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Abstract

In this paper, we consider an initial-boundary value problem for the equations of a
fluid spherical model of neutron star considered by Lattimer et al. We establish the
global existence and regularity of the spherically symmetric solutions in H' (i = 1,2,4)
of this fluid model. These results improve and generalize the results of Ducomet and
Necasova (Ann. Univ. Ferrara 55(1):153-193, 2009).
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1 Introduction
We consider an initial-boundary value problem for a fluid model of neutron star. In the
case of a rapid cooling of the core of the star, the model used to describe the evolution of
temperature in the star follows Lattimer et al. [2]. If a mechanical equilibrium is reached
and the specific heat is a linear function of temperature, then the problem reduces to the
study of a fast diffusion equation satisfied by the temperature in [3]. In a more general set-
ting, suppose that the temperature is coupled to density and velocity fluctuations through
a thermo-mechanical system; the simplest description of such a model is achieved through
the compressible Navier-Stokes system in [4].

In this paper, we are interested in the 3D spherical symmetric solutions to the complete
system, which has the general formulation as follows (see [5]):

2pv

pr+ (pv) + = 0, (L1)
2v v

pve+v)=-p+u|vi+— || —4v.— + pF(r,1), (12)
r r r

2Q 2v 20\%  Svwy, 4P
,O(eg+ver)=Qr+——p<vr+—)+,u<v,+—> - L o (1.3)
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in the domain w x R* with w := (R, R;), where Ry is the radius of the internal rigid core
of the star and R; is the exterior boundary, and p(r,£) and v(r,t) denote the density and

the velocity, respectively. Let 7 := % be the specific volume and 6(r, t) be the temperature,

then the pressure p(n,0) = %nﬁ—fﬁ and the internal energy e(n,0) = ¢,0 + ﬁ nf—_zﬂ, where

constants ¢, >0, A >0 and 1 < 8 < 2. The heat flux Q is given by the Fourier law Q(7,0) :=
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Kk (n,0)0, with the following constraints on the thermal conductivity:
k(1+607) <k(n,0) <k(1+069), (1.4)
|K,,(17,9)| + |/<,,,7(17,9)| <K (1 + Qq), (1.5)
|K9(77»9)| 51?2(1 +9q71)’ (16)

for any 6 > 0, with positive constants «, ¥, K, K, and g > 4. F(r,t) is a given external
field force (gravitation). Finally, we also assume the bulk viscous coefficient y is a positive
constant and the shear viscous coefficient v = 0.

As in [1], we transform the system in Eulerian coordinates (r,t) into that in Lagrangian
(mass) coordinates (x, £) by

r(x, t) := ro(x) + /tv(x,s) ds, (1.7)
0

where ro(x) := (RS + Bf; n(, O)dy)% for x € (0, M), we have

e =(rv)e 1.8)

v =1 (—p + M_(rznv)x) +f, (19)
2

e =Qx+ (—p + u%) V), (1.10)

re="v, (1.11)

in the fixed domain Q x R* with Q := (0, M), where the specific volume 7, the velocity v,
the temperature 6 and the radius r depend on the Lagrangian mass coordinates. Now the
heat flux is Q(n,0) = k(n,0) /tf" and the external field force is given by the Newtonian law
flx)=-G %, where G and M) are positive constants. Denote the stress o by

(r*v)
o(n,0):=-p+ uTx.

System (1.8)-(1.11) is subjected to the following boundary and initial conditions:

(77, v, 9)|t=0 = (770: V0,70, 90)(x): X € [O;M]: (112)

Vlx=om = 0, Qlx=0 =0, Oly=mt =0r, t=0, (1.13)

with constant 6 > 0.

Now let us recall some known results for the related system. For the full 3D compressible
Navier-Stokes system with heat conductivity, we can refer to the basic references on the
global existence of a weak solution, such as Lions [6], Feireisl [7], Feireisl and Novotny [8]
and Bresch and Desjardins [9] and references therein. For the large-time behavior of the
global solutions, we would also like to mention the work of Feireisl and Petzeltova [10, 11]
and Feireisl and Novotny [12]. On the subject of the global existence and large-time be-
havior of smooth/strong solutions for the one-dimensional motions of viscous polytropic
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ideal gas under various conditions, we refer the reader to Kazhikhov and Shelukhin [13],
Kawohl [14], Chen [15], Jiang [16—18], Zheng and Qin [19], Qin [20-22], and so on. For
the free boundary problems, we can also refer to the work of Nagasawa [23, 24], Tani [25,
26] and Hsiao and Luo [27]. For the free and pure Neumann boundary value problem, we
refer the reader to Umehara and Tani [28, 29], Qin and Huang [30], Qin et al. [31], and the
references therein.

