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1 Introduction

Nonlinear evolution equations (NLEEs) play important roles in many areas of science,
and their study goes back a very long time. A variety of effective methods for constructing
exact solutions of NLEEs have been developed, including the inverse scattering method,
the Darboux transformation, the Hirota direct method, the algebro-geometrical approach
[1-5], etc. Among the aforementioned methods, the Hirota method has proved particu-
larly powerful. Once the corresponding bilinear form is derived, multi-soliton solutions
for a nonlinear equation are usually obtained in a systematic way. Recently, many gen-
eralizations of the Hirota method were developed. For example, a multiple exp-function
method is proposed and provides an efficient way to an exact multiple wave solution pro-
cedure that generalizes Hirota’s perturbation technique [6, 7]. The resulting multiple wave
solutions contain resonant solitons and a linear combination of solutions of exponential
waves, the latter of which presents an idea to construct linear subspaces of solutions for
nonlinear equations. The Hirota bilinear method has been generalized to a broad class
of nonlinear equations [8] and the links with Bell polynomials were established [9]. It is
interesting to note that the linear superposition principle can also apply to Hirota bilinear
equations and present their resonant soliton solutions [10], which is a special case of using
the Riemann theta functions. Based on the Hitota bilinear method, Nakamura proposed
an approach to quasi-periodic wave solutions of nonlinear equations [11, 12]. This method
uses the multidimensional Riemann theta function directly and does not involve Lax pair
representations and the complicated calculus on Riemann surfaces for the equations con-
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sidered. Recently, Fan, Hon, Ma, and Zhang have extended such method to investigate the
breaking soliton equation, the discrete Toda lattice, the asymmetrical Nizhnik-Novikov-
Veselov equation and the variable-coefficient mKdV equation, respectively [13-18].

In this paper, we would like to consider the following coupled KdV-mKdV system:

Up + Ugyy — OUU; + 3VViy + 3VsVix — 3uxv2 —6uvv, =0,
(1.1)
Vi + Vi — 3v2vx —3uvy —3u,v =0,

which was proposed as the classical part of one of superextensions of the KdV equation
by Kersten and Krasil’shchik [19]. Taking v = 0, we have the KdV equation

Us + Uyyy — UL, =0,
while for u = 0 we get the mKdV equation
Ve + Vg — 3V2Vx =0.

Therefore, system (1.1) can also be regarded as a type of coupling between the KdV and
the mKdV equations. For system (1.1), Kersten and Krasil'shchik proved its complete in-
tegrability by establishing the existence of an infinite series of symmetries and conserva-
tion laws [19]; Kalkanli ez al. presented its singular analysis and Lax pair by means of the
Painlevé test and prolongation technique [20]; Hon and Fan devised an algebraic method
to construct its solitary wave solutions and doubly periodic wave solutions [21]; Qin et al.
applied the Bell polynomials to derive its bilinear form and N-soliton solutions [22]. How-
ever, to the best of our knowledge, the quasi-periodic wave solutions for the system (1.1)
have not been investigated. In the following, the Riemann theta function and the Hirato
bilinear method will be applied to construct one- and two-periodic wave solutions for the
system (1.1). In addition, a detailed asymptotic analysis procedure to the quasi-periodic
wave solutions is presented and the relation between the quasi-periodic wave solutions
and soliton solutions is established.

This paper is organized as follows. In Section 2, we briefly introduce some main points
on the Riemann theta function. In Section 3 and Section 4, we construct one- and two-
periodic wave solutions for the coupled KdV-mKdV system based on the Riemann theta
function and bilinear method. Furthermore, the relation between the quasi-periodic wave
solutions and soliton solutions is investigated. Finally, some concluding remarks are given

in Section 5.

2 The bilinear form and the Riemann theta function
To begin with, we introduce a useful bilinear form of system (1.1). Under the dependent

variable transformation defined by [22]

*

u= —Bﬁln(ﬁ”*), V= iaxlnf?, (2.1)
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where f* is the conjugation of f, system (1.1) is transformed into the following bilinear
form:

(De+DY)f-f*=0,

(D«D, + Dy)f - f* = 0.

