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Abstract
In this paper, we study the global well-posedness of the 3D incompressible critical
dissipative porous media equation with small initial data in the Triebel-Lizorkin space
Fsp,q(R

3). By a pointwise exponential decay estimate on the Poisson semigroup

e–tν
√
–� and the Fourier localization technique, we generalize the global

well-posedness in the Sobolev spaces Hs
p(R

3) = Fsp,2(R
3) and Hs(R3) = Fs2,2(R

3) into the
general Triebel-Lizorkin spaces Fsp,q(R

3) with s > 3
p , p,q ∈ (1,∞).
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1 Introduction
The incompressible flow in porous media bears important significance in mathematical
physics []. The Cauchy problem of the D incompressible dissipative porous media equa-
tion assumes the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

θt + u · ∇θ + ν�αθ = , x ∈R
, t > ,

u(t, x) = –k(∇p + gγ θ ), x ∈R
, t > ,

div u(t, x) = ,
θ (, x) = θ(x), x ∈R

,

(.)

where  ≤ α ≤ , � =
√

–� is the Zygmund operator, ν >  is the dissipative coefficient,
scalar function θ = θ (t, x) is the liquid temperature, u = u(t, x) is the liquid discharge (flux
per unit area) to model the flow velocity by the Darcy law, k is the matrix of position-
independent medium permeabilities in the different directions, respectively, divided by
the viscosity, p is the pressure, g is the acceleration due to gravity and γ ∈ R

 is the last
canonical vector e. For simplicity, we set g =  and k = I , the identity matrix.

The fractional Laplacian �α is defined through the Fourier transform

�̂αθ (ξ ) = |ξ |αθ̂ (ξ ),  < α < .
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The cases  ≤ α < , α = ,  < α ≤  are called supercritical, critical, subcritical, respec-
tively. Roughly speaking, the critical and supercritical cases are mathematically harder to
deal with than the subcritical case. For the fractional Laplacian �α , we refer the reader to
[–].

According to the Darcy law and the incompressibility condition, for x ∈R
 one has []

–�xu(t, x) = curl
(
curl u(t, x)

)

=
(

–
∂θ

∂x ∂x
, –

∂θ

∂x ∂x
,
∂θ

∂x


+
∂θ

∂x


)

,

using the Newton potential formula and integrating by parts, we have

u(t, x) = –


(
, , θ (t, x)

)
+


π

P.V.
∫

R
K(x – y)θ (t, y) dy

:= C(θ ) + S(θ ),

where the integral kernel is

K(x) =
(

xx

|x| ,
xx

|x| ,
x

 – x
 – x


|x|

)

,

x = (x, x, x) ∈R
, and C = (Ck),S = (Sk),  ≤ k ≤ , are all operators mapping scalar func-

tions to vector-valued functions and Ck equals a constant multiplication operator whereas
Sk means a Calderón-Zygmund singular integral operator.

The global and local well-posedness of the Cauchy problem (.) have been intensively
investigated in the last few years.

Córdoba, Gancedo, and Orive [] studied the analytical behavior of solutions with in-
finite energy in the case ν =  (without dissipation) in the two dimensional space, they
obtained the local existence and uniqueness by the particle trajectory method in Hölder
spaces Cs(R) for  < s <  and gave some blow-up criteria. Very recently, Córdoba, Faraco,
and Gancedo [] proved the non-uniqueness of solutions in L∞(T) (T is the two di-
mensional flat torus) in space and time, Bae and Granero-Belinchón [] studied transport
equations with different nonlocal velocity fields and proved global weak solutions for very
rough initial data (merely L+) for a one dimensional model of the incompressible porous
media equation, and one dimensional and n dimensional models of the dissipative incom-
pressible porous medium equation in the periodic domain.

Castro et al. [] obtained the existence of strong solutions with regular initial data in the
Sobolev space θ(x) ∈ Hs(RN ) (s > ) for the subcritical case  < α ≤ . For the supercritical
case  ≤ α < , they also obtained the local well-posedness in the space Hs(RN ), s > N–α

 +,
and they extended it to be global under a smallness condition ‖θ‖Hs < cν on the initial
data θ ∈ Hs with s > N

 + . In the critical case α = , the existence of strong solutions was
obtained. They also proved the global existence of weak solutions with  ≤ α ≤ .

Due to the method established by Hmidi and Keraani [] for the quasi-geostrophic equa-
tion for  < α < , Xue [] established the local well-posedness of the porous media equa-
tion (.) in the Besov space Bs

p,(RN ) ( ≤ p < ∞, s ≥  + N
p –α) and in Bs∞,(RN )∩ Ḃ∞,(RN )

(s ≥ –α), respectively. Furthermore, Xue [] also obtained the global well-posedness with
small initial data in Ḃ–α∞,(RN ).
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For the critical case α = , by the method of modulus of continuity [] and the Fourier
localization technique, Yuan and Yuan [] proved the global well-posedness in the critical

Besov space Ḃ

p
p,(R),  ≤ p ≤ ∞.

