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Abstract
Under appropriate conditions on b(x) and g(u), we consider the singular Dirichlet
problems –�pu = b(x)g(u), u > 0, x ∈ �, u|∂� = 0. These problems are shown to admit
weak solutions, and we analyze their exact asymptotic behavior near the boundary.
As the main tools, we use Karamata regular variation theory and the method of upper
and lower solutions.
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1 Introduction and the main results
The purpose of this paper is to investigate the existence and exact asymptotic behavior of
the solution near the boundary to the following problems:

–�pu = b(x)g(u), u > , x ∈ �, u|∂� = , (.)

where �pu := div(|∇u|p–∇u) stands for the p-Laplacian operator with p > , � is a
bounded domain with smooth boundary in R

N (N ≥ ), b satisfies the condition

(b) b ∈ Cα(�̄) for some α ∈ (, ) and is positive in �,

and g satisfies the following conditions:

(g) g ∈ C((,∞), (,∞)), lims→+ g(s) = ∞, and g ′(s) ≤  for all s > ;
(g)

∫ 


dν

(g(ν))q/p < ∞;
(g) there exists Cg >  such that lims→

q

pg– q
p (s)

g ′(s)
∫ s

 g–q/p(ν) dν = –Cg ,

where q stands for the Hölder conjugate of p.
A solution of (.) is meant as a positive function u ∈ C(�) with u(x) →  as d(x) :=

dist(x, ∂�) →  and
∫

�

|∇u|p–∇u∇φ dx =
∫

�

b(x)g(u)φ dx, ∀φ ∈ C∞
 (�).

The class of problems (.) appears in many nonlinear phenomena, for instance, in the
theory of quasi-regular and quasi-conformal mappings [–], in the generalized reaction-
diffusion theory [], in the turbulent flow of a gas in a porous medium, and in the non-
Newtonian fluid theory [].
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The investigation of problem (.) has a long history. Early studies mainly focused on
problems involving the classical Laplace operator �, that is,

–�u = b(x)g(u), u > , x ∈ �, u|∂� = . (.)

For b ≡  and g(u) = u–γ with γ > , in , Crandall, Rabinowitz, and Tartar [] have
derived that problem (.) has a unique solution u ∈ C+α(�) ∩ C(�̄). This paper is the
starting point on semilinear problem with singular nonlinearity. Moreover, the following
result was established: there exist positive constants c and c such that

c
(
d(x)

)/(+γ ) ≤ u(x) ≤ c
(
d(x)

)/(+γ ) near ∂�. (.)

Lazer and McKenna [] showed that (.) continues to hold on �̄, and instead of b ≡ 
on �, they assumed that  < b ≤ b(x)(d(x))λ ≤ b for all x ∈ �̄, where b, b are positive
constants, and λ ∈ (, ). Later, a lot of work has been done related to the existence and
asymptotic behavior of the solutions to problem (.); we refer to [–] and the references
therein.

It is worth pointing out that Cîrstea and Rǎdulescu [–], Cîrstea and Du [], and
Repovs̆ [] introduced the Karamata regular variation theory to study the boundary be-
havior and uniqueness of solutions for boundary blow-up elliptic problems and obtained
a series of significant information about the qualitative behavior of large solutions in a
general framework.

Recently, by using the Karamata regular variation theory Zhang and Li [], Zhang [],
Zhang and Cheng [], and Mi and Liu [] further studied the boundary behavior of the
solutions to problem (.).

Now, let us return to problem (.). When b(x) ≡  and g(u) = um, the first results con-
cerning (.) ( < p –  < m) have been obtained by Ni and Serrin [, ], who gave a
priori estimates near a singularity. In particular, they show that m = N(p – )/(N – p) is a
critical value. They also obtained nonexistence results for positive solutions in an exterior
domain for p –  < m < N(p – )/(N – p). Guedda and Veron [] give Ni and Serrin’s es-
timates under a slightly weaker hypothesis. Later, Bognara and Drabekb [] deals with
the existence and multiplicity results for radial symmetric solutions of problem (.) for a
more general nonlinearity g(u). In recent years, the existence and uniqueness of positive
solutions for the general quasilinear elliptic problem –�pu = λh(x, u,∇u), u > , x ∈ �,
u|∂� = , has been studied by many authors. Some sufficient conditions on h and � have
been proposed to ensure the existence or nonexistence of solutions; see [–] and the
reference therein. However, to the best of our knowledge, up to now, few papers have ad-
dressed the boundary behavior of solutions to problem (.) for more general nonlinear
terms g .

