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Abstract
In this paper, we consider an initial-boundary value problem for the equations of a
fluid spherical model of neutron star considered by Lattimer et al.We establish the
global existence and regularity of the spherically symmetric solutions in Hi (i = 1, 2, 4)
of this fluid model. These results improve and generalize the results of Ducomet and
Necasova (Ann. Univ. Ferrara 55(1):153-193, 2009).
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1 Introduction
We consider an initial-boundary value problem for a fluid model of neutron star. In the
case of a rapid cooling of the core of the star, the model used to describe the evolution of
temperature in the star follows Lattimer et al. []. If a mechanical equilibrium is reached
and the specific heat is a linear function of temperature, then the problem reduces to the
study of a fast diffusion equation satisfied by the temperature in []. In a more general set-
ting, suppose that the temperature is coupled to density and velocity fluctuations through
a thermo-mechanical system; the simplest description of such a model is achieved through
the compressible Navier-Stokes system in [].

In this paper, we are interested in the D spherical symmetric solutions to the complete
system, which has the general formulation as follows (see []):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρt + (ρv) +
ρv

r
= , (.)

ρ(vt + vvr) =
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–p + μ

(
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v
r

))

r
– νr

v
r

+ ρF(r, t), (.)

ρ(et + ver) = Qr +
Q
r

– p
(
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v
r

)

+ μ

(

vr +
v
r

)

–
νvvr

r
–

νv

r , (.)

in the domain ω × R
+ with ω := (R, R), where R is the radius of the internal rigid core

of the star and R is the exterior boundary, and ρ(r, t) and v(r, t) denote the density and
the velocity, respectively. Let η := 

ρ
be the specific volume and θ (r, t) be the temperature,

then the pressure p(η, θ ) = A


θ

η–β and the internal energy e(η, θ ) = cvθ + A
(β–)

θ

η–β , where
constants cv > , A >  and  < β < . The heat flux Q is given by the Fourier law Q(η, θ ) :=
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κ(η, θ )θr with the following constraints on the thermal conductivity:

κ
(
 + θq) ≤ κ(η, θ ) ≤ κ

(
 + θq), (.)

∣
∣κη(η, θ )

∣
∣ +

∣
∣κηη(η, θ )

∣
∣ ≤ K 

(
 + θq), (.)

∣
∣κθ (η, θ )

∣
∣ ≤ K

(
 + θq–), (.)

for any θ ≥ , with positive constants κ , κ , K , K and q ≥ . F(r, t) is a given external
field force (gravitation). Finally, we also assume the bulk viscous coefficient μ is a positive
constant and the shear viscous coefficient ν = .

As in [], we transform the system in Eulerian coordinates (r, t) into that in Lagrangian
(mass) coordinates (x, t) by

r(x, t) := r(x) +
∫ t


v(x, s) ds, (.)

where r(x) := (R
 + 

∫ x
 η(y, ) dy) 

 for x ∈ (, M), we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηt = (rv)x, (.)

vt = r
(

–p + μ
(rv)x

η

)

x
+ f , (.)

et = Qx +
(

–p + μ
(rv)x

η

)

(rv)x, (.)

rt = v, (.)

in the fixed domain 	 ×R
+ with 	 := (, M), where the specific volume η, the velocity v,

the temperature θ and the radius r depend on the Lagrangian mass coordinates. Now the
heat flux is Q(η, θ ) = κ(η, θ ) rθx

η
and the external field force is given by the Newtonian law

f (x) = –G M
r , where G and M are positive constants. Denote the stress σ by

σ (η, θ ) := –p + μ
(rv)x

η
.

System (.)-(.) is subjected to the following boundary and initial conditions:

(η, v, r, θ )|t= = (η, v, r, θ)(x), x ∈ [, M], (.)

v|x=,M = , Q|x= = , θ |x=M = θ� , t ≥ , (.)

with constant θ� > .
Now let us recall some known results for the related system. For the full D compressible

Navier-Stokes system with heat conductivity, we can refer to the basic references on the
global existence of a weak solution, such as Lions [], Feireisl [], Feireisl and Novotný []
and Bresch and Desjardins [] and references therein. For the large-time behavior of the
global solutions, we would also like to mention the work of Feireisl and Petzeltová [, ]
and Feireisl and Novotný []. On the subject of the global existence and large-time be-
havior of smooth/strong solutions for the one-dimensional motions of viscous polytropic
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ideal gas under various conditions, we refer the reader to Kazhikhov and Shelukhin [],
Kawohl [], Chen [], Jiang [–], Zheng and Qin [], Qin [–], and so on. For
the free boundary problems, we can also refer to the work of Nagasawa [, ], Tani [,
] and Hsiao and Luo []. For the free and pure Neumann boundary value problem, we
refer the reader to Umehara and Tani [, ], Qin and Huang [], Qin et al. [], and the
references therein.

However, in the major part of astrophysical literature, for example, at least when rota-
tion and magnetic aspects are neglected, a quite reliable approximation is spherical sym-
metry; see also [, , ]. In this quasi-monodimensional situation, the global existence
and large-time behavior of a classical solution have been established in some spherically
symmetric cases, and we refer to [, , , –] and the references therein. In addi-
tion, for the cylindrically symmetric Navier-Stokes equations with various boundary con-
ditions, the global well-posedness of the solutions has been studied by many researchers,
and we can refer to [, , , , –] and the references therein. For problem (.)-
(.), Ducomet and Nečasová [] have proved the global well-posedness and large-time
asymptotics for the initial data (η, v, θ) ∈ H ×H ×H. Ducomet and Nečasová [] con-
sidered a fast diffusion equation satisfied by the temperature and proved well-posedness
and large-time asymptotics of global solutions with the initial data θ ∈ L.

In this paper, we shall establish the global existence and regularity of solutions for the
spherical symmetric model of neutron star with the initial data (η, v, θ) ∈ Hi × Hi ×
Hi (i = , , ). The main novelty is to establish the Hi (i = , , ) regularity of the global
solutions to problem (.)-(.). It is worth pointing out that the boundary condition on
the temperature θ is different from general Dirichlet or Neumann boundary condition.
Our results improve and generalize the results in [].