Based on Besov space techniques and the method of modulus of continuity, Yamazaki
[] studied the regularized IPM equation in the supercritical regime and the global well-
posedness was established in the Sobolev space Hm(R), m ∈ Z

+, m > 
 .

We recall that the Triebel-Lizorkin space is a unification of most of the classical function
spaces used in partial differential equations such as Lebesgue space Lp(RN ), Sobolev space
Hs

p(RN ) and Hölder space Cs(RN ) for s > . Chae discussed the local well-posedness and
blow-up criterion in the Triebel-Lizorkin space, respectively, for the Euler equation in []
and for the quasi-geostrophic equation in []. Wang and Tang [–] studied the long
time dynamics of D quasi-geostrophic equations.

In this paper, we focus on the critical case α =  in the Triebel-Lizorkin space Fs
p,q(R)

with s > 
p , p, q ∈ (,∞). With the aid of the pointwise exponential decay estimate of the

fractional heat semigroup e–tν�α ,

∣
∣e–tν�α

�̇jf (x)
∣
∣ ≤ Ce–ctjαM(�̇jf )(x), j ∈ Z, (.)

where �̇j is the Littlewood-Paley projection to the annulus {|ξ | ∼ j} and M is the Hardy-
Littlewood maximal operator, if we work in a suitable space-time Triebel-Lizorkin space,
after integrating in time we can get α derivatives from (.). Especially, for α = , we can
obtain the first order derivative which exactly balances the nonlinear term.

Our main result reads as follows.

Theorem . Assume that α =  and θ ∈ Fs
p,q(R) with s > 

p , p, q ∈ (,∞). If there exists a
positive constant ε such that ‖θ‖Fs

p,q < ε, then the Cauchy problem (.) of D incompress-
ible critical dissipative porous media equation possesses a unique global solution θ (t, x)
such that

θ (t, x) ∈ C
(
[, +∞); Fs

p,q
) ∩ L̃(, +∞; Ḟs+

p,q
)
.

Remark . Since Fs
p,(RN ) = Hs

p(RN ), Theorem . implies that the Cauchy problem
(.) has a global solution with small initial data in the Sobolev space Hs

p(R), s > 
p ,

 < p < ∞.

Throughout this paper, C stands for a constant which may vary from line to line. We
shall sometimes use the notation A � B instead of A ≤ CB, and A ≈ B means that A � B
and B � A.

2 Preliminaries
In this section, we provide a characterization of the Triebel-Lizorkin space based on the
Littlewood-Paley decomposition. We follow [, , –].

We start with the dyadic partition of unity. Choose two nonnegative radial functions
χ ,ϕ ∈ S(RN ), supported, respectively, in the ball B = {ξ ∈ R

N , |ξ | ≤ 
 } and in the ring
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C = {ξ ∈R
N , 

 ≤ |ξ | ≤ 
 }, such that

χ (ξ ) +
∑

j≥

ϕ
(
–jξ

)
= , ξ ∈R

N , (.)

∑

j∈Z
ϕ
(
–jξ

)
= , ξ ∈R

N \ {}. (.)

Then for u ∈ S ′(RN ), the homogeneous dyadic block �̇j, and the nonhomogeneous dyadic
block �j are defined as follows:

�̇ju(x) = ϕ
(
–jD

)
u(x) = F–(ϕ

(
–jξ

)
û(ξ )

)
(x), ∀j ∈ Z; (.)

�ju(x) = , j ≤ –; �–u = χ (D)u, �ju(x) = ϕ
(
–jD

)
u, j ≥ . (.)

The homogeneous low-frequency cut-off operator Ṡj is defined by

Ṡju = χ
(
–jD

)
u, j ∈ Z. (.)

It is easily checked that

�̇j�̇ku = , |j – k| ≥ . (.)

�̇j(Ṡk–u�̇ku) = , |j – k| ≥ . (.)

Using the notations �̇j and Ṡj, the usual product uv of two distributions u and v can be
decomposed into three parts in terms of the paraproduct operators introduced by Bony
[].

Formally, we can write the homogeneous Bony paraproduct decomposition

uv = Tuv + Tvu + R(u, v), (.)

where

Tuv =
∑

j∈Z
Ṡj–u�̇jv, R(u, v) =

∑

j∈Z

∑

|ν|≤

�̇j–νu�̇jv.

Let us now introduce the Triebel-Lizorkin spaces.