Inspired by the works mentioned, in this paper, by using Karamata regular variation the-
ory and the method of upper and lower solutions, we show the existence of a solution to
problem (.) and provide some asymptotic boundary estimates under appropriate condi-
tions on b(x) and g(u).

In order to present our main results, we introduce the following two kinds of functions.
Let 
 denote the set of positive nondecreasing functions k ∈ C(,ν) that satisfy

lim
t→+

d
dt

(
K(t)
k(t)

)

= Ck , where K(t) =
∫ t


k(s) ds. (.)
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We note that, for each k ∈ 
,

lim
t→+

K(t)
k(t)

=  and Ck ∈ [, ].

The set 
 was first introduced by Cîrstea and Rǎdulescu.
Next, we denote by � the set of all Karamata functions L̂ that are normalized slowly

varying at zero (see the definition in Section ) defined on (,η] for some η >  by

L̂(s) = c exp

(∫ η

s

y(τ )
τ

dτ

)

, s ∈ (,η], (.)

where c > , and the function y ∈ C([,η]) with y() = .
The key to our estimates in this paper is the solution to the problem

∫ ∞

φ(t)

ds

(f (s))


p–
= t, t > . (.)

Our main results are summarized as follows.

Theorem . Let g satisfy (g)-(g), and b satisfy (b)-(b). Suppose that b also satisfies the
following condition:

(b) the linear problem

–�pu = b(x), u > , x ∈ �, u|∂� = , (.)

has a unique solution v ∈ C,α(�) ∩ C(�̄) for some α ∈ (, ).

Then, problem (.) has at least one solution u ∈ C,α(�) ∩ C(�̄).

Theorem . Let g satisfy (g)-(g), and b satisfy (b)-(b). Suppose that b also satisfies the
following condition:

(b) there exist k ∈ 
 and a positive constant b ∈R such that

lim
d(x)→

b(x)
kp(d(x))

= b.

If

Ck + qCg > q,

then any solution u to problem (.) satisfies

lim
d(x)→

u(x)
φ(Kq(d(x)))

= A–Cg
 , (.)

where φ is uniquely determined by (.), q stands for the Hölder conjugate of p, and

A =

q

(
b

(p – )(qCg + Ck – q)

) 
p–

.
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Theorem . Let g satisfy (g)-(g), and b satisfy (b)-(b). Suppose that b also satisfies the
following condition:

(b) there exist L ∈ � and a positive constant b ∈R such that

lim
d(x)→

b(x)
(d(x))–pL(d(x))

= b.

Then any solution u to problem (.) satisfies

lim
d(x)→

u(x)
φ(h(d(x)))

= A–Cg
 , (.)

where φ is uniquely determined by (.),

h(t) =
∫ t


s–(L(s)

) 
p– ds, (.)

and

A =
(

b

p – 

) 
p–

.

The outline of this paper is as follows. In Sections -, we give some preparation that will
be used in the next section. The proofs of Theorems .-. will be given in Sections -.

2 Preliminaries
Our approach relies on Karamata regular variation theory established by Karamata in
, which is a basic tool in the theory of stochastic processes (see [–] and the refer-
ences therein). In this section, we first give a brief account of the definition and properties
of regularly varying functions.

Definition . A positive measurable function f defined on [a,∞) for some a >  is called
regularly varying at infinity with index ρ , written as f ∈ RV ρ , if for each ξ >  and some
ρ ∈R,

lim
s→∞

f (ξ s)
f (s)

= ξρ . (.)

In particular, when ρ = , f is called slowly varying at infinity.

Clearly, if f ∈ RV ρ , then L(s) := f (s)/sρ is slowly varying at infinity.

Definition . A positive measurable function f defined on [a,∞) for some a >  is called
rapidly varying at infinity if for each ρ > ,

lim
s→∞

f (s)
sρ

= ∞. (.)

We also see that a positive measurable function g defined on (, a) for some a >  is
regularly varying at zero with index σ (written as g ∈ RVZσ ) if t → g(/t) belongs to RV –σ .
Similarly, g is called rapidly varying at zero if t → g(/t) is rapidly varying at infinity.
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Proposition . (Uniform convergence theorem) If f ∈ RV ρ , then (.) holds uniformly
for ξ ∈ [c, c] with  < c < c. Moreover, if ρ < , then the uniform convergence holds on
intervals of the form (a,∞) with a > ; if ρ > , then the uniform convergence holds on
intervals (, a], provided that f is bounded on (, a] for all a > .