However, in the major part of astrophysical literature, for example, at least when rota-
tion and magnetic aspects are neglected, a quite reliable approximation is spherical sym-
metry; see also [4, 32, 33]. In this quasi-monodimensional situation, the global existence
and large-time behavior of a classical solution have been established in some spherically
symmetric cases, and we refer to [5, 18, 20, 34—38] and the references therein. In addi-
tion, for the cylindrically symmetric Navier-Stokes equations with various boundary con-
ditions, the global well-posedness of the solutions has been studied by many researchers,
and we can refer to [14, 15, 25, 31, 39-46] and the references therein. For problem (1.8)-
(1.13), Ducomet and Necasova [1] have proved the global well-posedness and large-time
asymptotics for the initial data (19, vo, %) € H' x H* x H!. Ducomet and Neéasov4 [3] con-
sidered a fast diffusion equation satisfied by the temperature and proved well-posedness
and large-time asymptotics of global solutions with the initial data 6, € L.

In this paper, we shall establish the global existence and regularity of solutions for the
spherical symmetric model of neutron star with the initial data (no,vo,6) € H i x H x
H' (i =1,2,4). The main novelty is to establish the H’ (i = 1,2,4) regularity of the global
solutions to problem (1.8)-(1.13). It is worth pointing out that the boundary condition on
the temperature 0 is different from general Dirichlet or Neumann boundary condition.
Our results improve and generalize the results in [1].

In the following, the notations L” (1 < p < +oc) and W*? (in particular, W*? is also
denoted by H* and H} = W;"*) stand for the usual Lebesgue spaces and the usual Sobolev
spaces on (0, M), respectively. || - || 3 denotes the norm in the space B, || - || := || - [| 2. C*# =
C*#([0,M] x [0, T]) stands for uniformly Holder continuous space with exponents & in
x and B in t. We use Cy and C; to denote a generic positive constant depending only on
the parameters of the system and the bounds of the initial data (1o, vo,60) € (H'([0, M]))3,
but being independent of ¢. Furthermore, C;(T) (i = 1,2,4) is a universal constant only
dependent on the given time T, the physical constants and the initial data (1o, vo,6o) €
(H'([0, M]))*.

The rest of the paper is arranged as follows. In Section 2, we will state our main theorems
about the global existence of the solutions to problem (1.8)-(1.13). Subsequently, by a series

of lemmas, we shall prove our main theorems in Section 3.

2 Main results
Let T be an arbitrary positive number. Now we give the definition of H*([0, M])-solution
to the initial-boundary problem (1.8)-(1.13).

Definition 2.1 Function (n(x,t),v(x,t),0(x,t)) is called a global H'([0, M])-solution to
problem (1.8)-(1.13) if it satisfies the following conditions:

n(x,t) € L*([0, T), H' ([0, M])) N L*([0, T1,H'([0,M])), (x,£) € [0,M] x [0, T],

v(x,t) € L*([0, T1, H*' ([0, M])) N L=([0, TT, H'([0, M])), (%) € [0, M] x [0, T1,
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and
0(x,t) € L*([0, T1, H*' ([0,M])) N L>([0, T1, H' ([0, M])), (x,£) € [0,M] x [0, T,
wherei=1,2,4.
For convenience, we first state a proposition from [1].

Proposition 2.1 The corresponding static problem to problem (1.8)-(1.13) has a unique
solution (i}, v,0) given by

~ _ r(B-DGMo 1 _ 1\]-FT

= [(ﬁ—z)Ael% G- 7

V=0, (2.1)
0_ = 01‘1

where the constant ry only depends on the initial data.
We are now in a position to state our main result.

Theorem 2.1 Let the initial data 0 < Cy"' < no(x) < Co, (10, vo,60) € (H'[0,M])3. Assume
that the heat conductivity k satisfies (1.4)-(1.6) and the initial data are compatible with
boundary conditions. Then problem (1.8)-(1.13) admits a unique global H' ([0, M])-solution
(n(x, £), v(x, 1), 0(x, t)) verifying, for all (x,t) € [0, M] x [0, T1],

0<C' <nlxt) <Gy, 0<Ci'<0(xt) <G, 0 <Ry <r(x,t) <Ry, (2.2)
and

&) = 7% + VO + |0 - 0]

t
+/ (I =770 + VI3 + 10 = 0117 + Inel? + Ivell® + 16,117) (s) ds < Cu(T).  (2.3)
0

Theorem 2.2 Let the initial data 0 < Cy" < no(x) < Co, (10, vo,600) € (H*[0, M])3. Assume
that the heat conductivity k satisfies (1.4)-(1.6) and the initial data are compatible with
boundary conditions. Then problem (1.8)-(1.13) admits a unique global H?*([0, M])-solution
(n(x, £), v(x, £), 0(x, t)) verifying, for all (x,t) € [0, M] x [0, T1],

