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1 Introduction
In the previous work [1], we presented a parabolic cross-diffusion system describing two-
species models on a bounded domain with different natural conditions, and studied the
corresponding steady-state problem, an elliptic cross-diffusion system. In this paper, we
deal with this parabolic cross-diffusion system for the one-dimensional case under the
homogeneous Neumann boundary conditions.

Assume that (0, /) is partitioned into two intervals I := (0, 1y) and I := (Iy, ]) separated

by «x = [y, and the natural conditions of /) are different. For any T > 0, set

QT = (0,1) X (O, T])
Q(jl,,) = I(Z) X (0, T]y i= 17 2;
St = {(x,t):x=00rl,t€ [0, T]}¢

Ir:= {(x,t):x:lo,te [O,T]}.

Let u = u(x, t), v = v(x, t) be the population densities of the two species. Assume that the
species share the same habitat, the interval [0, /], and that for each species, the density and
the flux of the density are all continuous across the inner boundary I'y. According to [1],
when the cross-diffusion pressure for the second species is zero, u, v are governed by the
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parabolic cross-diffusion system

U = [ @)L+ Bu+ yu)ls + ufiteu,v) (1) € QY),i=1,2,

v, = ()@ + 8VV)aly + v uv) (0 8) € QY),i=1,2,

w o, t)=ullo,t), v lo,t)=v'(o,t) (t€[0,T)),

[ ()L + Bu + yv)u)) (o, £) = () + Bu + yv)u)il*(lo,t) (£€(0,T]), (L1)
ks (®)(L + V)W)l (Lo, £) = Do ()((L + 8VV)] oy t) (£ € (0, T1),

Up=v, =0 ((x,t) €Sy),

u(x, 0) = uo(x), v(x,0) =vo(x) (x€(0,0)),

where u; := 0u/dt, u, := du/dx, u (I, t) and u*(ly, t) represent the limits of u from left and
right for the space variable, respectively,

Sl u,v) = Salwy) (eI, ki(x) := ki (rel?),

folu,v) (xel@), kip (xeI?),

ki1 and kj» (j = 1,2) are positive constants, and 8, y and § are nonnegative constants. In
(1.1), k1(x) and k;(x) are the diffusion rates, ki (x) and 8k, (x) are the self-diffusion rates,
and y ki (x) is cross-diffusion rate (see [1]).

In 1979 Shigesada et al. [2] proposed a mathematical model with cross-diffusion to in-
vestigate the spatial segregation phenomena of two competing species under inter- and
intra-species population pressures. It is a strongly coupled quasilinear parabolic system.
Over the past 36 years, quasilinear elliptic and parabolic systems with cross-diffusion have
been treated extensively in the literature both in theory and in applications, and most of
the treatments are for systems with continuous coefficients (see [3—16] and the references
therein). In [1], by Schauder’s fixed point theorem, we discussed the existence of nonneg-
ative solutions for the elliptic system with cross-diffusion and discontinuous coefficients.
In this paper, problem (1.1) is a strongly coupled parabolic system with cross-diffusion. In
addition, the diffusion rates, self-diffusion rates, cross-diffusion rates and reaction func-
tions are all allowed to be discontinuous. Based on the result of Lou et al. [6] for a parabolic
system with continuous coefficients, we shall use approximation method and various es-
timates to show the existence and uniqueness of global solutions for problem (1.1).

The paper is organized as follows. In the next section we introduce the notations, hy-
potheses, and main result. In Section 3 we construct an approximation problem of (1.1)
and establish the uniform estimates of solutions for the approximation problem. Section 4
is devoted to the existence and uniqueness of solutions for problem (1.1).