In the following, the notations Lp ( ≤ p ≤ +∞) and W k,p (in particular, W k, is also
denoted by Hk and H

 = W ,
 ) stand for the usual Lebesgue spaces and the usual Sobolev

spaces on (, M), respectively. ‖ · ‖B denotes the norm in the space B, ‖ · ‖ := ‖ · ‖L . Cα,β =
Cα,β ([, M] × [, T]) stands for uniformly Hölder continuous space with exponents α in
x and β in t. We use C and C to denote a generic positive constant depending only on
the parameters of the system and the bounds of the initial data (η, v, θ) ∈ (H([, M])),
but being independent of t. Furthermore, Ci(T) (i = , , ) is a universal constant only
dependent on the given time T , the physical constants and the initial data (η, v, θ) ∈
(Hi([, M])).

The rest of the paper is arranged as follows. In Section , we will state our main theorems
about the global existence of the solutions to problem (.)-(.). Subsequently, by a series
of lemmas, we shall prove our main theorems in Section .

2 Main results
Let T be an arbitrary positive number. Now we give the definition of Hi([, M])-solution
to the initial-boundary problem (.)-(.).

Definition . Function (η(x, t), v(x, t), θ (x, t)) is called a global Hi([, M])-solution to
problem (.)-(.) if it satisfies the following conditions:

η(x, t) ∈ L([, T], Hi([, M]
)) ∩ L∞(

[, T], Hi([, M]
))

, (x, t) ∈ [, M] × [, T],

v(x, t) ∈ L([, T], Hi+([, M]
)) ∩ L∞(

[, T], Hi([, M]
))

, (x, t) ∈ [, M] × [, T],



Zhang Boundary Value Problems  (2016) 2016:121 Page 4 of 19

and

θ (x, t) ∈ L([, T], Hi+([, M]
)) ∩ L∞(

[, T], Hi([, M]
))

, (x, t) ∈ [, M] × [, T],

where i = , , .

For convenience, we first state a proposition from [].

Proposition . The corresponding static problem to problem (.)-(.) has a unique
solution (η̄, v̄, θ̄ ) given by

⎧
⎪⎪⎨

⎪⎪⎩

η̄ = [ (β–)GM
(β–)Aθ

�

( 
r – 

r
)]– 

β– ,

v̄ = ,
θ̄ = θ� ,

(.)

where the constant r only depends on the initial data.

We are now in a position to state our main result.

Theorem . Let the initial data  < C–
 < η(x) < C, (η, v, θ) ∈ (H[, M]). Assume

that the heat conductivity κ satisfies (.)-(.) and the initial data are compatible with
boundary conditions. Then problem (.)-(.) admits a unique global H([, M])-solution
(η(x, t), v(x, t), θ (x, t)) verifying, for all (x, t) ∈ [, M] × [, T],

 < C–
 ≤ η(x, t) ≤ C,  < C–

 ≤ θ (x, t) ≤ C,  < R ≤ r(x, t) ≤ R, (.)

and

∥
∥η(t) – η̄

∥
∥

H +
∥
∥v(t)

∥
∥

H +
∥
∥θ (t) – θ̄

∥
∥

H

+
∫ t



(‖η – η̄‖
H + ‖v‖

H + ‖θ – θ̄‖
H + ‖ηt‖ + ‖vt‖ + ‖θt‖)(s) ds ≤ C(T). (.)

Theorem . Let the initial data  < C–
 < η(x) < C, (η, v, θ) ∈ (H[, M]). Assume

that the heat conductivity κ satisfies (.)-(.) and the initial data are compatible with
boundary conditions. Then problem (.)-(.) admits a unique global H([, M])-solution
(η(x, t), v(x, t), θ (x, t)) verifying, for all (x, t) ∈ [, M] × [, T],

∥
∥η(t) – η̄

∥
∥

H +
∥
∥v(t)

∥
∥

H +
∥
∥θ (t) – θ̄

∥
∥

H +
∥
∥vt(t)

∥
∥ +

∥
∥θt(t)

∥
∥

+
∫ t



(‖η – η̄‖
H + ‖v‖

H + ‖θ – θ̄‖
H + ‖ηt‖

H + ‖vt‖
H + ‖θt‖

H
)
(s) ds

≤ C(T). (.)

Theorem . Let the initial data  < C–
 < η(x) < C, (η, v, θ) ∈ (H[, M]). Assume

that the heat conductivity κ satisfies (.)-(.) and the initial data are compatible with
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boundary conditions. Then problem (.)-(.) admits a unique global H([, M])-solution
(η(x, t), v(x, t), θ (x, t)) verifying, for all (x, t) ∈ [, M] × [, T],

∥
∥η(t) – η̄

∥
∥

H +
∥
∥v(t)

∥
∥

H +
∥
∥θ (t) – θ̄

∥
∥

H +
∥
∥ηt(t)

∥
∥

H +
∥
∥vt(t)

∥
∥

H +
∥
∥θt(t)

∥
∥

H

+
∫ t



(‖η – η̄‖
H + ‖v‖

H + ‖θ – θ̄‖
H + ‖ηt‖

H + ‖vt‖
H + ‖θt‖

H + ‖ηtt‖
H

+ ‖vtt‖
H + ‖θtt‖w

H
)
(s) ds ≤ C(T). (.)

Corollary . Under the assumptions of Theorem . and some suitable compatibility con-
ditions, the global solution (η, v, θ ) to problem (.)-(.) is the classical solution verifying

‖η‖
C, 


+ ‖v‖

C, 


+ ‖θ‖
C, 


≤ C(T).

Remark . The uniqueness of the global solutions has been obtained in [].

Remark . Theorem . implies that problem (.)-(.) admits a unique global weak
solution. Theorem . implies that problem (.)-(.) admits a unique global strong so-
lution.

Remark . Our results generalize the previous work in [].

3 Proofs of theorems
In this section, we will give some useful a priori estimates of the solutions to complete the
proofs of the theorems.

3.1 Global existence of H1-solution
In this subsection, we shall complete the proof of Theorem .. As in [], we have the
following mass conservation and energy-entropy inequality.