Definition . Let s ∈ R, p, q ∈ [,∞]. The homogeneous Triebel-Lizorkin space Ḟs
p,q is

defined by

Ḟs
p,q

(
R

N)
=

{
u ∈ S ′(

R
N)

/P
(
R

N)
,‖u‖Ḟs

p,q < ∞}
,

here S ′/P denotes the space of tempered distributions modulus polynomials and

‖u‖Ḟs
p,q =

∥
∥
∥
∥
(
js�̇ju

)

j∈Z
∥
∥

lq
∥
∥

Lp(RN ).
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The nonhomogeneous Triebel-Lizorkin space Fs
p,q(RN ) is defined by

Fs
p,q

(
R

N)
=

{
u ∈ S ′(

R
N)

,‖u‖Fs
p,q < ∞}

with

‖u‖Fs
p,q

(
R

N)
=

∥
∥
∥
∥
(
js�ju

)

j≥–

∥
∥

lq
∥
∥

Lp(RN ).

Remark . We point out that if s > , we have Fs
p,q(RN ) = Ḟs

p,q(RN ) ∩ Lp(RN ), then by the
definition of the nonhomogeneous Triebel-Lizorkin space, the Minkowski inequality, and
the fact that ‖�–u‖Lp ≤ C‖u‖Lp , we get

‖u‖Fs
p,q ≈ ‖u‖Ḟs

p,q + ‖u‖Lp

≈ ‖u‖Ḟs
p,q + ‖�–u‖Lp .

Remark . (Chae []) If s > N
p , Fs

p,q(RN ) ↪→ L∞(RN ), p, q ∈ [,∞].

The following space-time Triebel-Lizorkin space will play an important role in the proof
of Theorem ..

Definition . Let s ∈ R, p, q, r ∈ [,∞], I ⊂ R be an interval. The homogeneous space-
time Triebel-Lizorkin space L̃r(I; Ḟs

p,q(RN )) is the set of all distributions satisfying

‖u‖L̃r (I;Ḟs
p,q) =

∥
∥
∥
∥
(
js‖�̇ju‖Lr

t (I)
)

j∈Z
∥
∥

lq
∥
∥

Lp < ∞.

We can also define the inhomogeneous space-time Triebel-Lizorkin space L̃r(I; Fs
p,q(RN )).

By Remark ., if s > ,

‖u‖L̃r (I;Fs
p,q) ≈ ‖u‖L̃r (I;Ḟs

p,q) + ‖u‖Lr
t (I;Lp)

≈ ‖u‖L̃r (I;Ḟs
p,q) + ‖�–u‖Lr

t (I;Lp).

For simplicity, we use L̃r
t Ḟ s

p,q, L̃rḞs
p,q to denote L̃r(, t; Ḟs

p,q) and L̃r(,∞; Ḟs
p,q), respectively.

For a locally integrable function f , the Hardy-Littlewood maximal function Mf is defined
by

Mf (x) = sup
r>


|B(x, r)|

∫

B(x,r)

∣
∣f (y)

∣
∣dy,

where |B(x, r)| denotes the volume of the ball B(x, r) with center x and radius r.
The following vector-valued maximal inequality, which can be found in [], plays a

fundamental tool in the proof of product estimate.

Lemma . (Vector-valued maximal inequality) Let  < p < ∞,  ≤ q ≤ ∞, and {uj}j∈Z be
a sequence of functions in Lp(lq). Then we have

∥
∥‖Muj‖lq

∥
∥

Lp �
∥
∥‖uj‖lq

∥
∥

Lp .
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The following lemma is proved by Stein [].

Lemma . Let φ be an integrable function onR
N and the least decreasing radial majorant

of φ be integrable, i.e.,

∫

RN
sup

|y|≥|x|

∣
∣φ(y)

∣
∣dx = A < ∞.

Then for any u ∈ Lp(RN ),  ≤ p ≤ ∞, we have

sup
ε>

εN ∣
∣
(
u ∗ φ(ε·))(x)

∣
∣ ≤ AMu(x).

Lemma . (Frazier-Torres-Weiss []) The Calderón-Zygmund singular integral opera-
tor is bounded from the Triebel-Lizorkin space Fs

p,q into itself.

Using Lemma ., we can control u constantly by θ modulus multiplication by a constant
in the space Fs

p,q.
Finally, let us recall the maximum principle.

Lemma . Let θ be the smooth solution to the Cauchy problem (.) with α ∈ (, ). Then
we have

∥
∥θ (t)

∥
∥

Lp ≤ ∥
∥θ ()

∥
∥

Lp ,  ≤ p ≤ ∞. (.)