Proposition . (Representation theorem) A function L is slowly varying at infinity if and
only if it may be written in the form

L(s) = ϕ(s) exp

(∫ s

a

y(τ )
τ

dτ

)

, s ≥ a, (.)

for some a ≥ a, where the functions ϕ and y are measurable and y(s) →  and ϕ(s) → c >
 as s → ∞.

We say that

L̂(s) = c exp

(∫ s

a

y(τ )
τ

dτ

)

, s ≥ a, (.)

is normalized slowly varying at infinity and

f (s) = csρ L̂(s), s ≥ a, (.)

is normalized regularly varying at infinity with index ρ (and written as f ∈ NRV ρ ).
Similarly, g is called normalized regularly varying at zero with index σ , written as g ∈

NRVZσ if t → g(/t) belongs to NRV –σ .
A function f ∈ RV ρ belongs to NRV ρ if and only if

f ∈ C[a,∞) for some a >  and lim
s→∞

sf ′(s)
f (s)

= ρ. (.)

Proposition . If functions L, L are slowly varying at infinity, then
(i) Lσ for every σ ∈R, cL + cL (c ≥ , c ≥  with c + c > ), L ◦ L (if L(t) → +∞

as t → +∞) are also slowly varying at infinity.
(ii) For every θ > , tθ L(t) → +∞ and t–θ L(t) →  as t → +∞,

(iii) For ρ ∈R, ln(L(t))
ln t →  and ln(tρL(t))

ln t → ρ as t → +∞.

Proposition .
(i) If f ∈ RV ρ and f ∈ RV ρ with limt→∞ f(t) = ∞, then f ◦ f ∈ RV ρρ .

(ii) If f ∈ RV ρ , then f α ∈ RV ρα for every α ∈R.

Proposition . If a function L defined on (,η] is slowly varying at zero, then

lim
t→+

L(t)
∫ η

t
L(s)

s ds
= . (.)

If, moreover,
∫ η


L(s)

s ds converges, then

lim
t→+

L(t)
∫ t


L(s)

s ds
= . (.)
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Proposition . (Asymptotic behavior) If a function L is slowly varying at zero, then, for
a >  and t → +,

(i)
∫ t

 sρL(s) ds ∼= (ρ + )–t+ρL(t) for ρ > –;
(ii)

∫ a
t sρL(s) ds ∼= (–ρ – )–t+ρL(t) for ρ < –.

Proposition . (Proposition . in []) Let Z ∈ C(,η] be positive and limt→+ sZ′(s)
Z(s) =

+∞. Then Z is rapidly varying to zero at zero.

Proposition . (Proposition . in []) Let Z ∈ C(,η) be positive and limt→+ sZ′(s)
Z(s) =

–∞. Then Z is rapidly varying to infinity at zero.

3 Some auxiliary results
In this section, we collect some useful results.

Lemma . Let k ∈ 
. Then
(i) limt→+ K (t)

k(t) = , limt→+ tk(t)
K (t) = C–

k , i.e., K ∈ NRVZC–
k

;

(ii) limt→+ tk′(t)
k(t) = –Ck

Ck
, i.e., k ∈ NRVZ(–Ck )/Ck ; limt→+ K (t)k′(t)

k(t) =  – Ck .

Proof The proof is similar to that of Lemma . in []; so we omit it. �

Lemma . Let

a(t) = t–pL(t)

and

h(t) =
∫ t


s–(L(s)

) 
p– ds,

where t ∈ (, δ),
∫ η

 s–(L(s))


p– ds < ∞ for some η > , and L(s) ∈ �. Then
(i) limt→+ (h′(t))p

h(t)a(t) =  and limt→+ th′(t)
h(t) = ;

(ii) limt→+ th′′(t)
h′(t) = –;

(iii) limt→+ (h′(t))p–h′′(t)
a(t) = –.