Lemma . Under the assumptions in Theorem ., the following estimates hold, for any
t ∈ [, T],

∫ M


η(x, t) dx =

∫ M


η(x) dx, (.)

∫ M



(



v +
A

(β – )
ηβ–(θ – θ�)

)

dx

+
∫ t



∫ M



(
κ(η, θ )r

ηθ θ
x +

μ

ηθ

((
rv

)

x

)
)

dx ds ≤ C. (.)

Proof See, e.g., Lemma  in []. �

Lemma . Under the assumptions in Theorem ., the following estimates hold for all
(x, t) ∈ 	 × [, T]:

 < C–
 ≤ η(x, t) ≤ C,  < C–

 ≤ θ (x, t) ≤ C. (.)
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Proof See, e.g., Propositions  and  in []. �

Lemma . Under the assumptions in Theorem ., the following estimate holds for any
t ∈ [, T]:

∥
∥ηx(t)

∥
∥ +

∥
∥vx(t)

∥
∥ +

∥
∥θx(t)

∥
∥ +

∫ t



(‖ηx‖ + ‖vxx‖ + ‖θt‖)(s) ds ≤ C. (.)

Proof See, e.g., Propositions - and Lemma  in []. �

Lemma . Under the assumptions in Theorem ., the following estimate holds for any
t ∈ [, T]:

∫ t



(‖θxx‖ + ‖vt‖)(s) ds ≤ C(T). (.)

Proof Multiplying (.) by vt over (, M) × (, T), employing an integration by parts and
using Lemmas .-. and the Young inequality, we have

∥
∥
(
rv

)

x

∥
∥ +

∫ t



∥
∥vt(s)

∥
∥ ds

≤ C + C

∫ t



∫ M



(∣
∣vt

(
–rpx + f

)∣
∣ +

∣
∣
(
rv

)

x

∣
∣ + |vvx|

)
dx ds

≤ C +



∫ t



∥
∥vt(s)

∥
∥ ds + C

∫ t



∫ M



(
θ

x + η
x + f  + v + v

x +
∣
∣
(
rv

)

x

∣
∣)dx ds

≤ C(T) +



∫ t



∥
∥vt(s)

∥
∥ ds + C

∫ t



∥
∥
(
rv

)

x

∥
∥

L ds

≤ C(T) +



∫ t



∥
∥vt(s)

∥
∥ ds + C

∫ t



∥
∥
(
rv

)

x

∥
∥∥∥

(
rv

)

xx

∥
∥ds

≤ C(T) +



∫ t



∥
∥vt(s)

∥
∥ ds + C

∫ t



∥
∥
(
rv

)

xx

∥
∥ ds

≤ C(T) +



∫ t



∥
∥vt(s)

∥
∥ ds,

which implies

∥
∥
(
rv

)

x

∥
∥ +

∫ t



∥
∥vt(s)

∥
∥ ds ≤ C(T). (.)

Equation (.) can be rewritten as

eθ θt = Qx – θpθ

(
rv

)

x +
μ

η

(
rv

)
x . (.)

Multiplying (.) by e–
θ θxx, then integrating the result with respect to x over (, M), using

Hölder’s inequality, the Sobolev embedding theorem, and Lemmas .-., we have, for
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any ε > ,

d
dt

∥
∥θx(t)

∥
∥ + 

∫ M



rκ

eθη
θ

xx dx

=
∫ M



((
rκ

η

)

x
θx – θpθ

(
rv

)

x +
μ

η

(
rv

)
x

)
θxx

eθ

dx

≤ ε‖θxx‖ + C(ε)
(‖θx‖ + ‖ηxθx‖ + ‖θx‖

L + ‖vx‖ + ‖v‖
L + ‖vx‖

L
)

≤ ε‖θxx‖ + C(ε)
(‖θx‖ + ‖θx‖

L∞ + ‖θx‖‖θxx‖ + ‖vx‖ + ‖v‖‖vx‖ + ‖vx‖‖vxx‖
)

≤ ε‖θxx‖ + C(ε)
(‖θx‖ + ‖v‖ + ‖vx‖ + ‖vxx‖). (.)

Integrating (.) with respect to t over (, t), taking ε >  small enough, and using Lem-
mas . and ., we can obtain

∥
∥θx(t)

∥
∥ +

∫ t



∥
∥θxx(s)

∥
∥ ds ≤ C, (.)

which, along with (.), leads to the estimate (.). �

Now combining Lemmas .-. and noting equation (.), we complete the proof of
Theorem ..

3.2 Global existence of H2-solution
In this subsection, we shall deal with the H-regularity of the global solutions to problem
(.)-(.).

Lemma . Under the assumptions in Theorem ., the following estimate holds for any
t ∈ [, T]:

∥
∥vxx(t)

∥
∥ +

∥
∥θxx(t)

∥
∥ +

∥
∥vt(t)

∥
∥ +

∥
∥θt(t)

∥
∥ +

∫ t



(‖vxt‖ + ‖θxt‖)(s) ds ≤ C(T). (.)

Proof See, e.g., Proposition  in []. �

Lemma . Under the assumptions in Theorem ., the following estimate holds for any
t ∈ [, T]:

∥
∥ηxx(t)

∥
∥ +

∫ t



∥
∥ηxx(s)

∥
∥ ds ≤ C(T). (.)

Proof Differentiating (.) with respect to x, we have

μ
d
dt

(
ηxx

η

)

– pηηxx =
(
r–vt

)

x + pθ θxx + pηηη

x + pθθ θ


x

+ pηθηxθx + μ
ηx

η

(
(rv)x

η

)

x
–

(
r–f

)

x

=: M, (.)
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where

‖M‖ ≤ C(T)
(‖θx‖H + ‖vt‖ + ‖vxt‖ + ‖ηx‖

L + ‖vx‖H + 
)
.

By Theorem . and Lemma ., using Young’s inequality, we get, for any ε > ,

∫ t


‖M‖ ds ≤ C(T) + ε

∫ t



∥
∥ηxx(s)

∥
∥ ds. (.)