2 The notations, hypotheses, and main result
For any set S, S denotes the closure of S. The symbol I’ CC I means that I and I’ are open
intervals and I’ is a subset of I. Denote

T 1 rls 1/r
S
lellzsr@p) = |:/ (/ |ux, 1) dx) df] ) llellzs @y = el Los(@p)»
o \Jo

where s, > 1. WZI'O(QT) and WZI’I(QT) are the Hilbert spaces with scalar products

(u, V)Wzl'O(QT) = / f (uv + uyv,) da dt, (u, V)Wzl,l(QT) = / f (uv + ugve + uyvy) dxdt,
Qr Qr
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respectively. V5(Qr) is the Banach space consisting of all elements of WZI'O(QT) having a
finite norm

lullvatan = sup [ 0)] a0 + sl 2
t€[0,T]
We let
WVI(O, l):= {u =u(x):u,u, € L'(0, l)}
equipped with the norm

”M”W}(O,Z) = ||’4||LV(0,1) + ”ux”L’(O,l)'

Definition 2.1 A nonnegative vector function (u,v) is called a solution of (1.1) if (x,v)
possesses the following properties:
(i) Forany T >0, u,v€ W (Qr)N CZ’I(Q(TD), i=1,2.Forany I’ CC (0, 1), there exists
o' €(0,1), such that u,v € C*' (I’ x [0, T]). For any fixed i € {1,2} and for any
I"ccI9, v e(0,T), there exists a” € (0,1), such that
u,v e C "2 5 7, T]).
(ii) Forany !’ cC (0,/) and t € (0, T), there exists @' € (0,1), such that
u, v € CY(I' x [t,T]) and g, v, € C¥ (T’ NID) x [1,T]), i =1,2.
(iii) (u,v) satisfies pointwise the equations in (1.1) on Q(Ti) (i = 1,2), the initial conditions
on {(x,t) : x € (0,/),¢ = 0} and the inner boundary conditions on I'r, and satisfies

the homogeneous Neumann boundary conditions on Sy for almost all .

We see from property (ii) in Definition 2.1 that if (&, v) is a solution of (1.1), then ,,
v, are Holder continuous up to the inner boundary I, and u;, v; are Holder continuous
across I'r.

Throughout the paper we make the following hypotheses on the various functions in
(1.1):

(H) Foreachj,i=1,2,f;;(u,v) € C}(R?), where R, := [0, +00). There exist positive

constants d;, dy, e,, d,, e,, &, such that, for any u,v > 0,

2.1)

Assume that uy = uo(x), vo = vo(x) possess the properties

{ uo(x), vo(x) € W, (0,0) N C'((0,40]) N C*([lo, 1))  for some 7 > 2, 2.2)

ug(x), vo(x) >0 forx € [0,],

and satisfy the compatibility conditions

{ [k () (L + Buo + yvo)uo)x]™ (lo) = [k () (L + Buo + yvo)uo)x]* (L), (2.3)

(k2 (x)((1 + 8vo)vo)x] ™ (lo) = [ka(®)((L + 8vo)vo)]* (lo).
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From (2.2) it follows that w0 (x), vo(x) € CY2([0, []).
The main result of this paper is the following theorem.

Theorem 2.1 Let hypothesis (H) hold. Then problem (1.1) has a unique solution (u,v).

Since T is an arbitrary positive number, the solution (x, v) given by Theorem 2.1 is global.

3 An approximation problem of (1.1)
In order to show the existence and uniqueness of solutions for problem (1.1), in this section
we shall construct an approximation problem and establish the uniform estimates of its

solutions.

3.1 The global solution for the approximation problem

To construct an approximation problem of (1.1), we first construct some approximation
functions. For an arbitrary ¢ > 0, let £, = ¢.(x) a smooth function with values between 0
and 1, such that ¢, =1 for x <y, ¢, =0 forx > [y + € and || < C/e for all x € R. For each

j=1,2, define
kjs(x) = Ce(x)kj,l +(1- {g(x))k]’_z (x €[0,1]), 3.)
Sl u,v) = @)1 (w,v) + A= & (@))fia(w,v) (5, 1,v) € [0,1] x R2).
Then (2.1) in hypothesis (H) implies that, for all (x,u,v) € [0,/] x R?,
Ho:= ML Ky < Kje(x) < pha i= max K, (3.2)
R
d. < Welear) < e 3 (3.3)
—d, < EE <0, e <5 < -8,
and
min_1£1,:(0,0) — d,u — e,V < fie (%, 4, ) < max;-12£,(0,0) — dyu, (3.4)
min;_15£2,i(0,0) — dyu — e,v < foe (%, u,v) < max;_15f2,:(0,0) — &yv. ‘

By employing k;. (x), fis (%, #, ), we consider the following approximation problem of (1.1):

up = [kie @) (1 + Bu + yv)u)ile + ufie(x,u,v)  ((x,8) € Qr),
Ve = [kae () (L + 8V)V)ilx + vhae (k) - ((%,8) € Qr),

Uy =vy =0 ((x1) € Sr),

u(x, 0) = ug(x), v(x,0) =vo(x) (x€(0,0)).