(2.2)

Following the Hirota bilinear method, the one-soliton solution for system (1.1) is of the
form
1-ie"

U = —8§ ln(l + 62’7), V1 =i0,In T o (2.3)
+ie

where 1 = ax — ot + o and o, o are free constants. The two-soliton solution for system
(1.1) is denoted by

up = -9 In[(1 - e’“”’”‘m)2 + (™ + e”2)2],

1—ie — je2 — gM+m+Arz

Vo =i0xIn
2 T +iem 4 jen2 — emrm+An’

with

3 .
nj:ajx—ajt+a/, j=12,
a —ay\?
€A12 _ 1 2 ,
o1 + 0
and here o, 0 are constants.
To construct quasi-periodic wave solutions of system (1.1), it is necessary for us to con-

sider a generalized form of the bilinear equation (2.2). Assume the solution of (1.1) takes
the form

*

u:uo—aﬁln(ﬁ”*), V:iaxlnj;—, (2.5)

where 1 is a constant solution of (1.1). Submitting (2.5) into (1.1), we get

Hl(Dx)Dt)f f* = (D; + Di - SuoDx)f _]M< =0, 0.6
2.6
HZ(DxiDt)_f f* = (Dth + Dﬁ - 6M0D}2€ + C)f f* = O,

where ¢ = ¢(¢) is an integration constant. The constant c is vital in the construction of
quasi-periodic solutions because elliptic functions do not usually satisfy equations with
zero integration constants.

In the following, we will construct quasi-periodic solutions for the bilinear equation
(2.6) based on the multidimensional Riemann theta function [23]

19(%',6,8|‘L') _ Z e—n(r(n+s),n+s)+2ni(é+e,n+s)’ (2'7)

nezZN

where () is the standard inner product of R”, n = (ny,...,ny)T € ZN, we have the complex
phase variable & = (£),...,&x)” € CV, the complex parameter vector s = (sy,...,sx)7, € =
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(€1,...,en)T, and the matrix T = (t;) is a positive definite and real-valued symmetric N x N
matrix.

In the definition of the Riemann theta function, the positive definiteness of T guarantees
(2.7) converges absolutely for all values of &. For simplicity, hereafter we use ¥ (£ +€,7) =
?(&,€,0]t). Now let us see the periodicity of the Riemann theta function.

Definition 1 A function g(x,) on CN x C is said to be quasi-periodic in ¢ with funda-
mental periods T1,..., Ty € Cif T,..., Tk are linearly dependent over Z and there exists a
function G(t,t) € CN x Ck such that for ¥(yi,...,y:) € C

G(x)yly---)_yj + 1—}’--~)yk) = G(xryl)"-’yj"“)yk))
Gx,t,...,t,...,t) = g(x, t).

In particular, g(x, £) becomes periodic with T if and only if T} = m;T.

Proposition 1 [24] Let e; be the jth column of N x N identity matrix Iy, t; the jth column
of T, and tj; the (j,)) entry of ©. Then the theta function ¥ (&, t) has the periodic properties

V(& + e +it, T) = exp(—2mi&; + wry) v (£, 7).

The vectors {ej,j = 1,...,N} and {itj,j = 1,...,N} can be regarded as periods of the theta
Sfunction ¥ (&, T) with multipliers 1 and exp(-2m i&; + 7 T;), respectively.

In general, let 9 (§,€’,0|t) and ¥(§,€,0|t) be two Riemann theta functions, where € =
(e1,.oen) € = (e],...,ep) ,and & = (§1,....6n) 7, &§ = kw+ [y +mjt +;,j=1,2,...,N.For

a polynomial operator H (D, Dy, D,) with respect to D, D,, and D;, the following formula
holds:

H(Dy,D,, D)% (§,€',0]7) - #(£,€,0]7)
=Y C(e e, n)0(28,€ +€,u2]27), (2.8)
m
where

C(¢ &) = Y H(4mi(n— pu/2,k), 4miln — /2, 1), 4 i{n — /2, m))
nezZN
>€< exp{-2m(t(n— w/2),n - u/2)+ 2miln — /2, - €)}. (2.9)

From equations (2.8) and (2.9), we see that if

C(€',e,n) =0, (2.10)

are satisfied for all possible combinations p; = 0,1;..., ux = 0,1, then ¥(§,€’,0|7) and

% (&,¢€,0|t) are quasi-periodic solutions of the bilinear equation

H(Dy,D,, D)% (§,€',0]7) - ¥(,€,0]7) = 0.
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The coupled bilinear equation (2.6) is more difficult to deal with than a single bilinear
equation due to the appearance of two equations. The following proposition plays an im-
portant role in constructing its quasi-periodic wave solutions.