Proof (i) Since h′(t) = t–(L(t))


p– , we have

(h′(t))p

h(t)a(t)
=

t–pL
p

p– (t)

t–pL(t)
∫ t

 s–L


p– (s) ds
=

L


p– (t)
∫ t

 s–L


p– (s) ds

and

th′(t)
h(t)

=
L


p– (t)

∫ t
 s–L


p– (s) ds

Hence, by Proposition . we get limt→+ (h′(t))p

h(t)a(t) = limt→+ th′(t)
h(t) = .
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(ii) By a direct computation we get

h′′(t) = –t–(L(t)
) 

p– +


p – 
t–(L(t)

) 
p– –L′(t)

and

th′′(t)
h′(t)

=


p – 
tL′(t)
L(t)

– .

Since L ∈ �, it follows that limt→+ tL′(t)
L(t) = . Hence,

lim
t→+

th′′(t)
h′(t)

= –.

(iii) Since

(h′(t))p–h′′(t)
a(t)

=
th′′(t)
h′(t)

(h′(t))p–

ta(t)
=

th′′(t)
h′(t)

,

by (ii) we get

lim
t→+

(h′(t))p–h′′(t)
a(t)

= –. �

Lemma . Let g satisfy (g)-(g).
(i) If g satisfies (g), then Cg ≤ ;

(ii) (g) holds for Cg ∈ (, ) if and only if g ∈ NRV –pCg /(q(–Cg ));
(iii) (g) holds for Cg =  if and only if g is normalized slowly varying at zero;
(iv) if (g) holds with Cg = , then g is rapidly varying to infinity at zero.

Proof Since g satisfies (g) and is strictly decreasing on (, S), we see that

 <
∫ s




gq/p(ν)

dν <
s

gq/p(s)
, ∀s ∈ (, S),

that is,

 < gq/p(s)
∫ s




gq/p(ν)

dν < s, ∀s ∈ (, S), (.)

and

lim
s→

gq/p(s)
∫ s




gq/p(ν)

dν = . (.)

(i) Let

I(s) = –
q

pg– q
p (s)

g ′(s)
∫ s


g–q/p(ν) dν, ∀s ∈ (, s).
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Integrating I(t) from  to s and integrating by parts, we obtain by (.) that

∫ s


I(t) dt = –gq/p(s)

∫ s




gq/p(ν)

dν + s, ∀s ∈ (, s),

that is,

 <
gq/p(s)

s

∫ s




gq/p(ν)

dν =  –
∫ s

 I(t) dt
s

, ∀s ∈ (, s).

It follows by l’Hospital’s rule that

 ≤ lim
s→+

gq/p(s)
s

∫ s




gq/p(ν)

dν =  – lim
s→+

I(s) =  – Cg . (.)

So (i) holds.
(ii) When (g) holds with Cg ∈ (, ), it follows by (.) that

lim
s→+

g(s)
sg ′(s)

= lim
s→+

q
p gq/p(s)

∫ s



gq/p(ν) dν

q
p sg ′(s)

∫ s



gq/p(ν) dνg

q
p –(s)

= –
q( – Cg)

pCg
, (.)

that is, g ∈ NRV –pCg /(q(–Cg )).
Conversely, when g ∈ NRV –γ with γ > , that is, lims→+

sg′(s)
g(s) = –γ and there exist a

positive constant η and L̂ ∈ � such that g(s) = cs–γ L̂(s), s ∈ (,η], it follows by (.) and
Proposition .(i) that

– lim
s→+

q

pg– q
p (s)

g ′(s)
∫ s


g–q/p(ν) dν = –

q
p

lim
s→+

sg ′(s)
g(s)

lim
s→+

gq/p(s)
s

∫ s


g–q/p(ν) dν

=
qγ

p
lim

s→+
s– qγ

p –(L̂(s)
) q

p

∫ s


ν

qγ
p

(
L̂(ν)

)– q
p dν

=
qγ

p + qγ
.

(iii) By Cg =  and the proof of (ii) we can see that

lim
s→+

sg ′(s)
g(s)

= lim
s→+

q
p sg ′(s)

∫ s



gq/p(ν) dνg

q
p –(s)

q
p gq/p(s)