[n® =il + [vO ] + 0@ = + v + |0:0)]|*
t
+/ (Iln - ﬁllfﬂ + ||V||12{3 +16 —9||§,3 + IImII,%,I + IIV:IIf,l + IIOtIIi,l)(S)dS
0

< Gy(T). (2.4)

Theorem 2.3 Let the initial data 0 < Cy' < no(x) < Co, (0, v0,600) € (H*[0, M])3. Assume
that the heat conductivity « satisfies (1.4)-(1.6) and the initial data are compatible with
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boundary conditions. Then problem (1.8)-(1.13) admits a unique global H*([0, M])-solution
(n(x, £), v(x, £), 0(x, £)) verifying, for all (x,t) € [0, M] x [0, T],

[n®) =il + VO [0 + 100 0] 3 + [18) 32 + [ve@ 2 + |08,
t
+ f (Il =712 + vI2s + 10 = 01125 + InelZs + (vl 2 + 166075 + 72l 20
0
+ Vel 2 + 10 lw? ) () ds < Ca(T). (2.5)

Corollary 2.1 Under the assumptions of Theorem 2.3 and some suitable compatibility con-

ditions, the global solution (n,v,0) to problem (1.8)-(1.13) is the classical solution verifying
Il g+ V1l g + 161 oy < Ca(T).

Remark 2.1 The uniqueness of the global solutions has been obtained in [1].

Remark 2.2 Theorem 2.1 implies that problem (1.8)-(1.13) admits a unique global weak

solution. Theorem 2.2 implies that problem (1.8)-(1.13) admits a unique global strong so-

lution.

Remark 2.3 Our results generalize the previous work in [1].

3 Proofs of theorems
In this section, we will give some useful a priori estimates of the solutions to complete the

proofs of the theorems.

3.1 Global existence of H'-solution
In this subsection, we shall complete the proof of Theorem 2.1. As in [1], we have the

following mass conservation and energy-entropy inequality.

Lemma 3.1 Under the assumptions in Theorem 2.1, the following estimates hold, for any
te[0,T],

M M
/ 0, 1) dx = / no(x) dx, 3.1)
0 0

M1 2 A p-1 2
/0 (EV +2(ﬁ_1)n (O—QF))dx
(n,0)r*
/ / <K 7)7792;” -+ 59((;’21/) ) )dxdstl. (3.2)

Proof See, e.g., Lemma 1 in [1]. O

Lemma 3.2 Under the assumptions in Theorem 2.1, the following estimates hold for all
(x,t) e Q2 x [0,T]:

0<Cll<nxt)<C, 0<C'<0xt) <C. (33)
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Proof See, e.g., Propositions 2 and 5 in [1]. O

Lemma 3.3 Under the assumptions in Theorem 2.1, the following estimate holds for any

te[0,T]:
t
[0 + =@ + |60 + /0 (Il + [vsal® + 16:1) (5) ds < Cr. (3.4)
Proof See, e.g., Propositions 3-5 and Lemma 5 in [1]. O

Lemma 3.4 Under the assumptions in Theorem 2.1, the following estimate holds for any
tel0,T]:

/o (10ss1 + v, ]2)(5) ds < C1(T). (3.5)

Proof Multiplying (1.9) by v, over (0, M) x (0, T), employing an integration by parts and

using Lemmas 3.1-3.3 and the Young inequality, we have

t
(o)1 ¢ [ Il ds
¢ oM s
§C1+C1// (’Vt(—rsz+f)|+|(r2v)x’ +|va|)dxds
0 Jo
1 [t 2 Y R PR 2.\ |3
§C1+§/ [ve(s) | dS+C1/ / 02 + 2+ 2+ +vi+|(rv), ") dxds
0 0 Jo
1 ¢ 2 t 2 3
=g [ vl ds+c [ 102,15 ds
0 0
1 2 o2 12102
=@ [ woPdser [ 160,105, s
0 0
1 ¢ 2 ¢ 2 2
samey [ fueldsec [ [6),,) ds
0 0

<G+ /0 o) ds
which implies
I, [ 1ol ds < 66)
Equation (1.10) can be rewritten as
ea6; = Qv — Opo (), + %(rzv)j. (3.7)

Multiplying (3.7) by €;'6,., then integrating the result with respect to x over (0, M), using

Holder’s inequality, the Sobolev embedding theorem, and Lemmas 3.1-3.3, we have, for
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any € >0,
d 2 M V4K 2
< oo +;A g ds
M 4
= / <(7—K) 6, —6py (rzv)x + E(r%z)i) % dx
0 n Jx n €9