Multiplying (.) by ηxx
η

, then integrating the result over [, M] × [, t] and using Young’s
inequality and (.), taking ε >  sufficiently small, we can obtain (.). Thus we complete
the proof. �

Lemma . Under the assumptions in Theorem ., the following estimate holds for any
t ∈ [, T]:

∫ t



(‖vxxx‖ + ‖θxxx‖)(s) ds ≤ C(T). (.)

Proof Differentiating (.) and (.) with respect to x, respectively, and using the Cauchy
inequality, we easily obtain

∥
∥vxxx(t)

∥
∥ ≤ C(T)

(∥
∥vxt(t)

∥
∥ +

∥
∥vx(t)

∥
∥

H +
∥
∥ηx(t)

∥
∥

H +
∥
∥θx(t)

∥
∥

H
)

(.)

and

∥
∥θxxx(t)

∥
∥ ≤ C(T)

(∥
∥θxt(t)

∥
∥ +

∥
∥θx(t)

∥
∥

H +
∥
∥ηx(t)

∥
∥

H +
∥
∥vx(t)

∥
∥

H
)
. (.)

By virtue of Theorem . and Lemmas .-., we complete the proof. �

Now combining Lemmas .-., we have completed the proof of Theorem ..

3.3 Global existence of H4-solution
In this subsection, we shall complete the proof of Theorem ., which can be divided into
the following lemmas.

Lemma . Under the assumptions of Theorem ., we see that for any t ∈ [, T] and for
ε >  small enough,

∥
∥vxt(x, )

∥
∥ +

∥
∥θxt(x, )

∥
∥ +

∥
∥vtt(x, )

∥
∥ +

∥
∥θtt(x, )

∥
∥

+
∥
∥vtxx(x, )

∥
∥ +

∥
∥θtxx(x, )

∥
∥ ≤ C(T), (.)

∥
∥vtt(t)

∥
∥ +

∫ t



∥
∥vttx(s)

∥
∥ ds ≤ C(T) + C(T)

∫ t



(‖θtxx‖ + ‖vtxx‖)(s) ds, (.)

∥
∥θtt(t)

∥
∥ +

∫ t



∥
∥θttx(s)

∥
∥ ds ≤ C(T) + C(T)ε–

∫ t



∥
∥θtxx(s)

∥
∥ ds

+ Cε

∫ t



(‖vttx‖ + ‖vtxx‖)(s) ds. (.)
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Proof Differentiating (.) and (.) with respect to x, respectively, using Theorems .
and ., we can get

∥
∥vxt(t)

∥
∥ ≤ C(T)

(∥
∥vx(t)

∥
∥

H +
∥
∥θx(t)

∥
∥

H +
∥
∥ηx(t)

∥
∥

H + 
)
, (.)

∥
∥θxt(t)

∥
∥ ≤ C(T)

(∥
∥θx(t)

∥
∥

H +
∥
∥vx(t)

∥
∥

H +
∥
∥ηx(t)

∥
∥

H +
∥
∥θx(t)

∥
∥
)
. (.)

Similarly, differentiating (.) and (.) with respect to x twice, respectively, we can infer
from Theorems . and . that

∥
∥vxxt(t)

∥
∥ ≤ C(T)

(∥
∥vx(t)

∥
∥

H +
∥
∥ηx(t)

∥
∥

H +
∥
∥θx(t)

∥
∥

H +
∥
∥vx(t)

∥
∥

L∞
∥
∥ηxxx(t)

∥
∥

+
∥
∥ηx(t)

∥
∥

L∞
∥
∥vxxx(t)

∥
∥ +

∥
∥vxx(t)

∥
∥

L∞
∥
∥ηxx(t)

∥
∥ +

∥
∥ηx(t)

∥
∥
)

≤ C(T)
(∥
∥vx(t)

∥
∥

H +
∥
∥ηx(t)

∥
∥

H +
∥
∥θx(t)

∥
∥

H
)
, (.)

∥
∥θxxt(t)

∥
∥ ≤ C(T)

(∥
∥θx(t)

∥
∥

H +
∥
∥ηx(t)

∥
∥

H +
∥
∥vx(t)

∥
∥

H
)
, (.)

or

∥
∥vxxxx(t)

∥
∥ ≤ C(T)

(∥
∥vx(t)

∥
∥

H +
∥
∥ηx(t)

∥
∥

H +
∥
∥θx(t)

∥
∥

H +
∥
∥vtxx(t)

∥
∥
)
, (.)

∥
∥θxxxx(t)

∥
∥ ≤ C(T)

(∥
∥θx(t)

∥
∥

H +
∥
∥ηx(t)

∥
∥

H +
∥
∥vx(t)

∥
∥

H +
∥
∥θtxx(t)

∥
∥
)
. (.)

It follows from (.) and (.) that

∥
∥ηt(t)

∥
∥ ≤ C

(∥
∥v(t)

∥
∥ +

∥
∥vx(t)

∥
∥
)
, (.)

∥
∥θt(t)

∥
∥ ≤ C

(∥
∥θxx(t)

∥
∥ +

∥
∥ηx(t)

∥
∥ +

∥
∥vx(t)

∥
∥ +

∥
∥vxx(t)

∥
∥
)
. (.)

Differentiating (.) and (.) with respect to t, respectively, using Theorems .-. and
(.)-(.), we have

∥
∥vtt(t)

∥
∥ ≤ C(T)

(∥
∥vx(t)

∥
∥

H +
∥
∥ηx(t)

∥
∥ +

∥
∥θt(t)

∥
∥

+
∥
∥θxt(t)

∥
∥ +

∥
∥vtx(t)

∥
∥ +

∥
∥vtxx(t)

∥
∥ +

∥
∥ηt(t)

∥
∥
)

(.)

≤ C(T)
(∥
∥vx(t)

∥
∥

H +
∥
∥ηx(t)

∥
∥

H +
∥
∥θx(t)

∥
∥

H + 
)
, (.)

∥
∥θtt(t)

∥
∥ ≤ C(T)

(∥
∥vx(t)

∥
∥

H +
∥
∥ηx(t)

∥
∥ +

∥
∥θt(t)

∥
∥

H +
∥
∥θx(t)

∥
∥

H +
∥
∥vtx(t)

∥
∥
)

(.)

