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Abstract

In this paper, we investigate positive solutions to the doubly degenerate parabolic
equation not in divergence form with gradient term u; = u™ div(|VulP?Vu) + Au9 +
yU'|VulP, subject to the null Dirichlet boundary condition. We first establish the local
existence of weak solutions to the problem, and then determine in what way the
gradient term affects the behavior of solutions. The conditions for global and
non-global solutions are obtained with the critical exponent r. = p}%q. Here we
introduce some precise technique for the ‘concavity method' to deal with the difficult
non-divergence form of the model.
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1 Introduction
This paper studies the doubly degenerate parabolic equation not in divergence form with
gradient term

w; = u" div(|VulP2Vu) + auf + yu'|VulP, (xt) e Q x (0,7T),
u=0, (x,t) € 02 x (0, T), (1.1)
L{(x, 0) = Ix[o(x), X € §;

where Q@ ¢ RY is a bounded domain with smooth boundary 02, m > 1, p > 2, g > m,
r>m-1,y>0,1>0,and uo(x) € C(Q)N Wol'p(Q), up(x) >0 in .

There has been much work contributed to the degenerate parabolic equations not in
divergence form. Friedman-McLeod [1] considered the following problem:

u; =P Au+ul, (xt)eQx(0,T),
u=0, (x,t) €02 x (0,7), 1.2)
u(x,0) = up(x), x€9Q,

~— ~—

with p =2 and g = p + 1 = 3, for which it was shown that, for sufficiently large domains,
the solutions of (1.2) must blow up in finite time regardless of the size of the initial value.
The more general situation with p > 1 and g > 1 was studied by Wiegner [2, 3]. We refer to
[4] for more results on (1.2).
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Stinner [5] investigated the non-divergence form parabolic equation with gradient term

=P Au+ul + k' |Vul|?, (x,t) € Q x (0,T),
u=0, (x, 1) € 02 x (0, T), (1.3)
u(x,0) = uo(x), xeQ,

with p >0, g > 1, r > —1. Quite differently from the problem (1.2) without gradient term, it
was found that the additional gradient term can enforce blow-up in some cases, with the
critical exponent r, = 2p — q.

Recently, Jin and Yin [6] studied the doubly degenerate diffusion equation

uy = " div(|VulP2Vu) + ul, (x,t) € Q x (0, T),
u=0, (x, 1) € 02 x (0, T), (1.4)
u(x’ 0) = MO(x): S 5,

where m > 1, p > 1, and they obtained the critical exponent g. = p + m — 1, namely, the
solutions are global if g < g, and there exist both global and blow-up solutions if g > g,. In
the critical case g = q., blow-up or not of solutions will be determined by the size of the
domain.

As for the doubly degenerate diffusion equation with gradient term

w, = udiv(|VulP2Vu) + y|Vul?, (x,t) e Q x (0,T),
u=0, (x,0) €02 x (0,T), (1.5)
u(x, 0) = uo(x), xeQ,

Zhou et al. proved the existence conditions of solutions [7-10].

A natural question is in what way the additional gradient term in (1.1) affects the behavior
of solutions. It will be shown that, depending on the complicated interaction among the
multi-nonlinearity parameters m, p, ¢, and r, the problem (1.1) admits the critical exponent
re = 254, for which there is some substantial difficulty to be overcome due to the doubly
degenerate diffusion of non-divergence in (1.1). In particular, to treat the critical case r =
1., we will introduce an auxiliary problem w; = f(w)(div(| Vw|P2Vw) + cw?™!) with f(w) =
K™ (w)l (w)?=2 and h(s) solving an ODE problem. We will explore a ‘concavity method’
where some precise technique is necessary to deal with the difficult non-divergence form
with the general f(w).

Throughout the paper, denote by A, the first Dirichlet eigenvalue of the problem

—div(|VeP?Ve) = 1¢?!, x€Q,
¢ >0, x €, (1.6)
¢ =0, x €0L,

with the corresponding eigenfunction ¢ € C(Q) N Wé’p (2), normalized by ¢ > 0 in €,
lolloo =1.

2 Local existence of weak solutions
We begin with the local existence of solutions to (1.1). Denote

Qr=Qx(0,7), Sr=0Q % (0,T), Tr=Sru{Qx{0}},
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E = {u € L®(Qr);u; € LNQr); Vu € If, (1)},

Eo = {u € E;ulyq = 0}.

The following comparison principle will play a crucial role in the paper, the proof of which
can be found in [11].

Lemma 2.1 Let L be the parabolic differential operator defined by
Lu = 0u —f(x,t,u) Au + g(x,t, u)

with continuous functions f and g, f > 0. Let u; € C%(Qr) N C>Y (), i = 1,2, be such that
Lu; is well defined in Q and

Luy <Luy inQr, m <u, onir.

Assume f and g are Lipschitz with respect to u in a neighborhood of u;(Qr), i =1 or 2, and
in addition either uy < uy on S or Viu; € L°(Qr). Then

u <uy inSr.