(3.5)

Proposition 3.1 Let hypothesis (H) be satisfied. Then problem (3.5) has a unique non-
negative global solution (uc,ve) = (ue(x,t), u.(x,t)) satisfying u.(-,t),v.(-,t) € C([0,00),
W3 (0,1)) N C*((0, 00), C*(0,1)).

Proof By (2.2) and (3.3), and by a minor modification, we can use the arguments in [6] to

prove this proposition. The detailed proofs are omitted here. g
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3.2 Uniform estimates of maxg; U, maxq; ve
In order to investigate the limit of vector sequence {(u,, v.)} governed by (3.5), in the rest
of this sections we derive some uniform estimates of u,, v.. We shall use the following

relations several times:

((1 + Belte + VVE)Ms)x =(1+2Bue + yVe)ldex + Y UeVex,
(A +8ve)ve), = (1+26v, vy

For notational simplicity, we shall use o', «”, &, Cp, C; and C(- - -) to denote constants
dependingonlyon T, B, ¥, 8, Kjm, f;,m(0,0), dj, 2 (,m=1,2),d, e, |luol| Wl (0.0 Ivoll Wi, (0.
and the quantities appearing in parentheses, independent of €. The same letter C will be
used to denote different constants depending on the same set of arguments.

Lemma 3.2 We have

max v, (x, t) < Cp := max’ max v, maxf,;(0, 0)/52 }, (3.6)
Qr xel0] =12

tg?g’;] H M&‘('r t) HLl(O,l) + ”us ||L2(QT) = G, (3~7)
”VE ” Vz(QT) E C‘ (38)

Proof By using the maximum principle (see [17]) and (3.2)-(3.4), the proofs similar to
those of Lemmas 2.1, 2.2, 2.4 in [6] imply (3.6)-(3.8). O

Lemma 3.3 The following estimates hold.:

sup H st(': t)||L2(0,l) + ”V6t||L2(QT) = C: (39)
te[0,T]
||st||L6(QT) + ”Vex”LOCA(QT) <C (3.10)

Proof Let w, = (1 + 8v,)v.. Then

Wer = (1 + 28V)Ves, Wex = (1 + 26V,)Vey, (3.11)
and

Wer = (1 + 28v8)[(k28(x)ng)x + Vefoe (x, us,vs)] ((x, t)e QT). (3.12)
Recall that v.(-,£) € C([0,00), W,lo (0,2)) N C*((0,00),C>(0,/)). Multiplying (3.12) by

(koe (x)Wey)x, integrating it over Q; and then using (3.4), (3.6), (3.7), and Cauchy’s inequal-
ity, we see that, for any ¢ > 0,

1 l
5 / ke (X)W2, (2, £) dix + f (1+26v,) (koo (W) W) dd
0 Q¢

1 !
=3 / ke (R)W2, (x,0) dx — / 1+ 28v8)(k28(x)w€x)xvsf28 (%, te, ve) dxde
0 Q
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!
<C / V2 dx+ 0 f / (Kae ()W) drdt + C(9) / / (1+u?) dxdt
0 t t
2
<CM®)+v // (sz(x)ng)x dxde.
Q¢
We choose ¥ =1/2 and employ (3.12) to find

sup, [wea G ) 20 + | (R2e@Wer) [ 126, + 1Wetll 207 < C- (3.13)
telo,

Furthermore, from (3.13), (3.11), and (3.8) it follows that (3.9) holds, and
| ko wes | 0,y < C
and from Chapter II, equation (3.8) in [18] that
IWexllzo(qp) + Wexll g0ty < C.
Combining this inequality and (3.11) leads us to estimate (3.10). O
Based on Lemma 3.3, let us estimate maxq, .
Lemma 3.4 We have
ue(x,0) <C ((x1) €Qr). (3.14)
Proof Choose 6 > max{max,e[o, 4o(x),1}, and let
Ay (t) = {x tUp>0,XE [O,I]}, ui") :=max{u, —0;0}, o >0.