≤ C(T)
(∥
∥vx(t)

∥
∥

H +
∥
∥ηx(t)

∥
∥

H +
∥
∥θx(t)

∥
∥

H + 
)
. (.)

Thus the estimate (.) follows from (.)-(.), (.), and (.).
Differentiating (.) with respect to t twice, multiplying the resultant by vtt and perform-

ing an integration by parts in L(, M), and using Theorem ., the embedding theorem,
and the Young inequality, we can derive




d
dt

‖vtt‖ = –
∫ M



(
rvtt

)

x

(

μ
(rv)x

η
– p

)

tt
dx – 

∫ M



((
r)

tvtt
)

x

(

μ
(rv)x

η
– p

)

t
dx

–
∫ M



((
r)

ttvtt
)

x

(

μ
(rv)x

η
– p

)

dx
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≤ –
∫ M


μ

r
x
η

v
ttx dx + C(T)

(‖vtt‖ + ‖vxtvx‖ +
∥
∥v

x
∥
∥ + ‖θtvx‖

+ ‖vxt‖ + ‖θtt‖ +
∥
∥v

x
∥
∥
)‖vttx‖

≤ –C–
 ‖vttx‖ + C(T)

(‖vx‖
H + ‖θt‖ + ‖vxt‖ + ‖θtt‖ + ‖vtt‖). (.)

Thus, by Theorem .,

∥
∥vtt(t)

∥
∥ +

∫ t



∥
∥vttx(s)

∥
∥ ds ≤ C(T) + C(T)

∫ t



(‖vtt‖ + ‖θtt‖)(s) ds,

which, together with (.) and (.), gives estimate (.).
Similarly, differentiating (.) with respect to t twice, multiplying the result by θtt and

performing an integration by parts over L(, M), and using the embedding theorem and
the Young inequality, we have




d
dt

∫ M


eθ θ


tt dx

= –
∫ M



(
rκθx

η

)

tt
θttx dx –

∫ M



(
eθ ttθt + eηtt

(
rv

)

x

)
θtt dx –




∫ M


eθ tθ


tt dx

–
∫ M



(

eη + p – μ
(rv)x

η

)
(
rv

)

xttθtt dx +
∫ M



(

μ
(rv)x

v
– p

)

tt

(
rv

)

xθtt dx

– 
∫ M



(

eηt +
(

p – μ
(rv)x

η

)

t

)
(
rv

)

xtθtt dx

=:
∑

i=

Pi. (.)

By virtue of Theorems .-. and the embedding theorem, we deduce that, for any ε ∈
(, ),

P ≤ –C‖θttx‖ + C
(‖θx‖L∞‖vxt‖ + ‖vx‖L∞‖θxt‖ + ‖vx‖

L∞‖θx‖
+ ‖θx‖L∞‖θt‖ + ‖θx‖L∞‖θtt‖

)‖θttx‖
≤ –(C)–‖θttx‖ + C(T)

(‖θxt‖ + ‖vxt‖ + ‖vx‖
H + ‖θtt‖), (.)

P ≤ C

∫ M



((|vx| + |θt|
) + |vxt| + |θtt|

)(|vx| + |θt|
)|θtt|dx

≤ C‖θtt‖L∞
(‖vx‖ + ‖θt‖

)((‖vx‖L∞ + ‖θt‖L∞
)(‖vx‖ + ‖θt‖

)
+ ‖vxt‖ + ‖θtt‖

)

≤ C(T)
(‖θtt‖ + ‖θttx‖

)(‖vx‖H + ‖θt‖ + ‖θxt‖ + ‖vxt‖ + ‖θtt‖
)

≤ ε‖θttx‖ + C(T)ε–(‖vx‖
H + ‖θt‖ + ‖θxt‖ + ‖vxt‖ + ‖θtt‖), (.)

P ≤ C

∫ M



(|vx| + |θt|
)
θ

tt dx ≤ C‖θtt‖L∞
(‖vx‖ + ‖θt‖

)‖θtt‖

≤ C
(‖θtt‖ + ‖θttx‖

)(‖vx‖ + ‖θt‖
)‖θtt‖ ≤ ε‖θttx‖ + C(T)ε–‖θtt‖, (.)

P ≤ ε‖vttx‖ + C(T)ε–‖θtt‖, (.)

P ≤ C(T)‖vx‖L∞‖θtt‖
((‖vx‖L∞ + ‖θt‖L∞

)(‖vx‖ + ‖θt‖
)

+ ‖vxt‖
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+ ‖θtt‖ + ‖vxtt‖ + ‖vtt‖ + ‖vx‖
)

≤ C(T)‖θtt‖
(‖vx‖H + ‖θt‖ + ‖θxt‖ + ‖vxt‖ + ‖θtt‖ + ‖vxtt‖ + ‖vtt‖

)

≤ ε‖vttx‖ + C(T)ε–(‖θtt‖ + ‖vx‖
H + ‖θt‖ + ‖θxt‖ + ‖vxt‖), (.)

P ≤ C

∫ M



(|vx| + |θt| + |vxt| + |vx| + |vt|
)(|vxt| + |vt|

)|θtt|dx

≤ C(T)‖vtx‖ 
 ‖vtxx‖ 


(‖vx‖ + ‖θt‖ + ‖vxt‖

)‖θtt‖, (.)

which, by Hölder’s inequality, implies

∫ t


P ds ≤ C(T) sup

≤s≤t

∥
∥θtt(s)

∥
∥

(∫ t



∥
∥vtxx(s)

∥
∥ ds

) 

(∫ t



∥
∥vtx(s)

∥
∥ ds

) 


×
(∫ t



(‖vx‖ + ‖θt‖ + ‖vtx‖)(s) ds
) 



≤ ε

(

sup
≤s≤t

∥
∥θtt(s)

∥
∥ +

∫ t



∥
∥vtxx(s)

∥
∥ ds

)

+ C(T)ε–. (.)