Since (1.1) degenerates when u# = 0 or |Vu| = 0, the problem does not admit classical

solutions in general. Here we deal with nonnegative weak solutions, defined as follows.

Definition 2.1 A nonnegative measurable function u € E is called a weak subsolution of
problem (1.1)

t t
/ f {ut¢ +|VulP2vy. V(u’”¢) - yu”|Vu|P¢} dxdt < A/ / ulgpdxdr (2.1)
0 Ja 0 Ja

for all bounded test functions 0 < ¢ € C}(27). The weak supersolution is defined by the
opposite inequality, and u is a weak solution of (1.1) if it is both a subsolution and a super-
solution to (1.1).

To show the local solvability of (1.1), consider the following regularized problem:

. 2
(then)r = wlh Aiv{(|Vitey|* + 1) 2 Vitey} + Audy

p=2 .
+ V”:n(|vuen|2 +1) 2 |vuen|2 in Qr, 2.2)
Uey = € onSr,
Uen(%,0) = uo(x) + € on Q,

where € € (0,1). Denote the classical solution of problem (2.2) by .. It is easy to prove
for fixed n > 0 that u, > €, and u,,, is increasing in €.

Lemma 2.2 For any € € (0,1), there exists a function u. with uc — e € L*(Q2r) N
L7(0,T; W&’P(Q))for some T >0, such that u. is a weak solution of the problem

u; = u" div(|VulP2Vu) + Aul + yu' |Vul?, (x,t) € Q x (0,T),
U=¢, (x,2) €02 x (0, T7), (2.3)
u(x,0) = up(x) +¢, xeQ.
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Proof Step 1. A priori estimates for uc,.
At first it is easy to show that there exist 77, M; > 0 such that

”Men”LOO(QTl) <M; foralln=>0.

In fact, let U solve

au

—)\.uq UO = +1 oo
I (0) = lluto + Ll zoo(e)

in [0, Ty). Set T = Ty/2. Then
lttenll oy < My = U(T) < 00 (2.4)

by comparison.
Choose s satisfying

ML s -1,
s>Cy:= v
y —m, r=m-1.

Multiply (2.2) by u;,, and integrate over Qr,

/ (shen)eusy, dxdt + (m +s)/ IS (Ve | + n)T |Vite,|* dxdt
Qr Qr

—2
(Uey)T™ dx dt + y/ ’”(|Vu€,,| + n)T |Vite,|* dxdt.
Qr Qr
We have
p-2
_/ e (I Vatey|* + ’I)T |Vitey|? dxdt < Cy = Cy(My,s,y), (2.5)
Qr
and hence
p-2
[ (900 0) % 190 e < Ca = ol v, 2.6)
Qr
due to u., > €. Consequently,
p-2
/ |Vu€,7|pdxdt§/ (IVtten> +1) 7 |Viuey|* dxdt < Cs. (2.7)
Qr Qr

Integrate (2.2) over Q7. Noticing ag;” lag <0, by (2.4) and (2.7), we have

2
/ (Uen)s dxdt < —m/ IVuenl +77)T|Vue,,|2dxdt+)»/ ul, dxdt
Qr

Qr

p=2
+J/[ (lvuer]| +77) 2 |VM€n|2dxdt
Qr

< Cy = Cy(C3,My). (2.8)
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Step 2. Uniform integrability.

For any ¢ > 0, choose § = ﬁ with Cs to be defined. Then for any measurable set E C 2,
meas(E) < 8, there exists E such that E C E C © with meas(E) < 25. Take p(x) € Co(R)
satisfying p(x) = 1 for x € E, p(x) = 0 for x € Q \T?, and 0 < p(x) <1, Vp(x) < Cp“(x)
in Q with 1%1 <« < 1. Refer to [12] for such p. Multiply (2.2) by u;,p and integrate over
E x [0,T] to get

T
/ /N(ug,,)tuznp dxdt
o JE

T
+ / /N[(m + s)ué'f]”_l - yuzgs](WumF + r;)
o JE

T T b
§A/ /Nuz,’;spdxdt—f ﬁu?@”(leenlz+n)TVu€,,Vpdxdt
0o JE o JE

pr2
2

|Vu€,7|2p dxdt

+. T [7;2
<2MIPTs + C ;"”/ /~(|wm|2 +1) % Ve, p® dxdt. (2.9)
0 E

By Young’s inequality,

T , 2
f ﬁ(IVuenI +1) 2 |Videy| p® dxdt
o JE
T r1
< [ [09uat en)® o ava
o JE
T b2 ;
SO'/ ﬁ(|vu57]|2+n) 2 (|V”6n|2+n)pdxdt+c(a)/ /;p(ot—l)p+ldxdt
0 JE o JE
r -2
So/ /~(|Vuen|2+n) 2 IVuE,]|2pdxdt+anC3+2c(o)8, (2.10)
o JE