2 2 2 4 2 4 4
< ellOuel® + Co(&) (1617 + Imabsll® + 10l 70 + Nvxll® + 1V 7a + lIVxll7a)
2 2 2 3 2 3 3
< ellOuel® + Co(e) (1017 + 16xl1Foc + 10 1° 16l + Nvill® + VIP Nvill + vl® [Vax )

< 2ell0ucl” + Co(&) (1017 + IVIP + [1vall® + [vael?). (3.8)

Integrating (3.8) with respect to t over (0, ¢), taking ¢ > 0 small enough, and using Lem-
mas 3.1 and 3.3, we can obtain

6.0 + / 160(6)|” ds < Cu, (3.9)
0

which, along with (3.6), leads to the estimate (3.5). a

Now combining Lemmas 3.1-3.4 and noting equation (1.8), we complete the proof of
Theorem 2.1.

3.2 Global existence of H-solution
In this subsection, we shall deal with the H2-regularity of the global solutions to problem

(1.8)-(1.13).

Lemma 3.5 Under the assumptions in Theorem 2.2, the following estimate holds for any
tel0,T]:

MNW+MNW+MmW4wM%Amme%M@ﬂswaum

Proof See, e.g., Proposition 6 in [1]. O

Lemma 3.6 Under the assumptions in Theorem 2.2, the following estimate holds for any
tel0,T]:

t
Ina®] + [ || ds < Ca(), (311
0
Proof Differentiating (1.9) with respect to x, we have

d(n _
M%(%) —Pnllxx = (V 2Vt)x + Pobx +Prm77925 +P909,§

Tx (rzv)x _
+2p17977x9x+2,u'_< ) _(r 2f)x
n n x

=M, (3.12)
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where
IMI < CUT) (10l + Vel + I1vaell + Imell 2 + lvell g +1).

By Theorem 2.1 and Lemma 3.5, using Young’s inequality, we get, for any ¢ > 0,

t t
/ ||M||2ds§C2(T)+s/ | 72(5)||* ds. (3.13)
0 0

Multiplying (3.12) by '7%, then integrating the result over [0, M] x [0, t] and using Young’s
inequality and (3.13), taking ¢ > O sufficiently small, we can obtain (3.11). Thus we complete
the proof. g

Lemma 3.7 Under the assumptions in Theorem 2.2, the following estimate holds for any
tel0,T]:

fo (I1vaxxll® + 10xxxll®) (5) ds < Co(T). (3.14)

Proof Differentiating (1.9) and (1.10) with respect to x, respectively, and using the Cauchy
inequality, we easily obtain

[vee @] < CUD (v ] + [ve®)] 0 + [0 ] 10 + [0 1) (3.15)
and

[ ®)] < CUD ([0 @] + [0 1 + [ 1O 1 + [ 1) (316)
By virtue of Theorem 2.1 and Lemmas 3.5-3.6, we complete the proof. O

Now combining Lemmas 3.5-3.7, we have completed the proof of Theorem 2.2.

3.3 Global existence of H*-solution
In this subsection, we shall complete the proof of Theorem 2.3, which can be divided into
the following lemmas.

Lemma 3.8 Under the assumptions of Theorem 2.3, we see that for any t € [0, T] and for
& > 0 small enough,

[vac@, 00| + 0 )| + [vex, 0 + [, 0)
+ ”Vtxx(x’ 0) || + ||9txx(x: 0)” = C4(T): (317)

|va(e)|* + / [vies(s)||* ds < Ca(T) + Co(T) / (1Bexxl® + Ve 1) (5) dis, (3.18)
0 0

16a0)] + / 80(5)||” ds < Ca(T) + Co(T)e™ / 60ss() > ds
0 0

t
+Ce / (Ivasll® + Dvessl) () . (3.19)
0
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Proof Differentiating (1.9) and (1.10) with respect to x, respectively, using Theorems 2.1
and 2.2, we can get

[ve®] < CAD)([|[va @] 1o + 65O 1 + [0 ] 10 + 1), (3:20)
[6x:®)] < CUD) (6O 2 + [v(® ][ 11 + [ 0 + [6:B)]))- (3.21)

Similarly, differentiating (1.9) and (1.10) with respect to x twice, respectively, we can infer
from Theorems 2.1 and 2.2 that

i@ < CoUT)([|v®) | 115 + [ 12O 12 + 0D 2 + V2D o | 10 ®) |
+ H 1x(t) ||Loo ”Vxxx(t) ” + ”Vxx(t)”Loc ||77xx(t) ” + H 1x(t) ”)
< CT)([ve(®) | s + [0 | 112 + |00 12)5 (3.22)