Proof Hmidi and Keraani [] established a maximum principle (.) for the quasi-
geostrophic equation and the result does not depend on the space dimension. Following
the idea of proof in [] we can prove that (.) holds also for the D incompressible porous
media equation similarly. Here we omit it. �

Remark . We can get an explicit decay estimates of the Lp norm in θ using the methods
developed by Córdoba and Córdoba [], however, the boundedness is enough for the
proof of Theorem ..

3 Proof of Theorem 1.1
In this section, we prove Theorem .. We divide the proof into four steps.

Step . A priori estimates. Firstly, we rewrite (.) in the following integral form:

θ (t) = e–νt�θ –
∫ t


e–(t–s)ν�∇ · (uθ )(s) ds, (.)

where we have used the fact that ∇ · u = .
Then localizing (.) through the Fourier localization operator �̇j and using estimates

in Lemma A. in the Appendix, we get

∣
∣�̇jθ (t, x)

∣
∣� e–cνtjM(�̇jθ)(x) +

∫ t


e–cν(t–s)j jM

(
�̇j(uθ )

)
(s, x) ds. (.)
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Taking L∞, L norm, respectively, with respect to t on both sides of (.) and using Young’s
inequality give

∥
∥�̇jθ (·, x)

∥
∥

L∞
t
�M(�̇jθ)(x) + j∥∥M

(
�̇j(uθ )

)
(·, x)

∥
∥

L
t
, (.)

∥
∥�̇jθ (·, x)

∥
∥

L
t
� 

ν
–jM(�̇jθ)(x) +


ν

∥
∥M

(
�̇j(uθ )

)
(·, x)

∥
∥

L
t
. (.)

Multiplying js on both sides of (.), taking lq(Z) norm, then taking Lp norm, we get

‖θ‖L̃∞Ḟs
p,q

� ‖θ‖Ḟs
p,q + ‖uθ‖L̃Ḟs+

p,q
,

due to the Lemma ., using the product estimate in Lemma A. we obtain

‖θ‖L̃∞Ḟs
p,q

� ‖θ‖Ḟs
p,q + ‖u‖L̃∞

t L∞
x

‖θ‖L̃
t Ḟs+

p,q
+ ‖θ‖L̃∞

t L∞
x

‖u‖L̃
t Ḟs+

p,q

� ‖θ‖Ḟs
p,q + ‖u‖L̃∞

t Fs
p,q

‖θ‖L̃
t Ḟs+

p,q
+ ‖θ‖L̃∞

t Fs
p,q

‖u‖L̃
t Ḟs+

p,q
,

according to the property of the Calderón-Zygmund singular integral operator in
Lemma . we get

‖θ‖L̃∞
t Ḟs

p,q
� ‖θ‖Ḟs

p,q + ‖θ‖L̃
t Ḟs+

p,q
‖θ‖L̃∞

t Fs
p,q

. (.)

Similarly to (.), we get

ν‖θ‖L̃
t Ḟs+

p,q
� ‖θ‖Ḟs

p,q + ‖θ‖L̃
t Ḟs+

p,q
‖θ‖L̃∞

t Fs
p,q

. (.)

Combining (.), (.), and using Lemma ., we get

‖θ‖L̃∞
t Fs

p,q
+ ν‖θ‖L̃

t Ḟs+
p,q

� ‖θ‖Fs
p,q + ‖θ‖L̃

t Ḟs+
p,q

‖θ‖L̃∞
t Fs

p,q
. (.)

Step . Approximate solutions and uniform estimates. We construct the following suc-
cessive approximate sequence {θn}:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tθ
n+ + un · ∇θn+ + ν�θn+ = , x ∈R

, t > ,
un = C(θn) + S(θn), x ∈R

, t > ,
div un = ,
θn+(, x) = Sn+θ,

(.)

where Sj (j ≥ ) are low-frequency cut-off operators which are defined similarly by (.):

Sju = χ
(
–jD

)
u, j ∈ N∪ .

Setting (θ, u) = (, ), and solving the linear system, we can find {θn, un}n∈N for all
n ∈N. As in Step , we can deduce that

∥
∥θn+∥∥

L̃∞
t Fs

p,q
+ ν

∥
∥θn+∥∥

L̃
t Ḟs+

p,q

≤ C
(∥
∥θn+


∥
∥

Fs
p,q

+
∥
∥θn∥∥

L̃
t Ḟs+

p,q

∥
∥θn+∥∥

L̃∞
t Fs

p,q
+

∥
∥θn∥∥

L̃∞
t Fs

p,q

∥
∥θn+∥∥

L̃
t Ḟs+

p,q

)
. (.)
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If we take ε > , such that ‖θ‖Fs
p,q ≤ ε, ε ≤ ν

C , then we claim that, for all n ∈N,

∥
∥θn∥∥

L̃∞Fs
p,q

+ ν
∥
∥θn∥∥

L̃Ḟs+
p,q

≤ C‖θ‖Fs
p,q . (.)