Proposition 2 [16] Let C(w) be given in (2.9), and make a choice such that e}f —€= ﬂ:%,
j=12,...,N. Then:
(1) If H(Dy, Dy, Dy) is an even function of the form

H(_Dxx _Dy; _Dt) = H(Dx; Dy; Dt);

then C(w) vanishes automatically for the case when Zj\; wj is an odd number,

namely
N
Cw)l, =0, for Y uj=1 mod?2. (2.11)
j=1

) If H(D,, Dy, D;) is an odd function of the form
H(_Dx; _Dy: _Dt) = _H(Dxr Dyy Dt):

then C(w) vanishes automatically for the case when Zj\il Wj is an even number,

namely
N
C(w)l =0, for Y 1j=0 mod?2. (2.12)
j=1

3 One-periodic wave solutions and asymptotic properties

In this section, we construct the one-periodic wave solutions for the system (1.1) with
N =1 in Riemann theta function (2.7). Setting f = 9 (&, }L, 0|7) and f* = (&, i, 0|7), f and
f* can be written as the following Fourier series in #:

f-= 19( ‘) Zln 27 ing— nnr

nezZ

* 3 AY/] 2nin§—nn2r
f 219(5,1,0‘?):2(—;) e ,

nez

(3.1)

where the phase variable & = kx + It + y, and the parameter 7 > 0.

3.1 Construction of one-periodic wave solution
In order to get the one-periodic wave solutions of the bilinear equation (2.6), we substitute
(3.1) into (2.6), thus for i = 1,2

Hi(Dxx Dt)f f*

(ol a4

neZ
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X exp{—2n<t (n - %),n - %> + 2m’<n - %,e/ —e>”
x 19(25,1,%‘21)

-y Ci(u)ﬂ(%,l, % lzr), w=0,1,
m

where

3
Cr(p) = Z[zm(n - %)l - 64n3i(n - %) - 12ni(n - %)uok}

neZ

[ore(n-5) em(n-5)]
X exXpy—27T n—g + i n—E s

2 4 2
Cy(p) = Z[—l&rz (n - %) kl + 256" <n - %) k* + 9672 (n - %) uok* + c:|

nez

S -

According to Proposition 2, due to the fact H,(D,, D;) is an odd function, we have C; (i =

0) = 0. Meanwhile, H,(D,, D;) is an even function and C,(u = 1) = 0. Therefore, if the
following equations are satisfied:

1 1\? 1
Cu=1= Z|:4ni<n - 5)1— 64n3i(n - 5) K- 12m’<n - i)uok}
nezZ

2 N (-1 o
xexp{— HT(H—E) +7Tl(i’l—§>}— ’ (32)

Cy(n=0)= Z[—16n2n2kl + 25674 ntkt + 9672 upk® + c]
nez

X exp{—27nn2 + nin} =0,

the Riemann theta functions (3.1) are exact solutions of equation (2.6). Taking p, 9, ¥, of
the form

11
(&, p) = ﬁ(zs,g,—g\ﬂ
= Zp@”’l)z exp|:4ni(n - 1) (E + l)],
ez 2 4 (3.3)
95(E, p) = 19<2§, %,0(%)

= Zp‘”’z exp[élm'n(é + %>:|,

neZ
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(a) (b)

Figure 1 One-periodic wave of u with parameters: k=0.1, y =0, T = 2, ug = 0. (a) Perspective view of
the wave. (b) Overhead view of the wave, with contour plot shown.

we transform equation (3.2) into a linear system about / and ¢

01+ 9]k = 3ugdik = 0,

(3.4)
Okl + 0k — 6ugO) k> + ¢y = 0,
where
dv?
97 =0P0,0)= —2| , j=1,2p=0123,4.
dt¢ |:_
£=0
Solving equation (3.4), we get
8 9"l — 1}(4)19/ 314019”
1= =LK + 3uok, c=-L2 T2 LpAy 2 K2, (3.5)
0 D102 U2
In this way, we get a one-periodic wave solution of system (1.1),
1 3 (8,30l
u:uo—3§1n(19<.§,—,0‘1)19(“;‘,—,0‘t>), V=iax1nM, (3.6)
4 4 ﬁ(%‘: Z, Olt)

where & = kx + It + v, [ is given by (3.5) and the other parameters, &, 7, y, and uy, are free.
A one-periodic wave solution is determined by the two parameters k and 7. Figures 1 and
2 show one-periodic waves of # and v for one choice of the parameters, respectively.
From Figures 1 and 2, one can see that the one-periodic wave solution of system (1.1) is
one dimensional and has two fundamental periods, 1 and it, in &. It can be viewed as a
parallel superposition of overlapping one-solitary waves, placed one period apart.