Thus it follows from (.)-(.) that, for any ε ∈ (, ) small enough,

∥
∥θtt(t)

∥
∥ +

∫ t



∥
∥θttx(s)

∥
∥ ds

≤ C(T)ε– + C(T)ε–
∫ t



∥
∥θtt(s)

∥
∥ ds

+ Cε

(

sup
≤s≤t

∥
∥θtt(s)

∥
∥ +

∫ t



(‖vtxx‖ + ‖vttx‖)(s) ds
)

. (.)

Therefore taking the supremum in t on the left-hand side of (.) and choosing ε ∈ (, )
small enough, we can derive estimate (.) from (.). The proof is complete. �

Lemma . Under the assumptions of Theorem ., the following estimates hold for any
t ∈ [, T] and for ε >  small enough:

∥
∥vxt(t)

∥
∥ +

∫ t



∥
∥vxxt(s)

∥
∥ ds ≤ C(T) + C(T)ε

∫ t



(‖vxtt‖ + ‖θxxt‖)(s) ds, (.)

∥
∥θxt(t)

∥
∥ +

∫ t



∥
∥θxxt(s)

∥
∥ ds ≤ C(T) + C(T)ε

∫ t



(‖vxxt‖ + ‖θxtt‖)(s) ds. (.)

Proof Differentiating (.) with respect to x and t, multiplying the result by vxt and inte-
grating by parts in L(, M), we have




d
dt

‖vxt‖ = N(t) + N(t) (.)

with

N(t) =
(

r
(

μ
(rv)x

v
– p

)

x

)

t
vxt

∣
∣
∣
∣

x=L

x=
, N(t) = –

∫ M



(

r
(

μ
(rv)x

v
– P

)

x

)

t
vxxt dx.
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Using Theorem . and Lemma ., the interpolation inequality, and Poincaré’s inequality,
we can get

N(t) ≤ C
((‖vx‖L∞ + ‖θx‖L∞

)(‖vx‖L∞ + ‖θx‖L∞ + ‖ηx‖L∞
)

+ ‖vxx‖L∞ + ‖θxt‖L∞

+ ‖vxxt‖L∞ + ‖ηx‖L∞‖vxt‖L∞ + ‖vx‖L∞‖vxx‖L∞ +
∥
∥v

x
∥
∥

L∞ + ‖ηxt‖L∞

+ ‖ηx‖L∞‖θt‖L∞ + ‖vx‖L∞‖θx‖L∞

+ ‖θx‖L∞‖θt‖L∞ + ‖vx‖L∞‖ηx‖L∞
)‖vxt‖L∞

≤ C(T)(N + N)‖vxt‖ 
 ‖vxxt‖ 

 , (.)

where

N = ‖vx‖H + ‖θt‖ + ‖θxt‖

and

N = ‖θxt‖ 
 ‖θxxt‖ 

 + ‖vxxt‖ 
 ‖vxxxt‖ 

 + ‖vxxt‖ + ‖vxt‖ 
 ‖vxxt‖ 

 .

Applying Young’s inequality several times, we have, for any ε ∈ (, ),

C(T)N‖vxt‖ 
 ‖vxxt‖ 

 ≤ ε


‖vxxt‖w

+ C(T)ε–(‖vx‖
H + ‖θt‖

H + ‖vxt‖) (.)

and

C(T)N‖vxt‖ 
 ‖vxxt‖ 

 ≤ ε


‖vxxt‖ + ε(‖θtxx‖ + ‖vxxxt‖)

+ C(T)ε–(‖θtx‖ + ‖vxt‖). (.)

Thus it follows from (.)-(.) and Theorem . and Lemma . that

N(t) ≤ ε(‖vxxt‖ + ‖θtxx‖ + ‖vxxxt‖)

+ C(T)ε–(‖θx‖ + ‖vx‖
H + ‖θtx‖ + ‖vxt‖), (.)

which, along with Theorem ., further yields

∫ t


N(s) ds ≤ ε

∫ t



(‖vxxt‖ + ‖θtxx‖ + ‖vxxxt‖)(s) ds + C(T)ε–. (.)

Analogously, from Lemma ., Theorem ., and the embedding theorem, we can also
derive that, for any ε ∈ (, ),

N(t) ≤ –
∫ M


μ

r

η
v

txx dx

+ C
((‖vx‖ + ‖θt‖ + ‖ηx‖

)(‖θx‖L∞ + ‖ηx‖L∞
)

+ ‖vxx‖ + ‖θxt‖
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+ ‖ηx‖L∞‖vxt‖ + ‖vx‖L∞‖vxx‖ + ‖vx‖
L∞‖ηx‖ + ‖vx‖ + ‖θx‖ + ‖vx‖)‖vxxt‖

≤ –(C)–‖vxxt‖ + C(T)
(‖vx‖

H + ‖θt‖
H + ‖vxt‖ + ‖ηx‖), (.)

which, combined with (.), (.), and Theorem ., shows that, for any ε ∈ (, ) small
enough,

∥
∥vxt(t)

∥
∥ +

∫ t



∥
∥vxxt(s)

∥
∥ ds

≤ C(T)ε– + Cε

∫ t



(‖θtxx‖ + ‖vxxxt‖)(s) ds. (.)

On the other hand, differentiating (.) with respect to x and t, we can derive from Theo-
rem . and Lemma . that

∥
∥vxxxt(t)

∥
∥ ≤ C

∥
∥vxtt(t)

∥
∥ + C(T)

(∥
∥vx(t)

∥
∥

H +
∥
∥θx(t)

∥
∥

H

+
∥
∥ηx(t)

∥
∥

H +
∥
∥θt(t)

∥
∥

H
)
. (.)

Thus inserting (.) into (.) leads to (.).
Similarly, by (.), we have




d
dt

∫ L


eθ θ


tx dx =:

∑

i=

Li(t), (.)

where

L(t) =
(

rκθx

η

)

xt
θxt

∣
∣
∣
∣

x=M

x=
, L(t) = –

∫ M



(
rκθx

η

)

tx
θtxx dx,

L(t) = –
∫ M



((

eη + p – μ
(rv)x

η

)
(
rv

)

x

)

xt
θtx dx,

L(t) = –
∫ M



(

eθ txθt +



eθ tθtx + eθxθtt

)

θtx dx.