1622 ®)] = CUD)(|6:8) | 15 + |15 O] 2 + [[v2(®) ] 12), (3.23)

or

[Varax () | < CoT([|v2®) | 112 + 12O 2 + 62D 2 + [ veae ()], (3.24)

||9xxxx(t)” = CZ(T)(”Qx(t) ”Hz + ” Nx(2) ”Hz + ”Vx(t) “Hz + ||9txx(t) ”) (3.25)
It follows from (1.8) and (1.10) that

In:@| < G|y + @), (3.26)

[6:@®)] < ([0 + [n:@ ] + [ve®] + [vax(®)])- (3:27)

Differentiating (1.9) and (1.10) with respect to ¢, respectively, using Theorems 2.1-2.2 and
(3.20)-(3.27), we have

[ve®] = CD([vx® ] + [0 + [ 6: @]

+ 0@ + [vis ] + |veel@] + [ m®)]) (3.28)

= GD([v+@] 15 + [1:O ] o + 6] o + 1), (3.29)

[6:@] = GO @] 1 + [ + |6 o + [6xO] o + [ve®]) (3:30)
< C(T)(|vs@®) | 2 + 1@ [ 2 + 16:®) ] 115 + 1) (3.31)

Thus the estimate (3.17) follows from (3.20)-(3.23), (3.29), and (3.31).

Differentiating (1.9) with respect to ¢ twice, multiplying the resultant by v, and perform-
ing an integration by parts in L?(0, M), and using Theorem 2.2, the embedding theorem,
and the Young inequality, we can derive

1d 2 M 2 (r*v)x M 2 (r*v)x
EEH‘%H = —/0 (V Vtt)x<M " —P>ttdx—2/0 ((V )tvtt)x<ﬂ 7 —P>tdx
M 2
_/ ((rz)ztvtf)x(u“ 0 —P) dx
0 n
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M 4
v,
= —/ M;xvixdﬁH Co(T) (vl + 1vevell + [ V2] + 16l
0

+ el + 16eell + [V ]) Ve

< =G Vel + Co(T)(Ivall i + DO + vl + 162l1 + Iveell®).  (3.32)

Thus, by Theorem 2.2,

|va(®)|” + / [viee(s)||* ds < Ca(T) + Co(T) f (Ivie I + 116:11%) (s) dis,
0 0

which, together with (3.28) and (3.30), gives estimate (3.18).

Similarly, differentiating (1.10) with respect to ¢ twice, multiplying the result by 6, and
performing an integration by parts over L2(0, M), and using the embedding theorem and
the Young inequality, we have

1d (M
5 dr fo ep02 dx
M 7'4K9x M 5 o
) _/ ( ) Pl = ./ (€0utbs + eque(r*v), )0l — / e0:0,, dx
0 n it 0 2 J,
M r2V % M (7'21/ .
— / <en tp- [/L( ) )(r2v)xtt9tt dx + / <I'L ) _p) (rzv)xett dx
0 n 0 v i

M
_ 2/0 (e,]t + (p - (rznv)x )t) (rzv)xté?tt dx

=Y P (3.33)

By virtue of Theorems 2.1-2.2 and the embedding theorem, we deduce that, for any ¢ €
(0,1),
Py < =Cill0ux)” + Col0sllzoe 1Vaell + 1Vl 105 | + 1Vl Zoo 16|
+ 11050 162 1| + 10l o0 11z 1) 1Ot

< —(2C) M N6uxll? + Co(T) (10l + Ivae 1> + NvillZ + 1611%), (3.34)
M 2
P, < Cl/ ((|Vx| + |9t|) + [Vae| + |9tt|)(|Vx| + |9r|)|9rt|dx
0

< Cullsellzoe (vl + 1O ((Nvlizoe + 10llzoe) (vall + 16 1) + Nvaell + 16]l)
< CUD) (1622l + 18 ll) (1l g2 + 1O+ 185l + Nvsell + 1162el)
< &ll0uxll® + Co(T)e™ (IvallFn + N6 + 1605 l1 + Vel + 116:e11%), (3.35)

M
Ps < C1/ (vl +16:1)65 dxc < Cullsel o (I1vill + 16:1) 16
0

< G116l + 1072 ll) (vl + 16:11) 16eell < €116l + Co(T)e™ 1621, (3.36)
Py < el|vasll® + Co(T)e ™ 1611, (3.37)

Ps < Co(D)Ivallzoo 16 ((I1vallzoe + 10 oo ) (Ivll + 16:1) + lvael
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+ 110zl + vazell + Hveell + Nvall)
< CUD 0zl (I1Vxllzr + 16 + N6xell + 1Vl + NBeell + 1vaaell + 1veell)