3.2 Asymptotic property of one-periodic waves

In the following, we will investigate the asymptotic properties of the one-periodic wave
solution (3.6). The relation between the one-soliton solution (2.3) and the one-periodic
wave solution (3.6) is given by the following theorem.
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(a) (b)

Figure 2 One-periodic wave of v with parameters: k =0.1, y =0, T = 2. (a) Perspective view of the wave.
(b) Overhead view of the wave, with contour plot shown.

Theorem 1 Suppose that (I,c)T is a solution of equation (3.4), let

o T o
=0, =—+—, k=—, 3.7
Ho 4 2mi 20 21i (37)

in which o and o are the same as those in (2.3). Then the one-periodic solution (3.6) tends
to the one-soliton solution (2.3), namely

Uu— u, v—>v, asp— 0.
Proof We expand the coefficients of system (3.4) into power series of p

O = —4mp +127p° + - -, 0" =1673p +43273p° + - -,
Vry=1-2p%+.--, ¥y =321%p* —1287%p® + ..., (3.8)

oY = 51274 p* +8,1927%p10 + - - - .
Assume that the solution of system (3.4) takes the form

l:lo+llp+lz,02+"',

(3.9)
C=C()+Cl,0+62p2+"' f
substituting equations (3.8) and (3.9) into equation (3.4) and letting p — 0, we get
lo=47%K*, ¢ =0. (3.10)
From (3.7) and (3.10), we have
c— 0, 2mil — 873k3i=—ab®, asp—0,
£ =2mif —nTr=ax+2milt+o (3.11)

—>o:x—oz3t+o=r], as p — 0.
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In order to verify that the one-periodic wave (3.6) tends to the one-soliton solution (2.3)

when p — 0, we expand the function f in the form
f= 1+p2(ieznis _ie-zm'g) _p8(64ms +e—4~m’é) o
It follows from (3.11) that

f =1+ ief — ,04(6%/ + ie’él) + 012(635’ + 6*25/) ...

—1+ie", asp—0.
Therefore,
ff—>1-ie", asp—0.

we conclude that the one-periodic solution (3.6) tends to one-soliton solution (2.3) when
o — 0. (]

4 Two-periodic wave solutions and asymptotic properties
Let us consider two-periodic wave solutions for the coupled KdV-mKdV system (1.1). In
the case of N = 2, we take f and f* as

f=7(,€0|7)
_ Z o (T2 iEven)
neZ?
_ Z (i) g T2 )
nez2 (4.1)
= 19(5,6’,0|r)
_ Z T 2l ve )
nez?
_ Z (i) g e 2min)
nez?

where n = (m,m)" € 22,6 = (6,6)" € C*, & =kix+ [t +y;,j = 1,2, k = (ki ko) T, 1 = (I, )T,

1 LyT 3)T
47 4 7 4

which can be written as

€= ,€ = (% . T is a positive definite and real-valued symmetric 2 x 2 matrix,

2
T =(Tpg)axz, ™ > 0,722 >0,T11T20 — 75, > 0.

4.1 Construction of two-periodic waves

By means of Proposition 2, noting that the fact that H;(D,, D) is an odd function, its cor-
responding constraint equations in (2.10) vanish automatically for x = (0,0),(1,1). Simi-
larly, the constraint equations of Hy (D, D;) vanish for u = (1,0), (0, 1). Therefore, the theta



Rui and Qi Boundary Value Problems (2016) 2016:130 Page 10 0of 13

functions (4.1) are solutions of the bilinear equation (2.6) if the following equations:

3
Z [4ni<n - E,l> - 647'[3i<n - ﬁ,k> - 12u0ni<n - ﬁ,k>:|
2 2 2

nez?
xexp{—2n<r<n—ﬁ),n—ﬁ>+2m’<n—ﬁ,e’—e>} =0,
2 2 2 1=(1,0),0,)
4
Z -1672 n—ﬁ,k n—ﬁ,l +256m% n—ﬁ,k (4.2)
2 2 2
nez?
o \2
+ 96u0n2<n - §,k> + c]
><exp{—27z<r<n—E),n—ﬁ>+2m’<n—ﬁ,e/—e>} =0,
2 2 2 H=(11),(0.0)

are satisfied. Taking
_TTpq
Ppg =€ 2, pq=12,
P = (P11, P12, P22),

(€, p) = l?<2§,e/ —6,—%’2‘5)