Choose o < 2CSW satisfying o CM"*S < "+ (m + s —y M;~"*1). We have by (2.9) and (2.10)

T p-2
/ /~(|w€n|2 +1) % Ve, > pdxdt <2Cs8 +onCs <&, (2.11)
0 E
where
Mi“ q+s m+s
-+ AM T + CM{"*c(o)
Cs = St (2.12)

>
ems(m + s — y M) — o CMI™

It follows from (2.11) that

T T p-2
/ / |V, P dx dt §f ‘/N(IVuE,,F +1) % Ve, > dxdt <e. (2.13)
o JE o JE

By using a similarly procedure with (2.13), we can obtain

T
/ / |(u€n)t| dxdt < e. (2.14)
o JE
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Furthermore, for any fixed ¢ > 0, again by (2.13), we have

T T
f / Ul | Vitey P dxdt < M / f |Vise, P dxdt < Mje. (2.15)
o JE 0 JE

Step 3. Convergence of uc,.

By Dunford-Pettis theorem, we know from the inequalities (2.4), (2.7), (2.8), (2.13),
(2.14), and (2.15) that for any € € (0, 1), there exist a subsequence of ., (denoted still by
Uey) and a function u, with u. — e € L*(Q7) N LP(0, T; Wé’p(Q)), such thatas n — 0,

Uey = Ue a.e.in Qr, (2.16)

Vue, = Vu. inI?(Qr), (2.17)
0ltey oue . 4

—~ —= inIYQy), 2.18

o o (27) (2.18)

|Vitey|P — |Vuc P in LY(Qr), (2.19)

e |Viiey P — ué |Vuc P in LY(Qr), (2.20)

where — denotes weak convergence, and
€e<u.<M; ae inQr. (2.21)

For any ¢(x,t) € C(27), U, satisfies

T T
8 —
/ / ;’;n(j)dxdt + / / (|V”€n|2 + n)(P 2)/2Vu€?7 . V(ué’fp) dx dt
0o Ja o Ja
' ! (p-2)/2
= AA /;zu?nqﬁ dxdt +y /0 /Qu:n(wue“? +1) Ve, % dxdt. (2.22)
Furthermore,
! (p-2)/2
/ / (ug[n“vuenlz + 77) Vueﬂ - u?|vue |p_2Vue) -Vo dxdt
0o Ja
! (p-2)12
B /0 ‘/;ZUZ;(OVL!G”F + 77) Vuen - |vuen|p_zvusn) -Vodxdt
T
* /o /;2u27(|vu€ﬂ P2V utey — |VuclP>Vue) - Vo dxdt

T
+/ / (uf; - 142")|VuE P2Vu, - Vo dxdt

0o Ja

=11 +12 +13.

Obviously, as n — 0, we have I; — 0 due to p > 2, I, — 0 by (2.20), and I3 — 0 because of
(2.16) and the dominated convergence theorem. Consequently,

T
-2)/2 _
/ /(ug(wuﬁﬂz + n)(p ) Vite, — ul'|Vucl? 2Vue) -Vodxdt
0o Ja

— 0, asn—0. (2.23)
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By a similar procedure, we have

T
-2)/2 ,
/ /(u:n(|Vu6,,|2+n)(p Vitey|? =l |Vuse IP)p dx
0 Q
T
—2)/2
=/ f(ug,,(|w€n|2+n)‘” Viteg|? = ul, Vit ) dx dt
0 Q
T
+/ /(u:anﬂ,V’—uZU|Vu€|p)¢dxdt
0 Q
T
+/ /(u2,7|Vu5|1’—u:|Vu€|1’)¢dxdt—> 0, asn—0. (2.24)
0 Q

In summary of (2.16), (2.18), (2.22), (2.23), and (2.24), it is true for any ¢ € C}(Q7) that

T ou T
/ / €¢dxdt+f /|Vu€|p’2Vu€-V(u2”¢)dxdt
0o Jao 0t 0o Ja

T T
= A/ / ulpdxdt +y / f U, |Vuc P dxdt. (2.25)
0 Ja 0o Ja
Together with the initial and boundary conditions, we conclude that #, is a weak solution
of problem (2.3). O

Theorem 2.1 Let uy € C(Q) N Wé’P(Q) with p > 2. Then the problem (1.1) admits a weak

solution u € E.

Proof From (2.21) and the comparison principle, u, is bounded and increasing in €. So,
Ue—>u a.e. in Qr,ase — 0. (2.26)

Moreover, the estimate (2.5) is obviously true for 7 = 0, namely,
/ W N\Vu P dxdt < Cy = Cy(My, s, y). (2.27)
Qr

On the other hand, set u := c;e*¢(x) for (x,t) € Q x [0, 00), with ¢ defined by (1.6) and
&= c;'“p_z)\l. Then

u, - u" div(|Vul?Vu) - du? - yu'|Vul’ <u, - u" div(|Vul?Vu) <0.  (2.28)
Forany K CC ©, let c; be small such that ¢;¢(x) < uo(x) on K. By the comparison principle,
u.>u inK x [0,00).
Since ¢ € C1(Q) (see [13]) and ¢ > 0 in €, there exists cx such that

U, >cx  in K x (0,00). (2.29)
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Set ©,, = {x € ,dist(x,0) > %}. Then @, CC @, and Q,, — Q as n — o0o. Together
with (2.27) and (2.29), we have

T
/ |VulP dxdt < Cs = C5(My, s, y). (2.30)
0 Jo
Thus, there exists a subsequence € = €y — 0 such that
Vi, = Vu  inI?(Q x [0,T7]).