In fact, assume that

∥
∥θn∥∥

L̃∞Fs
p,q

+ ν
∥
∥θn∥∥

L̃Ḟs+
p,q

≤ C‖θ‖Fs
p,q .

It follows from (.) that

∥
∥θn+∥∥

L̃∞
t Fs

p,q
+ ν

∥
∥θn+∥∥

L̃
t Ḟs+

p,q

≤ C‖θ‖Fs
p,q +

C
ν

(∥
∥θn∥∥

L̃∞
t Fs

p,q
+ ν

∥
∥θn∥∥

L̃
t Ḟs+

p,q

)(∥
∥θn+∥∥

L̃∞
t Fs

p,q
+ ν

∥
∥θn+∥∥

L̃
t Ḟs+

p,q

)

≤ C‖θ‖Fs
p,q +



(∥
∥θn+∥∥

L̃∞Fs
p,q

+ ν
∥
∥θn+∥∥

L̃Ḟs+
p,q

)
,

which implies (.).
Step . Compactness arguments and existence. We will show that the sequence {θn} has

a subsequence converging to a solution of the Cauchy problem (.) in D′(R+ ×R
). The

proof is based on compactness arguments.
Firstly, we show that ∂tθ

n is uniformly bounded in space-time Triebel-Lizorkin L∞
t (Fs–

p,q ).
By (.), we have

∥
∥∂tθ

n+∥∥
Fs–

p,q
≤ ∥

∥∇ · (unθn+)∥∥
Fs–

p,q
+ ν

∥
∥�θn+∥∥

Fs–
p,q

≤ ∥
∥unθn+∥∥

Fs
p,q

+ ν
∥
∥θn+∥∥

Fs
p,q

,

due to the fact that Fs
p,q (s > 

p ) is a Banach algebra and the property of the Calderón-
Zygmund singular integral operator in Lemma .,

∥
∥∂tθ

n+∥∥
Fs–

p,q
≤ ∥

∥un∥∥
Fs

p,q

∥
∥θn+∥∥

Fs
p,q

+ ν
∥
∥θn+∥∥

Fs
p,q

≤ C
∥
∥θn∥∥

Fs
p,q

∥
∥θn+∥∥

Fs
p,q

+ ν
∥
∥θn+∥∥

Fs
p,q

. (.)

On the other hand, since L̃∞Fs
p,q ↪→ L∞Fs

p,q, (.) and (.) imply that

∥
∥∂tθ

n+∥∥
L∞Fs–

p,q
< ∞. (.)

Now let us turn to the proof of the existence. We note that for any ψ ∈ S(R), the map
u �−→ ψu is compact from Hs

p into Ht
p for s > t, p < ∞, together with the Sobolev embed-

ding

Fs
p,q ↪→ Fs–ε

p, = Hs–ε
p ↪→ Lp, ∀s > ε, ε > ,

we thus get the map u �−→ ψu is compact from Fs
p,q(R) into Lp(R). Thus by the Lions-

Aubin compactness theorem, we can conclude that there exist a subsequence {θnk } and a
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function θ such that

lim
k→∞

θnk = θ in LP
loc

(
R+ ×R

).

Moreover, the uniform estimate (.) allows us to conclude that θ (t, x) ∈ L̃∞Fs
p,q ∩ L̃Ḟs+

p,q ,
and

‖θ‖L̃∞Fs
p,q

+ ν‖θ‖L̃Ḟs+
p,q

≤ C‖θ‖Fs
p,q . (.)

Finally, by a standard limit argument, we can prove that the limit function θ (t, x) satisfies
the Cauchy problem (.) in the sense of distribution.

We still have to prove that θ (t, x) ∈ C(,∞; Fs
p,q). From the definition of the Triebel-

Lizorkin space and the Minkowski inequality we have

∥
∥θ (t) – θ

(
t′)∥∥

Fs
p,q

≤
∥
∥
∥
∥

(∑

j<N

jsq∣∣�jθ (t) – �jθ
(
t′)∣∣q

) 
q
∥
∥
∥
∥

Lp

+ 
∥
∥
∥
∥

(∑

j≥N

jsq‖�jθ‖q
L∞

t

) 
q
∥
∥
∥
∥

Lp
, ∀N ∈N.