By virtue of the embedding theorem and the Young inequality, we derive from Lemmas .,
., and (.) that, for any ε ∈ (, ),

L(t) ≤ C(T)
(‖vx‖H + ‖θx‖H + ‖θt‖H + ‖θxt‖ 

 ‖θxxt‖ 


+ ‖θxxt‖ 
 ‖θxxxt‖ 


)‖θxt‖ 

 ‖θxxt‖ 


≤ ε(‖θtxx‖ + ‖θtxxx‖) + C(T)ε–(‖vx‖
H + ‖θx‖

H + ‖θxt‖), (.)

L(t) ≤ –(C)–‖θtxx‖ + C(T)
(‖vx‖

H + ‖θx‖
H + ‖θt‖

H
)
, (.)

L(t) ≤ ε‖vtxx‖ + C(T)ε–(‖vx‖
H + ‖θt‖

H + ‖vxt‖ + ‖ηx‖
H

)
, (.)

L(t) ≤ ε‖θtxx‖ + C(T)ε–(‖vx‖w
H + ‖θt‖

H + ‖θx‖
H + ‖vxt‖ + ‖ηx‖). (.)
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Differentiating (.) with respect to x and t, we can derive from Theorems .-. and
Lemma . that

∥
∥θtxxx(t)

∥
∥ ≤ C

(∥
∥θttx(t)

∥
∥ +

∥
∥vxxt(t)

∥
∥
)

+ C(T)
(∥
∥vx(t)

∥
∥

H +
∥
∥ηx(t)

∥
∥

H +
∥
∥θx(t)

∥
∥

H +
∥
∥θxt(t)

∥
∥
)
. (.)

Inserting (.)-(.) into (.) yields (.). �

Lemma . Under the assumptions of Theorem ., we have, for any t ∈ [, T],

∥
∥vtt(t)

∥
∥ +

∥
∥vxt(t)

∥
∥ +

∥
∥θtt(t)

∥
∥ +

∥
∥θxt(t)

∥
∥

+
∫ t



(‖vttx‖ + ‖vxxt‖ + ‖θttx‖ + ‖θxxt‖)(s) ds ≤ C(T), (.)

∥
∥ηxxx(t)

∥
∥

H +
∥
∥vxxx(t)

∥
∥

H +
∥
∥θxxx(t)

∥
∥

H +
∥
∥vtxx(t)

∥
∥ +

∥
∥θtxx(t)

∥
∥

+
∫ t



(‖vtt‖ + ‖vxxt‖
H + ‖θtt‖ + ‖θxxt‖

H
)
(s) ds ≤ C(T), (.)

∫ t



(‖ηxxx‖
H + ‖vxxxx‖

H + ‖θxxxx‖
H

)
(s) ds ≤ C(T). (.)

Proof Adding (.)-(.) and choosing ε >  small enough, we get

∥
∥vxt(t)

∥
∥ +

∥
∥θxt(t)

∥
∥ +

∫ t



(‖vxxt‖ + ‖θxxt‖)(s) ds

≤ C(T) + C(T)ε
∫ t



(‖vxtt‖ + ‖θxtt‖)(s) ds. (.)

Now multiplying (.) and (.) by ε and ε

 , respectively, then adding the results to

(.) and taking ε sufficiently small, we obtain (.).
Differentiating (.) with respect to x and noting that ηxxt = (rv)xxx, we get

μ
∂

∂t

(
ηxx

η

)

– pηηxx = r–vtx + K(x, t) –
(
r–f

)

x – r–ηvt , (.)

where

K(x, t) = pηηη

x + pηθ θxηx + pθθ θ


x + pθ θxx – μ

η
x

η

(
rv

)

x + μ
ηx

η

(
rv

)

xx

=
A(β – )(β – )


θηβ–η

x + A(β – )θηβ–θxηx + Aηβ–θ
x

+ Aθηβ–θxx + μ

(
ηx

η

(
rv

)

xx –
η

x
η

(
rv

)

x

)

.

Differentiating (.) with respect to x, we have

μ
∂

∂t

(
ηxxx

η

)

– pηηxxx = K(x, t), (.)
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where

K(x, t) = Kx(x, t) + pηxηxx + μ

(
ηxxηx

η

)

t
+ r–vtxx – r–ηvtx

+ r–ηvt – r–ηxvt –
(
r–f

)

xx.

Obviously, it follows from Theorem . and Lemmas .-. that

∥
∥K(t)

∥
∥ ≤ C(T)

(∥
∥ηx(t)

∥
∥

H +
∥
∥vx(t)

∥
∥

H +
∥
∥θx(t)

∥
∥

H +
∥
∥vtxx(t)

∥
∥
)

(.)

and

∫ t



∥
∥K(s)

∥
∥ ds ≤ C(T). (.)

Multiplying (.) by ηxxx
η

over L(, M), we can obtain

d
dt

∥
∥
∥
∥
ηxxx

η

∥
∥
∥
∥



+ C–


∥
∥
∥
∥
ηxxx

η

∥
∥
∥
∥



≤ C
∥
∥K(t)

∥
∥, (.)

which, along with (.), gives

∥
∥ηxxx(t)

∥
∥ +

∫ t



∥
∥ηxxx(s)

∥
∥ ds ≤ C(T). (.)

It follows from (.)-(.) that

∥
∥vxxx(t)

∥
∥ ≤ C(T)

(∥
∥v(t)

∥
∥

H +
∥
∥ηx(t)

∥
∥

H +
∥
∥θx(t)

∥
∥

H +
∥
∥vxt(t)

∥
∥
)
, (.)

∥
∥θxxx(t)

∥
∥ ≤ C(T)

(∥
∥θ (t)

∥
∥

H +
∥
∥ηx(t)

∥
∥

H +
∥
∥vx(t)

∥
∥

H +
∥
∥θxt(t)

∥
∥
)
. (.)