It is easy to see the inequality (2.30) is still valid for #., when €, is replaced by €. So,
there exists a subsequence of € such that

Vite,, = Vu  in L¥(Q, x [0, T7).

By induction, we obtain a subsequence ¢, such that

T
/ / |Vue,, |P dedt < Cs = C5(My,s, y)
o Ja,
and
Vi, — Vu inL?(Q, x [0,T]).

Similar to the above procedure, we see that the estimates (2.8)-(2.15) hold as well for u,,
with ©, instead of Q2. Consequently,

Ot N ou

in L(Q, x [0,7)), 2.31

o 57 D (24 x [0,7)) (2.31)
Ve, [P — [Vul’  inL'(Q, x [0,T)), (2.32)
e |Vite, [P = uf|Vul’ in L'(Q, x [0, T)). (2.33)

For any ¢(x) € C(R27), there exists K CC  such that ¢ = 0 in Q \ K. For such K|, there
exists n € N such that K CC €2,. By (2.33) and the dominated convergence theorem, we
obtain

T
f /(u:nk|VuE|p—u’|Vu|p)¢dxdt
0o Ja
T
:/ / (u:nkIVuenklp—u’IVulp)quxdt
0o Ja,
T
:/ / (u:nk|Vu€nk|"—u:nkWul")qbdxdt
0o Ja,
T
+/ / (u:nk|Vu|p—u’|Vu|p)¢dxdt—> 0, asey — 0. (2.34)
0o Ja,
Similarly,

T
/ / (u$;1|Vu€nk = um‘1|Vu|p)¢ dxdt— 0, ase€u—0 (2.35)
0o Ja



Zhou et al. Boundary Value Problems (2016) 2016:126 Page 9 of 19

and
T
f f (! |\Vitey P> Vite, —u"|VulP?Vu) - Vodxdt — 0, asey—0. (2.36)
0 Q

Notice that #, , satisfies

’ 3ank dxd r m p-2 dxd
/ / T(ﬁ X t+/ / ank|vu€nk| Vugnk . V¢ xat
—)L/ /u ¢dxdt+y/ / ekIVueklpqﬁdxdt

—m/ / |Vu€nk|p¢dxdt (2.37)

Letting €,x — 0 in (2.37), by (2.26)-(2.36), we conclude for the limit function u« that

T ou T
/ /—¢dxdt+/ /|Vu|1’-2w-v(u%)dxdt
o Jo Ot o Jao
T T
:k/ /uq¢dxdt+y/ /u’|Vu|1’¢dxdt. (2.38)
0o Ja o Ja

In addition, « satisfies the initial and boundary conditions of (1.1) (in the sense of trace).

This proves that u is a weak solution of (1.1). O

We know by the proof of Theorem 2.1 that if ||u(-, £)|| 100 () < 00, then fOT Jic \VulP dxdt <
(7). Let T* be the maximal

existence time of the solution u. We get the following proposition immediately.

oo for any K CC €, namely, u € L*(Q27) implies Vu € IV

loc

Proposition 2.1 If T* < co, then lim;_, 7+ ||u(-, t)|| 100 (@) = 00.

Remark 1 It is mentioned that the uniqueness of such weak solutions to the problem (1.1)
cannot be ensured. In the rest of the paper, the solution of (1.1) always means the maximal

solution of (1.1), for which the comparison principle is valid.

3 Global existence and nonexistence of solutions
We discuss the existence and nonexistence of global solutions to the problem (1.1) in this
section, via a complete classification on the parameters m, p, q as follows:

(@g<p+m-1, b)g=p+m-1, (c)g>p+m-1.
Correspondingly, we have three theorems for them.

Theorem 3.1 Supposeq<p+m—1.
i) Ifr< p "4, then all solutions are global and bounded.
(11 Ifr> pm q , then the solutions blow up for a large domain or large initial data, and
they are global for a small domain with small initial data.
(iti) Ifr= M , the solutions blow up for a large domain and are global for a small

domam
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We will prove Theorem 3.1 in five lemmas.

Lemma 3.1 Suppose q<p +m—1withr < ’%. Then all positive solutions of (1.1) are
global and bounded.