< &lvall® + Co(T)e™ (110> + 1vall 7 + 161 + 1621 + Nve®), (3.38)
M
Ps < Cl/ (le| + O] + [vae| + |Vx|2 + |Vt|)(|th| + |Vt|)|9tt| dx
0
1 1
< CD) Vel 2 Vs |2 (Il + 16Nl + Ve 1) 160, (3.39)

which, by Hélder’s inequality, implies

t t % t %
[ 2eas = cm sup ([ Pt as) " ([ el as)
0 0<s<t 0 0
: 1
X (/ (Ilvell® + 1617 + veell*) () dS)
0
t
< 8< sup ||9tt(s) ||2 + / ||Vtmc(s)||2 ds) + Cy(T)e™2. (3.40)
0<s<t 0
Thus it follows from (3.33)-(3.4.0) that, for any ¢ € (0,1) small enough,
2 ! 2
[oe@l + [ 1600 s
t
< s e [ Jouto) ds
0
t
+ CIS(OSUP Hett(s) ”2 + / (||szx||2 + ||Vttx||2)(5) d5>~ (3.41)
<s<t 0

Therefore taking the supremum in ¢ on the left-hand side of (3.41) and choosing ¢ € (0,1)
small enough, we can derive estimate (3.19) from (3.30). The proof is complete. O

Lemma 3.9 Under the assumptions of Theorem 2.3, the following estimates hold for any
t € [0, T] and for € > 0 small enough:

I + f Vi) ds < CalT) + Co(T)e? / (sl + 16slP)S) s, (3.42)
0 0

1620 | + / 16 s) |2 ds < Ca(T) + Co(T)e? / (Il + [6alP) S ds. (3.43)
0 0

Proof Differentiating (1.9) with respect to x and ¢, multiplying the result by v, and inte-
grating by parts in L2(0, M), we have

1d
o [Vaell* = No(8) + Ni(£) (3.44)

with

2
No(t) = <r2 <M r :)x —p> ) Ve

x=L M 2
. N =- / <r2 <,U« V) —P) ) Vit .
x=0 0 v x/ t
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Using Theorem 2.2 and Lemma 3.8, the interpolation inequality, and Poincaré’s inequality,

we can get

No(t) < Cr((IIvellzoe + 10 llzoe) (I1villzoo + 16xllzoe + [1mellzoe) + Vaellzoe + [10x 200
+ Vart oo + Imellzoe [vallzoe + Ivellzoo Vaellioe + [ V2] oo + et oo
+ [Imxllzoe 10l oo + 1V ll oo 10 [l oo
+ 16ll oo 19l zoo + [1Veellzoo 17l 200 ) [ Ve[l oo

1 1
< Co(T)(No1 + No2) 1Vae | 2 [1vae 1 2, (3.45)
where
Not = [[vallgz + 161 + [[0xe
and
1 1 1 1 1 1
N02 = ||9xt|| 2 ||0xxt|| 2 + ”Vxxt” 2 ||Vxxxt|| 2 + ”Vxxt” + ”th” 2 ”Vxxt” 2.

Applying Young’s inequality several times, we have, for any ¢ € (0,1),

2

1 1 &
2
Co(T)Not[[Vae 12 Ve 12 < E”Vxxt”W

+ Co(T)e™ (vl 22 + 161170 + vaell®) (3.46)

and

2

1 1 &
F 5 2 2 2 2
GT)No2 lvaell 2 lvane 12 < > Ve * + & (102ell® + 1 Vanne 1)

+ Co(D)e™® (116001 + 1vsell?)- (3.47)
Thus it follows from (3.45)-(3.47) and Theorem 2.1 and Lemma 3.8 that

2 2 2 2
No(t) < & (I1Vaxt 1 + 10eax > + [1Vannt %)

+ Cz(T)8_6(||9x||2 + ||Vx||?12 + 10ll® + 11ve 1), (3.48)
which, along with Theorem 2.2, further yields
t t
f Nols)ds <2 f (Il + 8o + vessell2) () s + Cal(T)e™S. (3.49)
0 0

Analogously, from Lemma 3.8, Theorem 2.1, and the embedding theorem, we can also
derive that, for any ¢ € (0,1),

M 7'4
Ni(#) < —/ u;v?xx dx
0

+ C((Ivall + 161+ 1mell) (162l oo + 1mellzoe) + [[Vax ] + [16xel
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2 2
+ 1mllzoe el + vellzoe vl + 1veliZoo llmall + vl + 16l + 1vel®) Vel

< =QC) M vasel* + CoT) (I1vel2 + 101125 + 1vael” + msll?), (3.50)

which, combined with (3.44), (3.49), and Theorem 2.2, shows that, for any ¢ € (0,1) small
enough,

t
lvu @ + f [vases) | ds

t
<Cy(T)e™ + C182/ (1Bexell? + 1Vazat 1) () dis. (3.51)
0

On the other hand, differentiating (1.9) with respect to x and ¢, we can derive from Theo-
rem 2.2 and Lemma 3.8 that