Using the embedding theorem, Theorems .-. and Lemmas .-., we can derive from
(.)-(.), (.), and (.)-(.) that, for any t ∈ [, T],

∥
∥vxxx(t)

∥
∥ +

∥
∥θxxx(t)

∥
∥ +

∥
∥vxx(t)

∥
∥

L∞ +
∥
∥θxx(t)

∥
∥

L∞

+
∫ t



(‖vxxx‖
H + ‖θxxx‖

H + ‖vxx‖
W ,∞ + ‖θxx‖

W ,∞
)
(s) ds ≤ C(T). (.)

Differentiating (.)-(.) with respect to t and using Theorems .-. and Lemmas .-
., we can deduce from (.), (.)-(.) that

∥
∥vtxx(t)

∥
∥ ≤ C

∥
∥vtt(t)

∥
∥ + C(T)

(∥
∥vx(t)

∥
∥

H +
∥
∥ηx(t)

∥
∥ +

∥
∥θx(t)

∥
∥

+
∥
∥θt(t)

∥
∥ +

∥
∥θxt(t)

∥
∥ +

∥
∥vxt(t)

∥
∥
) ≤ C(T), (.)

∥
∥θtxx(t)

∥
∥ ≤ C

∥
∥θtt(t)

∥
∥ + C(T)

(∥
∥vx(t)

∥
∥

H +
∥
∥ηx(t)

∥
∥ +

∥
∥θx(t)

∥
∥

H

+
∥
∥θt(t)

∥
∥

H +
∥
∥vxt(t)

∥
∥
) ≤ C(T), (.)
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which, combined with (.)-(.) and (.), implies

∥
∥vxxxx(t)

∥
∥ +

∥
∥θxxxx(t)

∥
∥

+
∫ t



(‖vtxx‖ + ‖θtxx‖ + ‖vxxxx‖ + ‖θxxxx‖)(s) ds ≤ C(T). (.)

Therefore it follows from (.), (.), and the embedding theorem that

∥
∥vxxx(t)

∥
∥

L∞ +
∥
∥θxxx(t)

∥
∥

L∞ +
∫ t



(‖vxxx‖
L∞ + ‖θxxx‖

L∞
)
(s) ds ≤ C(T). (.)

Now differentiating (.) with respect to x, we find

ε
∂

∂t

(
ηxxxx

η

)

– pηηxxxx = K(x, t), (.)

where

K(x, t) = Kx(x, t) + pηxηxxx + μ

(
ηxxxηx

η

)

t
.

From the embedding theorem and Lemmas .-. and (.)-(.), we can derive

∥
∥Kxx(t)

∥
∥ ≤ C(T)

(∥
∥vx(t)

∥
∥

H +
∥
∥θx(t)

∥
∥

H +
∥
∥ηx(t)

∥
∥

H
)
,

∥
∥Kx(t)

∥
∥ ≤ C

(
∥
∥Kxx(t)

∥
∥ + ‖vxxxt‖ + ‖vxxt‖ +

∥
∥(pηxηxx)x

∥
∥ + ‖ηxvxt‖

+ ‖ηxx‖ + ‖ηxvt‖ + ‖ηxxvt‖ +
∥
∥
∥
∥

(
ηxηxx

η

)

xt

∥
∥
∥
∥

)

≤ C
∥
∥vxxxt(t)

∥
∥ + C(T)

(∥
∥vx(t)

∥
∥

H +
∥
∥θx(t)

∥
∥

H +
∥
∥ηx(t)

∥
∥

H
)
,

whence

∥
∥K(t)

∥
∥ ≤ C

∥
∥vxxxt(t)

∥
∥ + C(T)

(∥
∥vx(t)

∥
∥

H +
∥
∥θx(t)

∥
∥

H +
∥
∥ηx(t)

∥
∥

H
)
. (.)

It follows from (.)-(.) that

∫ t



(‖vtt‖ + ‖θtt‖)(s) ds ≤ C(T), (.)

which, along with (.) and (.), gives

∫ t



∥
∥vxxxt(s)

∥
∥ ds ≤ C(T). (.)

Thus from (.), (.), (.), and (.), it follows that

∫ t



∥
∥K(s)

∥
∥ ds ≤ C(T). (.)
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Multiplying (.) by ηxxxx
η

in L(, M), we can get

d
dt

∥
∥
∥
∥
ηxxxx

η

∥
∥
∥
∥



+ C–


∥
∥
∥
∥
ηxxxx

η

∥
∥
∥
∥



≤ C
∥
∥K(t)

∥
∥, (.)

whence, by (.),

∥
∥ηxxxx(t)

∥
∥ +

∫ t



∥
∥ηxxxx(s)

∥
∥ ds ≤ C(T). (.)

Differentiating (.) with respect to x and t, we can derive from Theorems .-. and
Lemmas .-. that

∥
∥θtxxx(t)

∥
∥ ≤ C

∥
∥θttx(t)

∥
∥ + C(T)

(∥
∥vx(t)

∥
∥

H +
∥
∥ηx(t)

∥
∥

H +
∥
∥θx(t)

∥
∥

H +
∥
∥θxt(t)

∥
∥
)
. (.)

Thus,

∫ t



∥
∥θtxxx(s)

∥
∥ ds ≤ C(T). (.)

Differentiating (.) with respect to x three times, applying Lemmas .-., Theorems .-
., and Poincaré’s inequality, we have

∥
∥vxxxxx(t)

∥
∥ ≤ C

∥
∥vtxxx(t)

∥
∥ + C(T)

(∥
∥vx(t)

∥
∥

H +
∥
∥ηx(t)

∥
∥

H +
∥
∥θx(t)

∥
∥

H
)
. (.)

Thus it follows from (.), (.), and (.) that

∫ t



∥
∥vxxxxx(s)

∥
∥ ds ≤ C(T). (.)

Similarly, we can differentiate (.) with respect to x three times and use Lemmas .-.,
Theorems .-., Poincaré’s inequality, (.), (.), and (.) to find

∫ t



∥
∥θxxxxx(s)

∥
∥ ds ≤ C(T). (.)

Hence, (.)-(.) follow from (.), (.), (.), and (.). �

Finally, combining Lemmas .-., we complete the proof of Theorem ..
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