Proof Let ¢ € C'*A(Q) solve —div(|Vy [P2Vy) =1 in Q with ¥|30 = 0, B € (0,1) [13].
The condition g < p + m —1 with r < ‘% implies m —r > ’;‘Tyf. Choose « € (0,1) such that

‘;T’I” <a<m—r.Let w=M + M*y(x), with M > 1 to be determined. Then

wy —w" div(|Vw|”_2Vw) -l —yw' | VwlP
= W[ MO 0 (M + M)~y (M MOy) T M|V ]

> w [Ma(p—l) _ C(Mq—m +Mozp+r—m)]
with some ¢ > 0. Due to the choice of «, we have
qg-m<a(p-1), ap+r-m<a(p-1).

Now let M > 1 be large enough such that uy(x) + € < M in Q and M*®D — (MT™ +
MP*=") > 0. Therefore, the comparison principle yields . < w in © x (0, 00). Letting
€ — 0, we obtain #z < win Q x (0, 00). O

Lemma 3.2 Supposeg<p+m—1withr> %. If Q contains a ball with radius R large
enough, then all solutions of (1.1) blow up in finite time.

Proof Suppose for contradiction that for any R > 0 such Q admits a global solution u to
(1.1) with suitable initial data uy. Without loss of generality, assume Br(0) C Q. We first
show that for any fixed M > 1, there exists ¢y > 0 such that # > M in B; X (tp, 00).

o1

Let R' > R be such that Bp (0) C Q. Set z := ¢, with ¢ € (0,47 7) small to be deter-

mined, Ax and ¢ the first eigenvalue and eigenfunction in the domain Bg/, normalized
by ¢r >0 in By, ||¢r |l = 1. Then

2= 2" div(|V2lP2Vz) = A2T - y2 | V2P < hpc? " Lgh!™ T — gl <0

in Br/(0) x (0, 00). Since ug > 0 in €, uy € C(2), choose ¢ small enough such that uy + € >
cpr in Br. By the comparison principle, # > z = c¢¢p in Br. Furthermore, there exists
¢1 > 0 small such that z > ¢; in Bz(0) x (0, 00), due to ¢g > 0 in Bx and ¢p € C(Br) with
R < R'. Define

vi=y(t)(pr(x) +8), (x,£) € Br(0) x (0,00),

where y(¢) is a nondecreasing positive function on [0, 00) to be determined with suitable
8 > 0. A direct computation yields

v —v" div(|Vv|1’_2Vv) - — V|V
<7 (Pr() +8) + Ay” " pr + 8)" ' — ¥ (e + 8)"
=IL1 +L2 —L3 IHBR(O) X (0, OO),
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where
L J /
=L (gproya< i
L3 yq yq
and
L_2 _ +m-1-q m—q 4 P-1 prm—l-q
.= ARy’ (Pr +8)" g~ < Ar(2y) .
3
Letyg = L —, and choose yy and § such that yo < 4, Smin{%,l},andy’ < qu,

2(2)LR)p+m—1—q
9(0) = yo,and ¥(£) /" yrast — 0o. We have v < u, on {t = 0} and dBz(0). Moreover, f—; < %,
é—; < % By comparison, u, > v, and hence u > v in Br(0) x (0, 00).
For any fixed M > 1, choose R > 1 large such that %quSR > M in B, and hence y(f) >

%yR@g for some £y > 0. Consequently,
1 .
u>v> EJ/R¢R >M inB; x (ty,00). (3.1)

For n € N with # > max{p, m}, choose 0 < 6§ € C}(By) such that fBl 0"dx = 1.

Multiply (1.1) by 6” and integrate over By,

d
—/ ub"dx = —m um-19"|Vu|de—n/ W0 VulPiVu - Vo dx
dt By By By

+A/ uqe”dx+y/ u 0"\ Vulf dx
By By

=: —]1 —12 + ]3 + ]4. (32)
Since r > % > ’%j{"” =m -1, by (3.1), we have
—(r+1-m) ron V4 1
L <mM u'0"|\Vulf dx < 514, t>ty, (3.3)
B

provided M > (%’”)ﬁ. By Young’s inequality,

2n
Izsnlf WO\Vul dx+ n2t | wmroDgrr|vep dx
2n Jp, vy Jp
1 21>

<—Ii+— [ wrDemr Ve dx. (3.4)
2 Y B

Ifr> If—i"l, by (3.1), (3.4), with M > 1, we have

1. 2n?
b < Iy + —— pmpmre-D f 0"P|VOP dx
2 4 B
1. 2
<L+ [ emrvepdx, t>t. (3.5)
2 Y B
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In the case r < £ £, duetor> p "4 implying f := T r(p 5 > L, again by Young's inequality,

/ w?n T DenP | o P dx
By

/

B
A 1[4\ 7 , ,
<2 u’f@”dx+ 1 (4 / 0778 |V o P dx (3.6)
4712 ﬂ )"VIB By
: _ B _
with 8= 35 = oy e

It follows from (3.4)-(3.6) that

I 11 11 Mrip=1)—pm+q) [(4n*(pm—r(p-1)) R
2= em - rp- 1) ( qv i )