From (.), for ε > , there exists a number N ∈N such that

∥
∥
∥
∥

(∑

j≥N

jsq‖�jθ‖q
L∞

t

) 
q
∥
∥
∥
∥

Lp
≤ ε


,

while

∥
∥
∥
∥

(∑

j<N

jsq∣∣�jθ (t) – �jθ
(
t′)∣∣q

) 
q
∥
∥
∥
∥

Lp
�

∣
∣t – t′∣∣ ·

∥
∥
∥
∥

(∑

j<N

jsq‖∂t�jθ‖q
L∞
R+

) 
q
∥
∥
∥
∥

Lp

�
∣
∣t – t′∣∣N‖∂tθ‖L̃∞Fs–

p,q
.

Equation (.) allows us to finish the proof of continuity in time, that is, θ (t, x) ∈
C(,∞; Fs

p,q).
Step . Uniqueness. Assume that θ ′(t, x) ∈ L̃∞Fs

p,q ∩ L̃Ḟs+
p,q is another solution of the

Cauchy problem (.) with the same initial data θ(x).
Let δθ = θ – θ ′ and δu = u – u′, then (δθ , δu) satisfies the following Cauchy problem:

⎧
⎪⎨

⎪⎩

∂tδθ + u · ∇δθ + ν�δθ = –δu · ∇θ ′, x ∈R
, t > ,

div u = ,
δθ (, x) = .

(.)

Following the same procedure of estimate leading to (.), by Lemma A. in the
Appendix and Lemma . we can obtain

‖δθ‖L̃∞
T Ḟs

p,q
+ ν‖δθ‖L̃

T Ḟs+
p,q

� ‖u · δθ‖L̃
T Ḟs+

p,q
+

∥
∥δu · θ ′∥∥

L̃
T Ḟs+

p,q
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� ‖u‖L̃∞
T Fs

p,q
‖δθ‖L̃

T Ḟs+
p,q

+ ‖δθ‖L̃∞
T Fs

p,q
‖u‖L̃

T Ḟs+
p,q

+ ‖δu‖L̃∞
T Fs

p,q

∥
∥θ ′∥∥

L̃
T Ḟs+

p,q
+

∥
∥θ ′∥∥

L̃∞
T Fs

p,q
‖δu‖L̃

T Ḟs+
p,q

� ‖δθ‖L̃∞
T Fs

p,q

(‖θ‖L̃
T Ḟs+

p,q
+

∥
∥θ ′∥∥

L̃
T Ḟs+

p,q

)

+ ‖δθ‖L̃
T Ḟs+

p,q

(‖θ‖L̃∞
T Fs

p,q
+

∥
∥θ ′∥∥

L̃∞
T Fs

p,q

)
. (.)

In order to get the estimates in the inhomogeneous mixed time-space Triebel-Lizorkin
space, it remains to estimate ‖�–(δθ )‖L∞

T Lp
x
. To do this, we apply the operator �– on

both sides of (.). Modifying slightly the proof of Proposition . in [], together with
the maximum principle, Bernstein’s inequality [], and Hölder’s inequality yield

∥
∥�–(δθ )

∥
∥

L∞
T Lp

x
≤

∫ T



∥
∥�–

(
δu · ∇θ ′ + u · ∇δθ

)∥
∥

Lp dt

≤
∫ T



∥
∥∇ · �–

(
θ ′δu + uδθ

)∥
∥

Lp dt

�
∫ T



∥
∥θ ′δu + uδθ

∥
∥

Lp dt,

thus the property of Calderón-Zygmund singular integral operator in Lemma . and the
Sobolev embedding Fs

p,q ↪→ Lp (s > ) imply that

∥
∥�–(δθ )

∥
∥

L∞
T Lp

x
�

∫ T



(‖u‖L∞
x ‖δθ‖Lp + ‖δu‖Lp

∥
∥θ ′∥∥

L∞
x

)
dt

� T
(‖θ‖L̃∞

T Fs
p,q

+
∥
∥θ ′∥∥

L̃∞
T Fs

p,q

)‖δθ‖L̃∞
T Fs

p,q
. (.)

Combining (.) and (.), we get

‖δθ‖L̃∞
T Fs

p,q
+ ‖δθ‖L̃

T Ḟs+
p,q

≤ C
(‖δθ‖L̃∞

T Fs
p,q

+ ‖δθ‖L̃
T Ḟs+

p,q

)

· (‖θ‖L̃
T Ḟs+

p,q
+ ( + T)

(‖θ‖L̃∞
T Fs

p,q
+

∥
∥θ ′∥∥

L̃∞
T Fs

p,q

)
+

∥
∥θ ′∥∥

L̃
T Ḟs+

p,q

)
.

Since θ (t, x), θ ′(t, x) satisfy (.), if ε and T have been chosen small enough then it
follows that δθ (t, x) =  on [, T]×R

. By a standard continuation argument, we can show
that δθ (t, x) =  in [,∞) ×R

, i.e. θ (t, x) = θ ′(t, x).
This completes the proof of Theorem ..