∫ s



gq/p(ν) dν

=
p
q

(

lim
s→+

gq/p(s)
s

∫ s




gq/p(ν)

dν

)–

lim
s→+

q

pg– q
p (s)

g ′(s)
∫ s


g–q/p(ν) dν

= ,

that is, g is normalized slowly varying at zero.
Conversely, when g is normalized slowly varying at zero, that is, lims→+

sg′(s)
g(s) = , it fol-

lows by (.) that

lim
s→+

q

pg– q
p (s)

g ′(s)
∫ s


g–q/p(ν) dν = lim

s→+

q
p

sg ′(s)
g(s)

gq/p(s)
s

∫ s




gq/p(ν)

dν = .
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(iv) By Cg =  and the proof of (ii) we see that lims→+
g(s)

sg′(s) = , that is, lims→+
sg′(s)
g(s) = –∞,

and by Proposition . we get that g is rapidly varying to infinity at zero. �

Lemma . Let g satisfy (g)-(g), and φ be the solution to the problem

∫ φ(t)



ds

(g(s))


p–
= t, ∀t > .

Then
(i) φ′(t) = (g(φ(t)))


p– , φ(t) > , t > , φ() = , and φ′′(t) = q

p (g(φ(t)))
q–p

p g ′(φ(t)), t > ;
(ii) φ ∈ NRVZ–Cg and φ′ ∈ NRVZ–Cg ;

(iii) when Ck + qCg > q and k ∈ 
, limt→+ t
φ(ξKq(t)) =  uniformly for ξ ∈ [c, c] with

 < c < c, where q stands for the Hölder conjugate of p;
(iv) limt→+ t

φ(ξh(t)) =  uniformly for ξ ∈ [c, c] with  < c < c, where h is given as in
(.).

Proof By the definition of φ and a direct calculation we show that (i) holds.
(ii) It follows from (i), (.), and (g) that

lim
t→+

tφ′(t)
φ(t)

= lim
t→+

t(g(φ(t)))


p–

φ(t)

= lim
s→

(g(s))


p–
∫ s


dν

(g(ν))


p–

s
=  – Cg ,

that is, φ ∈ NRVZ–Cg , and

lim
t→+

tφ′′(t)
φ′(t)

=
q
p

lim
t→+

g ′(φ(t))(g(φ(t)))
q
p
∫ φ(t)

 (g(ν))– 
p– dν

g(φ(t))

=
q
p

lim
s→+

g ′(s)(g(s))
q
p
∫ s

 (g(ν))– 
p– dν

g(s)
= –Cg .

(iii) By Lemma .(i) we see that K ∈ NRVZC–
k

. It follows by Proposition . that φ ◦Kq ∈
NRVZ q(–Cg )

Ck
. Since Ck + qCg > q, the result follows by Proposition .(ii).

(iv) As in the proof of (iii), by Lemma .(i) we see h ∈ NRVZ. It follows by Proposi-
tion . that φ ◦ h ∈ NRVZ. Then the result follows by Proposition .(ii). �

4 Existence of solutions to problem (1.1)
In this section, we prove Theorem ..

Proof of Theorem . Let

H(u) =
∫ u





(g(s))


p–
ds for u > .
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It follows that H : [,∞) → [,∞) is strictly increasing and

H ′(u) =


(g(u))


p–
for u > .

Let ū(x) := H–(v(x)), x ∈ �, where H– denotes the inverse function of H , and v is the
unique classical solution of problem (.). We see that u|∂� =  and

–�pū +
g ′(ū)|∇ū|p

g(ū)
= b(x)g(ū), x ∈ �.

It follows by (g) that

–�pū ≥ b(x)g(ū), x ∈ �,

that is, ū = H–(v) is a supersolution of problem (.).
On the other hand, hypothesis (g) implies that lims→+ g(s) ∈ (,∞], so that

lim
s→+

g(s)
s

= +∞ and lim
s→+

(g(s))


p–

s
= +∞.

There then exists c ∈ (, ) such that

g(c|v|∞)
c

≥  and
(g(c|v|∞))


p–

c
≥ .

Let u = cv. It follows that

–�pu = cb(x) ≤ b(x)g
(
c|v|∞

) ≤ b(x)g(u), x ∈ �,

that is, u = cv is a subsolution of problem (.). Moreover, we see that

H
(
cv(x)

)
=

∫ cv(x)





(g(s))


p–
ds ≤ cv(x)

(g(c|v|∞))


p–
≤ v(x), x ∈ �,

that is, u ≤ ū on �. Therefore, by the lower and upper theorem the claim follows. �

5 Boundary behaviors of solutions to problem (1.1)
In this section, we prove Theorems .-..

First, we need the following comparison principle for weak solutions to quasilinear
equations (see [] for a proof ).