. / 9”‘r<p71§j—qpm+q|v9|r<p—1f—qpm+q dx. (3.7)
By

Combine (3.2), (3.3), and (3.7) to get

d n )\ n )\‘ n 1
— | ub"dx>—| uil0"dx-C> — ub"dx | -C (3.8)
dt Bi 2 B1 2 B

with

Mr(p-D)-pmtq)  4n*pm=r(p=D)\ ;51 pra
2(pm-r(p-1)) : ( qy ) b-D-pm+q
pm

_ rq rq
C= . f Q" rp-T)-pmrq |VO | ®T-pmd dx,
By 4 p-1’

<
212 n-p V4 pm
TfBIQ |V6| dx, r> m

Choose M > max{(%’”)ﬁ, (%)% }. By (3.1), we have

A 1 7 A
= (/ u(-, t9)0" dx) > (M/ 0" dx) =-M?>C. (3.9)
2\Jp B 2

We conclude from (3.8) and (3.9) that |, B, u6" dx must blow up in finite time. (]

N>

Lemma 3.3 Suppose g <p +m —1withr> pm L. Let ug = bo with € Wop(Q) N C(Q)
and w > 0 in Q. Then there is by > 0 such that the solution u of (1.1) blows up in finite time
provided b > by.

Proof Suppose for contradiction that u is global with uy > byw for any by > 0. Pick n and
M defined in the proof of Lemma 3.2. Let 2 contain a ball with radius 2R, without loss
generality, Bor(0) C Q. It suffices to show there exists £, > 0 such that # > M in Bg;p x

(t()v OO)

p(r+1-m)
p-1’ (p-Dr+q-pm
be determined. For x € Bg(0), we have

1, set w(x) := e~ for x € Bp(0) with z := 7 and § >0 to

For o > max{-2 = R

w" div(I[VwP2Vw) + Aawf + yw' | Vwl?

x| P (0 R = (0 = 2)Jx?)

_ 8p+m—le—(p+m—l)z
(R = |27

{p-Dxl’ (0R? - (o = 2)IxI?)
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—n(R - x*)} (o R? = (0 - 2)|x?) — &[22 (R? - |x1*) (o R? = (0 - 2)|x]*)
—o(op-o -p)(R - xI%)’ - 2p - Vx> (R - 1x%)°)

xR = (0 = 2)|x*)

+A81eE 1y 5 P2
! (R2 = Jaf2)

Denote
f() = (p =157 (0 R? = (0 - 2)s*)” = n(R?> - %)’ (o R* - (0 - 2)s°)
~45*(R* = $*) (o R* - (0 - 2)s%)2

—-o(op-o —p)(R2 —s2)3 -(2p- 4)52(R2 —sz)z, s€[0,R].

Then there exists K > 0 such that |[f(s)| < K for s € [0,R]. Due to f(R) = (p — 1)2?R°*? > 0,
there exists ¢, € (%, 1) such that f(s) > 0 in [¢;R, R], and hence

w” diV(|Vw|”_2Vw) +aw? + W |Vl >0, x| € [caR,R].

For the above o with r > %, set

_1- 1—
l€<p+m q r+ m)

op-o-p o

Then there exists 8, > 1 such that ¢; =8~/ € (0, %) for all § > §y. Hence, there exists §; > g
such that

w" diV(|Vw|”_2Vw) + w7+ yw | Vwl?

0 RO—2
_qclk
2

+A8%e 4

C‘ITP—“—PRap—a—SpI(
1-c)¥
Rap—a—5p1<
W

= 0, |x| € [O)CIR])S = 51'

> _5p+m—1

o-2

> _gprm-l-llop-o-p) + 18055

Furthermore, there is §, > §; such that

w" div(|VwP2Vw) + Aw + yw [Vl

op-o—p 2 _ 2\p-2 —(r+p) (caR)?
> 1 (&f |(;)2p2)|x| ) {877 IK 4 4y S PR e DR )
— X
—0— 2 2\p-2 _ (2R
- |x|ap 7 p(UR - (U - 2)|x| )p {_8p+m—11( + 4y8r+p—laR0+4e (r+p) (l—c%)R2 }

- (R = Py

> O, |x| € [CIR; CZR])8 > 82~
Finally, choose § > §, such that w(x) > M in Bg/;. In summary, we obtain
w” div(|VwP2Vw) + Aw? + yw'[Vwl” > 0 in Bg(0),

and w(x) > M in Bg,.
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Let by > 0 be large such that byw > w in Bg(0). By the comparison principle, we have
u. > win Bg(0) x (0,00). Hence u(x, t) > w(x) > M in Bg/ x (0,00).
The rest of the lemma can be proved by the same arguments as those for Lemma 3.2.

O

Lemma 3.4 Suppose g<p+m—1withr > %. Then all positive solutions of (1.1) are
bounded, if Q is contained in a ball with radius R small.