Multiplying the first equation of (3.5) by #!°) and then integrating by parts over Q,,, we
see from (3.2), (3.4), and Cauchy’s inequality that, for any ¢ > 0,

1 l 51
- / [ugf’)(x, 151)]2 dx + / f kie(x)(1 + 2Bu, + yvg)ufx dxdt
2 Jo 0 Ja,

t 5]
= —/ kie ()Y UelhexVer dadt + / / uguf;’)flg (x, ttg,v,) dxdt
0 JAs (1) 0 o (t)

t 5]
§Cf / u8|u£x||vax|dxdt+maxf1,i(0,0)/ f ug(u, —o)dxde
0 Ja, =12 0 JAs ()
t 51
< 19/ / uﬁxdxdt+ C(ﬂ)/ / (V§x+1)[(u8 —0o)? +cr2] dxdt.
0 JA, () 0 JAs ()
Setting ¥ = 1o/2, we have

|42, ., = €D 0

)2 N N2 200
”Vz(Qz1 [5(Qy (o)) | (e —0)* +0 LIEDAGED(Qy (o)) (3.15)

for 5 =7 = 2, where D(x,t) :=v2, + 1, Q4 (0) = {(x,£) : x € A, (¢),¢ € (0,1]}. Thus 1/7 +
1/(25) =1 - x1 for x1 = 1/4. In view of (3.10), we find that (3.15) has the same property
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as [18], Chapter III, equation (7.8). By using Chapter II, Theorem 6.1 and Remark 6.2 in
[18], the proof similar to that of Chapter III, equation (7.15) in [18] leads to (3.14). a

3.3 Uniform Holder estimates
In this subsection, we establish uniform Holder estimates of i, v, and their derivatives.

Lemma 3.5 For any open interval I' CC (0, 1), there exists o’ = o'(d’) € (0,1) such that
[lzte, VS”C“/(TX[O,T]) = C(d/) (316)
Here and below, d’' := min{dist(0, I"), dist(/,I")}.

Proof Itisobvious that i, is a bounded generalized solution of equation u; — (@, (x, £, 1)) +

a(x,t) = 0 and v, is a bounded generalized solution of equation v, — (b, (x, £, vy))x + be (x, ) =
0 in the sense of Chapter V, Section 1 in [18], where

ae(%,t, p) = kie (X)[1 + 2B (x,2) + yve (%, ) |p + kie (0) y Ve, )t (%, 2),
ae (%, 8) = —tte (x, Ofe (%, s (5, 1), Ve (%, 1)),
be(x,t,q) = ks (%) (1 + 28v; (%, 2) ) g,

b (%, 8) = —ve (x, )fae (%, e (%, £), Ve (, 1))
By (3.2), (3.6), and (3.14), we get

- Mo
ac(x,t,p)p > 7192 ~ Coo(x, ),

|as(x, £,p)| < Clpl + Cor (%, 1) ((x,1,p) € Qr x R),
be(x,t,q)q > poq’s  |be(x,t,q)| <Clgl ((x.5,9) € Qr x R),
|ﬂs(x:t)| + |bs(x»t)| <C ((x: t) e QT);

where ¢o(x, 1) := V2 (x,£) and @1 (x, £) := [vex(x, £)|. Choosing s = r = 2, we find from (3.10)
that

”§00 ”LS’V(QT) = Cy ||(,01 ”L23,27(QT) < C.

In view of uy(x),vo(x) € CY2([0,1]), by employing Chapter V, Section 1, Theorem 1.1 in
[18], we obtain (3.16). O

We next give the Holder estimates of derivatives.