Lemma . (Weak comparison principle) Let D ⊂R
N be a bounded domain, G : D×R →

R be nonincreasing in the second variable and continuous. Let u, w ∈ W ,p(D) satisfy the
respective inequalities

∫

D
|∇u|p–∇u · ∇φ ≤

∫

D
G(x, u)φ and
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∫

D
|∇w|p–∇w · ∇φ ≥

∫

D
G(x, w)φ

for all nonnegative φ ∈ W ,p
 (D). Then the inequality u ≤ w on ∂D implies u ≤ w in D.

Fix ε > . For any δ > , we define �δ = {x ∈ � :  < d(x) < δ}. Since � is C-smooth,
choose δ ∈ (, δ) such that d ∈ C(�δ ) and

∣
∣∇d(x)

∣
∣ = , �d(x) = –(N – )H(x̄) + o(), ∀x ∈ �δ , (.)

where, for x ∈ �δ , x̄ denotes the unique point of the boundary such that d(x) = |x – x̄|, and
H(x̄) denotes the mean curvature of the boundary at that point.

5.1 Proof of Theorem 1.2
Define r = d(x) and

I±(r) = (A ± ε)p–(p – )qp–
(

p
(A ± ε)Kq(r)φ′′((A ± ε)Kq(r))

φ′((A ± ε)Kq(r))
+  +

p
q

K(r)k′(r)
k(r)

)

;

I(x) = (A ± ε)p–qp– K(r)
k(r)

�d(x) +
b(x)
kp(r)

g(φ((A ± ε)Kq(r)))
(φ′((A ± ε)Kq(r)))p– .

By Lemmas . and ., combined with the choices of A in Theorem ., we get the fol-
lowing lemma.

Lemma . Suppose that g satisfies (g)-(g) and b satisfies (b)-(b). Then
(i) limr→ I±(r) = (A ± ε)p–(p – )qp–(q – qCg – Ck);

(ii) limd(x)→ I(x) = b = –Ap–
 (p – )qp–(q – qCg – Ck);

(iii) limd(x)→(I±(r) + I(x)) = (p – )qp–(q – qCg – Ck)((A ± ε)p– – Ap–
 ).

Proof of Theorem . Let v ∈ C+α(�) ∩ C(�̄) be the unique solution of the problem

–�pv = , v > , x ∈ �, v|∂� = . (.)

Then, we see that

∇v(x) �= , ∀x ∈ ∂� and cd(x) ≤ v(x) ≤ cd(x), ∀x ∈ �, (.)

where c, c are positive constants.
By Lemma ., since K ∈ C[, δ) with K() = , we see that there exist δε , δε ∈

(, min{, δ}) (which corresponds to ε) sufficiently small such that
(i)  ≤ Kq(r) ≤ δε , r ∈ (, δε);

(ii) I+(r) + I(x) ≤ , ∀(x, r) ∈ �δε × (, δε);
(iii) I–(r) + I(x) ≥ , ∀(x, r) ∈ �δε × (, δε).
Now we define

ūε = φ
(
(A + ε)Kq(d(x)

))
, x ∈ �δε .
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Before we prove the theorem, let us note the following. Suppose that z is a C function
on a domain � in R

N and v = φ(z), where φ is uniquely determined by (.). A direct
computation shows that

�pv = (p – )
∣
∣φ′(z)

∣
∣p–

φ′′(z)|∇z|p +
∣
∣φ′(z)

∣
∣p–

φ′(z)�pz. (.)

Hence, by (.), Lemma ., and a direct calculation we see that, for x ∈ �δε

�pūε(x) + b(x)g
(
ūε(x)

)

=
(
φ′(Kq(d(x)

)))p–kp(d(x)
)(

I+(r) + I(x)
) ≤ ,

where r = d(x), that is, ūε is a supersolution of problem (.) in �δε .
In a similar way, we show that

uε = φ
(
(A – ε)Kq(d(x)

))
, x ∈ �δε ,

is a subsolution of problem (.) in �δε .
Let u ∈ C(�̄) ∩ C,α(�) be the unique solution to problem (.). We assert that there

exists M large enough such that

u(x) ≤ Mv(x) + ūε(x), uε(x) ≤ u(x) + Mv(x), x ∈ �δε , (.)

where v is the solution of problem (.).
In fact, we can choose M large enough such that

u(x) ≤ ūε(x) + Mv(x) and uε(x) ≤ u(x) + Mv(x) on
{

x ∈ � : d(x) = δε
}

.