Appendix
In this section, we provide the product estimate in the space-time Triebel-Lizorkin spaces
which is used in the proof of Theorem .. Chen and Zhang [] established the estimate
by the Littlewood-Paley trichotomy decomposition. Here we give a proof by the Bony
paraproduct technique.

Lemma A. (Product estimate) Assume that u, v ∈ L̃∞
T (Fs

p,q(RN )) ∩ L̃
T (Ḟs+

p,q (RN )), s > N
p ,

 < p < ∞,  ≤ q ≤ ∞. Then

‖uv‖L̃
T Ḟs+

p,q
≤ C

(‖u‖L̃∞
T Fs

p,q
‖v‖L̃

T Ḟs+
p,q

+ ‖u‖L̃
T Ḟs+

p,q
‖v‖L̃∞

T Fs
p,q

)
, (A.)

here C is a constant only depending on s.
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Proof Using Bony’s paraproduct decomposition and the property of quasi-orthogonality
(.)-(.), ∀j ∈ Z, we have

�̇j(uv) =
∑

|k–j|≤

�̇j(Ṡk–u�̇kv) +
∑

|k–j|≤

�̇j(Ṡk–v�̇ku) +
∑

k≥j–

∑

|ν|≤

�̇j(�̇k–νu�̇kv)

= I + II + III. (A.)

Thus we have

‖uv‖L̃
T Ḟs+

p,q
≤ ∥

∥
∥
∥
(
j(s+)‖I‖L

T

)

j∈Z
∥
∥

lq
∥
∥

Lp + · · · +
∥
∥
∥
∥
(
j(s+)‖III‖L

T

)

j∈Z
∥
∥

lq
∥
∥

Lp

= I ′ + II ′ + III ′. (A.)

We shall estimate the above three terms, respectively.
For the first term I ′ on the RHS of (A.), by using the Minkowski inequality, the Young

inequality, Lemma ., and Lemma ., we get

I ′ ≤
∥
∥
∥
∥

∥
∥
∥
∥

(

j(s+)
∑

|k–j|≤

∥
∥M(Ṡk–u�̇kv)

∥
∥

L
T

)

j∈Z

∥
∥
∥
∥

lq

∥
∥
∥
∥

Lp

�
∥
∥
∥
∥

∥
∥
∥
∥

(

j(s+)
∑

|k–j|≤

‖u‖L∞
T L∞

x

∥
∥M(�̇kv)

∥
∥

L
T

)

j∈Z

∥
∥
∥
∥

lq

∥
∥
∥
∥

Lp

� ‖u‖L∞
T L∞

x

∥
∥
∥
∥

∥
∥
∥
∥

( ∑

|k–j|≤

(j–k)(s+) · k(s+)∥∥M(�̇kv)
∥
∥

L
T

)

j∈Z

∥
∥
∥
∥

lq

∥
∥
∥
∥

Lp

� ‖u‖L∞
T L∞

x

∥
∥
∥
∥
(
j(s+)∥∥M(�̇jv)

∥
∥

L
T

)

j∈Z
∥
∥

lq
∥
∥

Lp

� ‖u‖L∞
x L∞

T

∥
∥
∥
∥
(
j(s+)‖�̇jv‖L

T

)

j∈Z
∥
∥

lq
∥
∥

Lp

� ‖u‖L̃∞
T Fs

p,q
‖v‖L̃

T Ḟs+
p,q

. (A.)

Similarly, for the second term II ′ on the RHS of (A.), we have

II ′ � ‖u‖L̃
T Ḟs+

p,q
‖v‖L̃∞

T Fs
p,q

. (A.)

Now, we turn to estimate the third term III ′ on the RHS of (A.). From the Young in-
equality, Lemma ., and Lemma ., we have

III ′ �
∥
∥
∥
∥

∥
∥
∥
∥

(

j(s+)
∑

k≥j–

∑

|ν|≤

∥
∥M(�̇k–νu�̇kv)

∥
∥

L
T

)

j∈Z

∥
∥
∥
∥

lq

∥
∥
∥
∥

Lp

� ‖u‖L∞
T L∞

x

∥
∥
∥
∥

∥
∥
∥
∥

(

j(s+)
∑

k≥j–

∥
∥M(�̇kv)

∥
∥

L
T

)

j∈Z

∥
∥
∥
∥

lq

∥
∥
∥
∥

Lp

� ‖u‖L∞
T L∞

x

∥
∥
∥
∥

∥
∥
∥
∥

(

(j–k)(s+)
∑

k≥j–

k(s+)‖�̇kv‖L
T

)

j∈Z

∥
∥
∥
∥

lq

∥
∥
∥
∥

Lp

� ‖u‖L̃∞
T Fs

p,q
‖v‖L̃

T Ḟs+
p,q

. (A.)