Proof Without loss of generality, assume  C {x € RV|R < x; < 2R}. Set z := Kx¥ for (x,t) €
Q2 x (0,00), with K > 0 and 0 < k <1 to be determined. A simple calculation yields

7 — 2" div(|Vzl 2 Vz) - Az? - y 2| Vzl?
= (p = 1)(1 — ) KP+" o1y D DLomic s peq i) gerep o Pl

:ILl —L2 —Lg.

Noticing r > ’% > m — 1, we have

% — ZVK I(F—WHlxK(r*m*l)
L (p-Dl-x) '
2yk
< I(r—m+1(2R)K(r—m+1)
T p-1D-x)
<1

provided K = (%)H&Hl 2R)™.

. -1 . .
Choose « = min{ 4-yMr{7”‘+1+p—1’ p+m’i17q}, with M := ||ug|lo(q) + 1. Then there exists R
small such that

e (o)
and hence
ZLE - W -tprm-1) g mep-Die D1
1 - — K)KE™
2
T ierareat K- g Ryp-rlprm1-g
<1
In addition,
N )

on the parabolic boundary of Q x (0, 00) due to the choice of k. We conclude that z is a
time-independent supersolution of (1.1). d
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Lemma 3.5 Supposeq<p+m—1withr= %. Then all solutions of (1.1) blow up in finite
time provided 2 large enough.

Proof The lemma will be proved in three steps.
Step 1. Set u = h(v), and substitute into (1.1),

W), = [h’”(v)h’(v)”_z] diV(|VV|p_2VV) + AH(v)
+ [(p —Dh)"H (w2 H" (v) + yhr(v)h/(v)p]|Vv|p. (3.10)

Here i € C°([0, +00)) U C%((0, +00)) satisfies

1P (s)

W (s) = e FoD (0) = 0

withB=r-m+1-= 1%7117”1 € (0,1], and hence (p — 1)h(v)" K" (v) + y " (v)i' (v)? = 0. Thus,
ve = W (I ()~ (div(| VP2 V) + yh(”‘l)(l‘ﬂ)(v)e%hﬂ(s)).

E-D0-) ()" Simi ~
Set g(v) = h (v)e? . Similarly to the proof of Theorem 2.5 in [5], we can find
constants vy > 2 and ¢y > 0, only depending on B, A, and y, such that

gW) > co(v+1P forv=vy. (3.11)
So, v is a supersolution of
we = W (W)l (w)P 2 (div(|Vw|P_2Vw) + cow”‘l) in Q x (t, T)

whenever v > v;.

Step 2. Let w solve

we = fW)(div([VWIP2Vw) + cow?L),  (x,8) € Q x (0, T),
w(x, t) =0, (x,0) € 02 x (0,T), (3.12)
wi(x, 0) = wo(x), xeQ,

with f(w) = " (w)l' (w)P~2. We claim that w blows up in finite time for any initial data
wo > 0 provided €2 large such that 1; < co.
We prove the claim by using the so-called ‘concavity’ method. Define

éa(w)zl/ |Vw|”dx—c—0/w”dx, %”(w):/ D (w) dx,
b Ja b Ja Q

where ®(w) = fowf(%) do with f(0) = W (o)l (0)?2. Such @ is well defined. In fact, since
__Y _uB

h(0) = 0, there exists g; > 0 such that #'(¢) = e o @ > % for ¢ € [0, 01]. Set hy(0) =

(aIn(o + 1))%, with 0 < < @ Then

1 el
/4 —(Ol IH(Q +]_)) B — 1 Lp e
;(Q)fj _ B — o+l _ —(alH(Q+1)> B (Q_'_l)ﬂ(p}:l) 1
e Frn/1(© (0 +1) oD



Zhou et al. Boundary Value Problems (2016) 2016:126 Page 16 of 19

e

1-
Choose @3 = Il’lll’l{Ql,eﬁ @1}, We have (a1n(o + 1)) 7 <Bfor0<p<p Since 0 <<
ﬁ(p ) 1mphes (Q+1)ﬂ<1’ 17 <1for 0 <0 < 02, we have

(o)

e FOD )

<1 forp €[0,0s].

Hence, by the comparison principle with %(0) = /;(0) = 0, we obtain

h(o) = hi(e) for g €[0,0,].

Consequently,

02 o 02 0 02 0
—dQS/ o dQS/ — 40 <00,
o flo) o 2h'"(0) 0 20fInf(o+1)

and so, ®(w) = fowj%) do is well defined.
A simple calculation yields

w
w) = /Qmwtdx =-—p&(w)

and

2

A (w) = —pE' (W) = p fﬂ s

Noticing f is nondecreasing, we have by Holder’s inequality

()’ < WW >25</91%2v)dx)</9fv(ﬁ)d">

(L o) [ e

= %%(W)%’/(W),
V4

which implies

It follows that there exists T' < oo such that if
1 Co
== | |[VwolPdx—-— | whdx<O,
pJa P Jo
then

lim sup F#(t) = oo,

t—>T
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which implies
limsup | ®(w(:, )| (g, = 00-
Thus, we have
lirtri) S]l}p||w(~, £) | o0y = 0©- (3.13)

Let ¢ > 0 in Q be the first eigenfunction of (1.6). We have, for any k > 0,

A

- _l . _M—¢ VZ
g(kl/f)_p/Q|V(k1/f)| dx . /Q(kl//)pdx ‘/;Z(kl/f) dx <0,

p
provided 2 large such that the first eigenvalue 1, < ¢y. Choose k small enough such that
wo > k. Then w blows up in finite time by comparison.