”Vxxxt(t) ” <G ”tht(t) ” + CZ(T)(”Vx(t) ”Hz + ||9x(t) ||H1

+ [0 11 + 60 )- (352)

Thus inserting (3.52) into (3.51) leads to (3.42).
Similarly, by (1.10), we have

1d (L 3

- — 02 dx=:) L), 3.53

2dtoe“”"x§() (3.53)
where

r*i6, x=M M (e,
LO(t) = ( ) th ’ Ll(t) = _/ ( ) Gtxx dx:
n xt x=0 0 n tx

M
Ly(t) = - /0 ((en tp- 1 (rznv)x) (rzv)x> O dx,

M 1
Li(t) = —/ (thxet + Ethgtx + e@xett> O dx.
0

By virtue of the embedding theorem and the Young inequality, we derive from Lemmas 3.1,
3.8, and (3.42) that, for any ¢ € (0,1),

1 1
Lo(t) < Co(T)(Ivally2 + 16512 + 16l 2 + 16512 [16xae 1 2

1 1 1 1
+ ”9xxt|| 2 ||0xxxt|| 2)||0xt|| 2 ||0xxt|| 2

< 2 (10pell* + 10exxalI?) + Co(T)e™ (Ivall 2o + 1641172 + 115e11%), (3.54)
Li(£) < =(2C) MlOuxlI” + CoT) (vl 70 + 10:1120 + 116:0170) (3.55)
Lo(8) < & [veaall® + Co(D)e > (I1vall 2o + 10120 + [vsell® + Il 20), (3.56)

Ls(8) < &[|0uxll” + Co(T)e > (el Wiy + 10:120 + 10172 + lvee|® + Inell®).  (3.57)
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Differentiating (1.10) with respect to x and ¢, we can derive from Theorems 2.1-2.2 and
Lemma 3.8 that

Hetxxx(t) ” = Cl(Hettx(t)” + HVxxt(t) ”)
+ Co(T)([|vx®) |12 + 12O 2 + 62D 2 + [0 D)])- (3.58)
Inserting (3.54)-(3.58) into (3.53) yields (3.43). O

Lemma 3.10 Under the assumptions of Theorem 2.3, we have, for any t € [0, T],

[va@®| + v @) | + |60 + || 60|
t
+ / (IVeeel® + Vet l® + 162l + 16sxt 1) 5) ds < Ca(T), (3.59)
0
[ 7x @ |1+ Vs o + [Oax |1+ [vesa® | + [ 0ns @]

t
+ / (Iveell® + 1sxe 120 + 1011 + 11se 170 ) (5) ds < Ca(T), (3.60)
0
t
/ (anxx”]Z.[l + ”Vxxxx”?{l + ”@cxxx”?.[l)(s) ds < Cy(T). (3.61)
0

Proof Adding (3.42)-(3.43) and choosing ¢ > 0 small enough, we get

[v @] + |6 ®)]” + /0 (VeI + 1102t (5) s

< Cy(T) + Cy(T)e? / (1vsael + 16 12) () s (3.62)
0

Now multiplying (3.18) and (3.19) by ¢ and e3, respectively, then adding the results to
(3.62) and taking ¢ sufficiently small, we obtain (3.59).
Differentiating (1.9) with respect to x and noting that 7,y = (r?v)., we get

9 (n _ _ -
“&(7?)_p””:’%%+K“¢*%V7L—2r%w, (3.63)
where

K(%,£) = pyy + 2pyo0 02 + pyOy, —2 ﬁ(Z) 20 ()
X,0) = PopNy + 2Dn00xNx + PooU, + Pobxx — Mﬂ?’ rev) + an V).,

_A(B-2)(B-3)
- 2

U m;
+ AP 20, + 211 (n—; (r*v),, - n—;‘ (rzv)x>.

02nP~4n% + 2A(8 - 2)0n° 20, + AnP20?2

Differentiating (3.63) with respect to x, we have

8 XXX
M& <nn ) —Pylxxx = Ki(x,2), (3.64)
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where

NxxT _ _
Ki(x,t) = Ky(x, ) + Pnalxx + M(%) +r 2Vtxx —4r SUVtx
t

+10r7 892y, — 2r °n,v, - (r"zf)xx.
Obviously, it follows from Theorem 2.1 and Lemmas 3.8-3.9 that