We see by (g) that ūε(x) + Mv(x) and u(x) + Mv(x) are also supersolutions of problem (.)
in �δε . Since u = ūε + Mv = u + Mv = uε =  on ∂�, (.) follows by (g) and the weak
comparison principle (Lemma .). Hence, for x ∈ �δε

u(x)
φ((A + ε)Kq(d(x)))

≤ Mv(x)
φ((A + ε)Kq(d(x)))

+ 

and

 –
Mv(x)

φ((A – ε)Kq(d(x)))
≤ u(x)

φ((A – ε)Kq(d(x)))
.

Consequently, by (.) and Lemma .(iii),

 ≤ lim inf
d(x)→

u(x)
φ((A – ε)Kq(d(x)))

≤ lim sup
d(x)→

u(x)
φ((A + ε)Kq(d(x)))

≤ 

and

lim
d(x)→

φ((A – ε)Kq(d(x)))
φ(Kq(d(x)))

= (A – ε)–Cg .

Thus, letting ε → , we obtain (.). �
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5.2 Proof of Theorem 1.3
As before, fix ε > . For any δ > , we define �δ = {x ∈ � :  < d(x) < δ}. Since � is C-
smooth, choose δ ∈ (, δ) such that d ∈ C(�δ ) and (.) holds.

Define r = d(x) and

I±(r) = (A ± ε)p–(p – )
(

(A ± ε)h(r)φ′′((A ± ε)h(r))
φ′((A ± ε)h(r))

(h′(r))p

h(r)r–pL(r)

+
(h′(r))p–h′′(r)

r–pL(r)

)

,

I(x) = (A ± ε)p– (h′(r))p–

r–pL(r)
�d(x) +

b(x)
kp(r)

g(φ((A ± ε)h(r)))
(φ′((A ± ε)h(r)))p– .

By Lemmas . and ., combined with the choices of A in Theorem ., we get the fol-
lowing lemma.

Lemma . Suppose that g satisfies (g)-(g), b satisfies (b)-(b), and (b) holds. Then
(i) limr→ I±(r) = –(p – )(A ± ε)p–;

(ii) limd(x)→ I(x) = b = (p – )Ap–
 ;

(iii) limd(x)→(I±(r) + I(x)) = –(p – )((A ± ε)p– – Ap–
 ).

Proof of Theorem . By Lemma ., since h ∈ C[, δ) with h() = , we see that there
exist δε , δε ∈ (, min{, δ}) (which corresponds to ε) sufficiently small such that

(i)  ≤ h(r) ≤ δε , r ∈ (, δε);
(ii) I+(r) + I(x) ≤ , ∀(x, r) ∈ �δε × (, δε);

(iii) I–(r) + I(x) ≥ , ∀(x, r) ∈ �δε × (, δε).
As in the proof of Theorem ., we define

ūε = φ
(
(A + ε)h

(
d(x)

))
, x ∈ �δε ,

where

h(t) =
∫ t


s–(L(s)

) 
p– ds.

By (.), Lemma ., and a direct calculation we see that, for x ∈ �δε

�pūε(x) + b(x)g
(
ūε(x)

)

=
(
φ′(h(r)

))p–r–pL(r)
(
I+(r) + I(x)

) ≤ ,

where r = d(x), that is, ūε is a supersolution of problem (.) in �δε .
In a similar way, we show that

uε = φ
(
(A – ε)h

(
d(x)

))
, x ∈ �δε ,

is a subsolution of problem (.) in �δε .
As in the proof of Theorem ., we obtain, for x ∈ �δε

u(x)
φ((A + ε)h(d(x)))

≤ Mv(x)
φ((A + ε)h(d(x)))

+ 
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and

 –
Mv(x)

φ((A – ε)h(d(x)))
≤ u(x)

φ((A – ε)h(d(x)))
.

Consequently, by (.) and Lemma .(iv),

 ≤ lim inf
d(x)→

u(x)
φ((A – ε)h(d(x)))

≤ lim sup
d(x)→

u(x)
φ((A + ε)h(d(x)))

≤ 

and

lim
d(x)→

φ((A – ε)h(d(x)))
φ(h(d(x)))

= (A – ε)–Cg .

Thus, letting ε → , we obtain (.). �
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