that (sn, tn) → (s, t).
If s = , by (.) and Lemma .(i), we have

∥∥v+

∥∥q

 = lim
n→∞

∫ f (snv+
)v+



sq–
n

= .

It is absurd in view of v+
 	= . Thus s 	= . We also get t 	=  by (.) in the same way.
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Recall that v±
 satisfies

∥∥v±

∥∥p

 +
∥∥v±


∥∥q

 =
∫

f
(
v±


)
v±

 . (.)

Passing to the limit on n → ∞ in (.), we have


sp



∥∥v+

∥∥p

 +


sp–q


∥∥v+

∥∥q

 =
∫ f (sv+

)v+


sp–


. (.)

Combining (.) and (.) we get

(

sp


– 

)∥∥v+

∥∥p

 +
(


sp–q


– 

)∥∥v+

∥∥q

 =
∫ [

f (sv+
)v+



sp–


– f
(
v+


)
v+



]
. (.)

As follows from (.) and Remark ., we just get s = . And t =  is similar available.
That yields

(sn, tn) → (, ), n → ∞. (.)

Now, we can prove u is a least energy sign-changing solution of (.). In fact, from (.),
we have

I(v) ≤ I(u) = lim
n→∞ In(un) ≤ lim

n→∞ In
(
snv+

 + tnv–

)

= I
(
v+

 + v–

)

= I(v).

Thus, I(u) = I(v) and then u is a least energy sign-changing solution of (.). This
completes the proof of Theorem .. �

Proof of Theorem . (i) Let N and m̃ be given by (.) and (.), respectively. We prove
that the minimizer v for the minimization problem (.) is indeed a ground state solution
of (.), that is, I ′(v) = .

We define a functional H(u) = 〈I ′(u), u〉 for all u ∈ W , that is,

H(u) = ‖u‖p
 + ‖u‖q

 + c
(∫

|∇u|p
)

+ d
(∫

|∇u|q
)

–
∫

f (u)u, u ∈ W . (.)

Since v ∈N , I(v) = m̃, there is a Lagrange multiplier l ∈R such that

I ′(v) – lH ′(v) = . (.)

Hence, l〈H ′(v), v〉 = 〈I ′(v), v〉 = . But it follows from (.), (.), and H(v) =  that

〈
H ′(v), v

〉
= p‖v‖p

 + q‖v‖q
 + pc

(∫
|∇v|p

)

+ qd
(∫

|∇v|q
)

–
∫ [

f ′(v)v + f (v)v
]

< –p‖v‖p
 – (p – q)‖v‖q

 – (p – q)d
(∫

|∇v|q
)

< .

Thus we have l = . Then (.) implies that I ′(v) = . Therefore, v is a ground state solution
of (.).
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(ii) From Theorem ., we know that equation (.) has a least energy sign-changing
solution u. Let u = u+ + u– with u± 	= . Then, combining 〈I ′(u±), u±〉 < 〈I ′(u), u±〉 =  and
Lemma ., there is a unique tu+ , su– ∈ (, ) such that tu+ u+, su– u– ∈ N . Then it follows
from the definition of m̃ that

m̃ ≤ I
(
tu+ u+)

= I
(
tu+ u+)

–


p
〈
I ′(tu+ u+)

, tu+ u+〉

=


p
tp
u+

∥∥u+∥∥p
 +

(

q

–


p

)
tq
u+

∥∥u+∥∥q
 +

(


q
–


p

)
dtq

u+

(∫ ∣∣∇u+∣∣q
)

+


p

∫ [
f
(
tu+ u+)

tu+ u+ – pF
(
tu+ u+)]

<


p
∥∥u+∥∥p

 +
(


q

–


p

)∥∥u+∥∥q
 +

(


q
–


p

)
d
(∫ ∣∣∇u+∣∣q

)

+


p

∫ [
f
(
u+)

u+ – pF
(
u+)]

. (.)

Similarly, we have

m̃ <


p
∥∥u–∥∥p

 +
(


q

–


p

)∥∥u–∥∥q
 +

(


q
–


p

)
d
(∫ ∣∣∇u–∣∣q

)

+


p

∫ [
f
(
u–)

u– – pF
(
u–)]

. (.)

Combining (.) and (.), we have

m̃ <


p
(∥∥u+∥∥p

 +
∥∥u–∥∥p



)
+

(

q

–


p

)(∥∥u+∥∥q
 +

∥∥u–∥∥q


)

+
(


q

–


p

)
d
[(∫ ∣∣∇u+∣∣q

)

+
(∫ ∣∣∇u–∣∣q

)]

+


p

∫ [
f
(
u+)

u+ – pF
(
u+)

+ f
(
u–)

u– – pF
(
u–)]

<


p
‖u‖p

 +
(


q

–


p

)
‖u‖q

 +
(


q

–


p

)
d
(∫

|∇u|q
)

+


p

∫ [
f (u)u – pF(u)

]

= I(u)u –


p
〈
I ′(u), u

〉

= I(u) = m.

That is, m > m̃. This implies that m̃ cannot be obtained by a sign-changing solution. This
completes the proof. �

Appendix
Lemma A. If un ⇀ u in W , then u±

n ⇀ u± in W .
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Proof We only prove u+
n ⇀ u+ in W , u–

n ⇀ u– in W is similar.
Since un ⇀ u in W , {un} is bounded in W . Moreover, {u+

n} is bounded in W . Then there
exist a subsequence {u+

nk
} and v ∈ W such that

u+
nk

⇀ v in W .

Then

u+
nk

→ v in Ls(
R

N)
, s ∈ [

q, p∗),

u+
nkj

(x) → v(x) a.e. on R
N .

Since {un} is bounded in W , we have

unkj
⇀ u in W ,

unkj
→ u in Ls(

R
N)

, s ∈ [
q, p∗),

unkjl
(x) → u(x) a.e. on R

N ,

u+
nkjl

(x) → u+(x) a.e. on R
N .

Thus, v = u+. Then the proof is completed. �

Lemma A. If un → u in W , then u±
n → u± in W .

Proof Since un → u in W , by the definition of W and Lemma A., we have

un → u in Wp,a,h, un → u in Wq,b,g ,

un ⇀ u in Wp,a,h, un ⇀ u in Wq,b,g ,

u±
n ⇀ u± in Wp,a,h, u±

n ⇀ u± in Wq,b,g .

By the weak lower semi-continuity of norm, we get

∥∥u±∥∥p
 ≤ lim inf

n→∞
∥∥u±

n
∥∥p

 .

Then

∥∥u+∥∥p
 +

∥∥u–∥∥p
 = ‖u‖p



= lim
n→∞‖un‖p



≥ lim inf
n→∞

∥∥u+
n
∥∥p

 + lim inf
n→∞

∥∥u–
n
∥∥p



≥ ∥∥u+∥∥p
 +

∥∥u–∥∥p
 .

Hence,

∥∥u±∥∥p
 = lim inf

n→∞
∥∥u±

n
∥∥p

 .
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Then there exists a subsequence {unk } such that

lim
k→∞

∥∥u±
nk

∥∥p
 =

∥∥u±∥∥p
 .

Similarly, we can get

lim
j→∞

∥∥u±
nkj

∥∥q
 =

∥∥u±∥∥q
.

Then

lim
j→∞

∥∥u±
nkj

∥∥ =
∥∥u±∥∥.

Combined with the fact that W is a reflexive Banach space, we can get u±
n → u± in W .
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