Step 3. By the assumption, €2 contains a closed ball with radius R. Let Br(0) C ©, without
loss of generality. Suppose there is initial value %y > 0 such that the solution u is global in
time. Then we can show in a way similar to the proof of Lemma 3.2 that there is £, > 0
such that u > M > f(vy) for (x,£) € By x (ty,00), and hence v > f1(u) > (M) > vy in
By X (tp,00). Therefore v is a non-global supersolution of (3.12) in B; x (¢, 00) by Step 1.
O

Theorem 3.2 Suppose that q > p + m—1. Then the solutions of (1.1) blow up for large initial
data and are global for small initial data.

Proof Let ¢ solve —div(|V¥|P2Vr) = 1 in Q with v/ |yq = 0. Since g > p + m — 1 implies

P24 < m -1 <r, it follows that 2L o L \when m > r. Fix 8 > 0 such that
P q-m m-r
-1
P <8< min{ , 1} form>r, (3.14)
q-m -
and set

w= i+ uy ), &1 € x(0,00),
with ¢ € (0,1) small to be determined. A simple calculation yields
wy —w" div(|Vw|”_2Vw) —wl —yW | VWP = lPIW" —wi — y P V|

Since (g — m)8 — p + 1> 0 by (3.14), we have

2w

=i 2(p8 + pyp) P < 2P (L o) <1,

provided p is small enough. If r < m, by (3.14), we have

2y WPw |V P

g = 2 s VY < 2y VY <1
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for pu small. In the case r > m,

2y pPW VY P : -
BT 2y (1 |y o) IV <1 (3.15)

for i small. In one word, there exists ; > 0 small enough that w is a time-independent
supersolution provided ug < u® + .

To deal with large initial data, consider the following problem without gradient term:

u, = u div(|VulP2Vu) + aud, (x,t) € 2 x (0, T),
u=0, (x,t) € 02 x (0, T),
u(x,0) = up(x), xeQ,

the solutions of which blow up in finite time for large initial data [6]. By the comparison

principle, the solutions of (1.1) blow up as well for large initial data. O

Theorem 3.3 Supposeq=p+m—1.
() Ifr>m—1=221 there exist both global and non-global solutions.
o g 2
2p-1)
(ii) Supposer=m—1= %. Ifa < A(%{’;l) 7, all solutions of (1.1) blow up in finite

%01
time. If Ay > A(%”Il) 7, the solutions are global and bounded.

Proof (i) It follows from Lemma 3.3 immediately that the solutions of (1.1) blow up in finite
time for large initial data.

Next, we will show the solutions are global for small domain and small initial data. Let
Q be small with A;(£2) > A, and choose Q with @ cC Q such that i, := kl(ﬁ) > A (see [14]).
Normalize @, the eigenfunction corresponding to A, by @ > 0 in €/, |||l 1@ = 1. Then
¢ > p in Q for some p > 0.

Define w = a@” with a = (%ﬁf’*”)r—}m ,be (A/x1,1). Then

wy —w" div(|Vw|p’2Vw) -l —yu"|Vw)?
=w"[(aby @O POV (b~ 1)(p - D)(aby 'GPV VP
_ )Lap—lgab(p—l) _ ),dpw—mbp@(b—l)wb(r—M)|v¢|p]
= w"[a? @0 (bR - 1)
— @by GG (b= 1)(p—1) + yba' " GHD)]

>0.

If in addition u, is small such that [|uo||;x) < ap’, then u. < w in Q x (0,00) by the
comparison principle. Thus # < w in Q x (0, 00).

p-1
p

(ii) By the re-scaling v(x, ) = u“(%, 5) with o = Iﬁ +land B =« 7, we transform (1.1)

into the Dirichlet problem

ve = V"M div(| VP2 V) + APl (e t) e U x (0,aT),
v=0, (x,t) e ol x (0,aT), (3.16)
v(x,0) = ug (%), xel,
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where m; = w, U = {Bx|x € Q}. We know from Theorem 3.2 of [6] that all
positive solutions of (3.16) are global and bounded if () > A, and so do the positive
solutions of (1.1) whenever

2p-1)
y+p—1) ?

M = M(R) = B2 (U) > A% = k(
p-1

2(p-1)
Also by Theorem 3.2 of [6], similarly, if 41 < )\(%)T, all solutions of (1.1) blow up in
finite time. O
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