Summing up (A.)-(A.), we obtain the product estimate (A.). �
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Next we give a decay estimate of the fractional heat semigroup e–tν(–�)
α
 on distribu-

tions with Fourier transforms supported in the annulus. The result is due to Chen and
Zhang [] in the D case and was used in a crucial way for the proof of Theorem .. For
convenience of the reader, we will give a short proof.

Lemma A. Let α ∈ (, ], j ∈ Z. We have the following decay estimates:

∣
∣e–tν�α

�̇jf (x)
∣
∣ ≤ Ce–ctjαM(�̇jf )(x), ∀x ∈R

, t > , (A.)
∣
∣e–tν�α∇ · �̇jf (x)

∣
∣ ≤ Cje–ctjαM(�̇jf )(x), ∀x ∈R

, t > , (A.)

where C and c are positive constants independent of t, j.

Proof We consider a function φ ∈D(R \B(, 
 )), the value of which is identically  near

the annulus C = {ξ ∈R
, 

 ≤ |ξ | ≤ 
 }. Denote

e–tν�α
�̇jf (x) = F–(e–tν|ξ |αφ

(
–jξ

)̂̇�jf (ξ )
)
(x) =: Kj,t ∗ �̇jf (x), (A.)

where Kj,t(x) = (π )– ∫

R e–tν|ξ |αφ(–jξ )eix·ξ dξ . Since

Kj,t(x) = (π )–j
∫

R
e–tνjα |ξ |αφ(ξ )eijx·ξ dξ =: jK̃j,t

(
jx

)
,

where K̃j,t(x) = (π )– ∫

R e–tνjα |ξ |αφ(ξ )eix·ξ dξ , we have

∣
∣K̃j,t(x)

∣
∣�

∫

suppφ

e–tνjα |ξ |α dξ � e–ctνjα
. (A.)

Next, we study the asymptotic behavior of K̃j,t(x) for large x. Let L(x, D) = x·∇ξ

i|x| , then

L(x, D)eix·ξ = eix·ξ . Consequently, L∗ = L∗(x, D) = – x·∇ξ

i|x| , then for any N∗ ∈N, we have

K̃j,t(x) = (π )–
∫

R
e–tνjα |ξ |αφ(ξ )LN∗(eix·ξ )dξ

= (π )–
∫

R

(
L∗)N∗(

φ(ξ )e–tνjα |ξ |α )
eix·ξ dξ . (A.)

The integrand in (A.) can be majorized by

|x|–N∗ max
(
,

(
tjα|ξ |α–)N∗ , tjα|ξ |α–N∗)e–tνjα |ξ |αχsuppφ .

Thus, we have

∣
∣K̃j,t(x)

∣
∣ ≤ CN∗ |x|–N∗e–ctνjα

∫

suppφ

(
 + tjα|ξ |α)N∗e

–tνjα
 |ξ |α dξ

≤ CN |x|–N∗e–ctνjα
. (A.)

Combining (A.) and (A.), we deduce that

∣
∣Kj,t(x)

∣
∣ ≤ CN∗je–ctνjα (

 +
∣
∣jx

∣
∣
)–N∗ .
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Now, we turn to the proof of the inequality (A.). For N∗ > , we have

∣
∣e–tν(–�)

α

�̇jf (x)

∣
∣

=
∣
∣
∣
∣

∫

R
Kj,t(x – y)�̇jf (y) dy

∣
∣
∣
∣

≤ CN∗je–ctνjα
∫

R

(
 +

∣
∣j(x – y)

∣
∣
)–N∗ ∣∣�̇jf (y)

∣
∣dy

≤ CN∗je–ctνjα
[∫

|x–y|≤–j

∣
∣�̇jf (y)

∣
∣dy

+
∑

l≥

∫

–j+l≤|x–y|≤–j+l+

(
 +

∣
∣j(x – y)

∣
∣
)–N∗ ∣∣�̇jf (y)

∣
∣dy

]

≤ CN∗je–ctνjα
[

M(�̇jf )(x)–j +
∑

l≥

∫

–j+l≤|x–y|≤–j+l+
–lN∗ ∣∣�̇jf (y)

∣
∣dy

]

≤ CN∗je–ctνjα
[

M(�̇jf )(x)–j +
∑

l≥

–lN∗–j+lM(�̇jf )(x)
]

≤ CN∗e–ctνjαM(�̇jf )(x). (A.)

Thus we obtain the desired estimate (A.).
Following the same procedure of estimate leading to (A.), we can prove the estimate

(A.) similarly. �
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