K@) ]| = D) ([n: @] 1 + [va&) [ 1o + 65D 2 + [ves®)]) (3.65)

and
f |Ki(s)||* ds < Cu(T). (3.66)
0

Multiplying (3.64) by ’7’% over L*(0, M), we can obtain

d Nxxx 2 C_1 Nxxx 2<C K 2 3
2i2=l <alkol (367)
which, along with (3.66), gives
s ® + [ s ds = a1 (3.68)
0
It follows from (1.8)-(1.10) that
Ve @ | < CUT (V@) | 2 + [ 12D 10 + 0O || 11 + [vae@)])s (3.69)
|6ex @) | < CU(T)([6@®) ]2 + [ 1@ | 1 + V2D 10 + [0 D) (3.70)

Using the embedding theorem, Theorems 2.1-2.2 and Lemmas 3.8-3.9, we can derive from
(3.24)-(3.25), (3.59), and (3.68)-(3.70) that, for any ¢ € [0, T,

||Vxxx(t)||2 + Hexxx(t) ”2 + ”Vxx(t)”ioo + ”@cx(ﬂ”ioo
t
+ / (Varel 71 + 1Oamell i + Va1 3yn00 + 10nel 100 ) () ds < Ca(T). (3.71)
0

Differentiating (1.9)-(1.10) with respect to ¢ and using Theorems 2.1-2.2 and Lemmas 3.8-
3.9, we can deduce from (3.59), (3.68)-(3.71) that

[vex O] = Cillva@ ] + CAD([vx® ] 1 + [0 ]| + [ 6: )]
+6:@) | + |65 @] + [v®)]) = Cu(T), (3.72)
|60 = Cl|6u(®) | + CAT)([vx® 1 + [0:@) | + [6: D] 12

+[6:0)]| 1 + [vae@®)]) < Ca(T), (3.73)
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which, combined with (3.24)-(3.25) and (3.72), implies

” Vaxxx(2) ” 2 + ” Orxxx(£) ” 2

t
+/ (”Vtxx”z + ||0txx||2 + ||Vxxxx||2 + ”0xxxx||2)(s) ds < Cy(T). (3.74)
0
Therefore it follows from (3.71), (3.74), and the embedding theorem that
t
[l + [l + [ (i + Il 01 = (D). (375)
0

Now differentiating (3.64) with respect to x, we find

a n XXX
€ & ( xn ) — PnNxxxx = K, (x; t); (376)

where

M)
K(x,8) = Kia(%, ) + Pyt + M(%) :
t

From the embedding theorem and Lemmas 3.8-3.9 and (3.68)-(3.75), we can derive

| K@ = CoT)([va®)] s + 60| s + [0 12)

”I(lx(t) ” = Cl(”1<xx(t) ” + Vame || + Vel + H (pnxnxx)xH + 10Vl

< NxNxx ) )
U

< G| vaae O] + Ca(D([|vx® [ 5 + [6:0) |15 + [0 12),

+ 1l + mavell + 1 mexvell +

whence

K2 @] = Cil[vease @) | + CoD([|vx @] 5 + 6@ |15 + |12 D] 12)- (3.77)

It follows from (3.28)-(3.31) that
t
|l + 16c12) 9 ds < Cam), (378)
0
which, along with (3.52) and (3.59), gives
¢ 2
0
Thus from (3.68), (3.74), (3.77), and (3.79), it follows that

/ | (s)|| ds < Ca(T). (3.80)
0
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Multiplying (3.76) by == in L*(0, M), we can get

d 2

2
= nx;xx . Cfl Nxxxx e ||]<2(t) 2’ (3.81)
whence, by (3.80),
t
”nxxxx(t) H2 + / ” nxxxx(s) ”2 ds < Cy(T). (3.82)
0

Differentiating (1.10) with respect to x and ¢, we can derive from Theorems 2.1-2.2 and
Lemmas 3.8-3.9 that

[6eexx @) | < Cu]| 0@ | + Co(T) (|02 |15 + 12O |12 + 0:®) | 5 + |0e(D)]))- (3.83)

Thus,

/0 Gusas) > s < Co(T). (3.84)

Differentiating (1.9) with respect to x three times, applying Lemmas 3.8-3.9, Theorems 2.1-
2.2, and Poincaré’s inequality, we have

”Vxxxxx(t) ” <G ”Vtxxx(t) ” + CZ(T)(”Vx(t) ||H3 + ” Nx(2) ||H3 + Hex(t)”Hs)' (3.85)

Thus it follows from (3.74), (3.79), and (3.82) that

/o [veenan(s)|* s < Ca(T). (3.86)

Similarly, we can differentiate (1.10) with respect to x three times and use Lemmas 3.8-3.9,
Theorems 2.1-2.2, Poincaré’s inequality, (3.74), (3.82), and (3.84) to find

f ||0xxxxx(s) ”2 ds < Cy(T). (3.87)
0

Hence, (3.60)-(3.61) follow from (3.74), (3.82), (3.86), and (3.87). (I

Finally, combining Lemmas 3.8-3.10, we complete the proof of Theorem 2.3.
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