Sr Sr , / Sr
= Z exp|:—277<1’ (n - E),n - §> + 27n<2£ +€ —€,n— 5>] (4.3)

neZz?
, 2
= Z exp |:471 i<§ + € 2_6 N - SEV>:| p}(énp—sr,p)(an—sr,q)’
neZz? pg=1

S = (Srl)SrZ)) r=1,2,3,4,

s1=(1,0), s2=1(0,1), s3=(1,1), 54 =(0,0),
equation (4.2) can be transformed into a linear system about 4, /5, ¢, and uy,

- V)0, + (k- V)*9, = Buo(k - V)0, | =0, r=12,

,£2)=(0,0
&1,E2 ) (4.4)

(k- V)L V)9, + (k- V)9, = 6ug(k - V)*0, + 0, r=34,

£1,62)=(0,0) ~
where V = (0§1,08,), k - V = ki 3& + kp 3&5. Solving equation (4.4), we can get a two-

periodic wave solution of the system (1.1)

%

u = uy — 9, In(ff*), V=10, lnj}—, (4.5)

where f, f*,and [}, 5, ¢, ug are given by equations (4.1) and (4.4), and the other parameters,
k1, ko, T11, T12, To, are free. A two-periodic wave solution is specified by the four parameters

ki, k2, T11, and a3
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4.2 Asymptotic property of two-periodic waves
Similar to Theorem 1, the relation between the two-soliton solution (2.4) and the two-

periodic solution (4.5) can be given as follows.

T

Theorem 2 Suppose that (1,1, up,c)" is a solution of system (4.4), let

9 T @
j = + k<:7’ =1;2;
Vi omi T A
. (4.6)
T = —,
12 277:

where o}, aj, j = 1,2, and Ay, are given in (2.4). Then the two-periodic solution (4.5) tends
to the two-soliton solution (2.4), that is,

U — Uy, v—> vy, aspn,pn —>0.

Proof We expand the periodic function f in the following form:

f =1+ i(eZTH'El _ e—27‘[l’§1)e—7r1'11 + i(627'[l'%'2 _ e—ZﬂiEz)e—ﬂTZQ’

_ (e2ﬂi(51+52) + e*ZNi(EHEz))e*ﬂ(m+2f12+f22) PR

It follows from (4.6) that

_ EL L ioEy _ JEHE 2Ty o 4 & o 4 &)
f=1+ie1 +ie2 — 172 ipp€ "l —ipy,e 2
/ !

— pﬁpgzefgli'%iznfu 4o

E L 6 1 +6)+A12

— 1+ie’l +ie2 —¢ ,

’ / ’ ’

fr = 1—iefl — 2 — 1022 a5 oy pgy — 0,

in which §/ = 27 i§; — w7j; = ojx + 27iljt + 0, j = 1,2. Thus the two-periodic solution equa-
tion (4.5) tends to the two-soliton solution equation (2.4) provided that

c— 0, 2mwil; — —ajs, j=1,2, aspn,px— 0.

Assume the solution of system (4.4) is in the following form:

(0) 1) (2)
L ll ll ll
0 1 2
A Y 1 2
=1 o] oo |Put] @ | P2t o(p11, p22)- (4.7)
Uo Uy Uy U
c C(O) C(l) C(z)

Expanding the coefficient of system (4.4) and substituting (4.7) into (4.4), together with
taking ug)) =0, we then obtain

9 =, 2nil;0) + (2711‘)3/(/‘3 =0, j=1,2, aspn,ppn—0.
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Thus we have

ug — 0, c— 0, 2mil; — 8713kjsi = —ajs, j=1,2, aspy,pep — 0.

Therefore we conclude that the two-periodic solution (4.5) tends to the two-soliton solu-
tion (2.4) as p11, p22 — 0. O

5 Conclusions

In this paper, the Kersten-Krasil'shchik coupled KdV-mKdV system is investigated. Based
on the Hirato bilinear method and the Riemann theta function, the one-periodic and two-
periodic wave solutions for the system are constructed. In addition, the asymptotic prop-
erties of the quasi-periodic wave solutions are proved. It is shown that the quasi-periodic
wave solutions converge to the soliton solutions in a small amplitude limit. It is natural
to ask whether we can get multiperiodic wave solutions in the case of N > 2. However,
the solvability of system (2.10) is the key to the construction of multiperiodic wave solu-
tions. As the number of unknown parameters is less than the number of equations, we
cannot get multiperiodic wave solutions directly when N > 2. How to get multiperiodic
wave solutions when N > 2? Such a question will be investigated in the future.
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