Lemma 3.6 For any fixed i € {1,2} and for any I' cC 19, v € (0, T), there exists a" =
o"(d",t) € (0,1) such that

”Mé‘r Ve || C2+o¢”,1+oc”/2(j//>< [z, T]) < C(d”; T). (317)

Hereafter, d" := dist(d1?,1").
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Proof Choose open intervals I/’ and positive numbers 17, j = 1,...,4, such that /" CC
Ijcc---cclfcc IDand < ---<t<t. By (3.1), for small enough ¢, we have

kie®) =kii,  frelwu,v) =fr(w,v) (x€1)),j=1,2.
We first derive uniform Holder estimates of derivatives of v,. Set
B, = B.(x,t,v, q) = ky;(1 +28v)q, B, =B.(x,t,v) = vfz,,-(ug(x, t), v).
Then v, is a solution of equation
ve = (B, £, v, i), +Be(x,t,v) (% 0) €I x (n, T1).
Note that
Bey(x,t,v,q) = ko (1 +28v), B,y = 2k2,8, B, =0.
Thus when (x,¢,v,q9) € I X (11, T] x [0, Co] X R,

to <Begx,t,v,q) <C, Byl <Clgql,  [Be(xt,v)| < C.

According to Chapter V, Theorem 3.1 in [18], it follows that, for some o) = af(d",T) €
(0’ 1)’

U
IVesll cof gy ) < C(@727)- (3.18)

In addition, v, is a solution of the linear equation
Ve =B (6, O0Vas + B (6, )V, = Be(,8)  ((6,8) €1 X (12, T)),

where /1. (x, ) = ky (1 + 28v, (%, 1)), B (%,8) = —2ky,i8Vey and K (x, £) = vefs,i(ue, ve). Estimates
(3.16), (3.18) imply that, for some o} = oy (d",7) € (0,1),

e, e, <c(d',q).

el o gy =

The Schauder estimate for linear parabolic equation further yields

"
”VE ”C2+a'2’,1+a’2’/2(;é/x[r3,n) = C(d ’ T). (319)

We next use (3.19) to show the uniform Holder estimates of derivatives of u,. Let

Ap = A t,u, p) = k(14 2Bu + yve(6,0))p + kiiy uwves (%, £),
A, = A,

(x,t,u) = ufl,i(u, Ve (x, t)).

Thus u, = u.(x, ) is a solution of the following equation:

w = (Ac(x tyu, 1))+ Al tyu)  ((x,8) € I % (13, T1).
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Since

Asp = kl,i (1 + 2ﬂu +YVe (x: t)); Asu = 2/(1,1‘}3]9 + kl,iyvsx(xr t)¢

Asx = /<1,tJ/st(x, t)P + kl,z’)’uvsxx(x: t),
then we see from (3.6), (3.14), and (3.19) that when (x,¢,u,p) € I X (13, T] x [0,C1] X R,

o < Agp,t,u,p) <C, Al + |Aul + |Aeel < C(d",7)(Ipl +1),

’Ag(x,t, u)| <C.
Again by Chapter V, Theorem 3.1 in [18] we see that, for some o = a5(d”, ) € (0,1),

1"
bt gy < C@'7) (3.20)

Furthermore, 1, is a solution of the linear equation
Uy = Zo (6 )ty + 8 (%, Oth + o (0, )t = e, 8)  ((,8) €I X (14, T1),
where

Ze(x,0) =k [1 4 2Buc(x, £) + yve(w, 1)),
8o, 1) 1= =2k Btea (3, ) + Y Vex (%, 8)],
& (x,8) 1= —kiiy Vexx (%, 2),

@6 ) 1= 10 (o, E)fs 1 (10 (3, ), v (3, ).

Using (3.16), (3.19), and (3.20) leads to

- A ~ U
[ Y 2 P tel CUt)

for some o} = ;(d”, ) € (0,1). Again by Schauder estimate we have

”us”C2+ug’l+a‘/¥//2(i”><[r,T]) = C(d”, ‘L'),

which along with (3.19) yields (3.17). a

3.4 Estimates of ||ug, — Ue,, Ve, — Ve, llvyian)
We first give the following uniform estimates of derivatives of u,.

Lemma 3.7 We have

sup H ng(', t)”LZ([O,l]) + ||u£t||L2(QT) = G, (3'21)
te[0,T]

ltexll o) + Nthexll ooty < C- (3.22)
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Proof Letz, = (1 + Bue + yve)u.. Then

Zor = (L+2BUs + YV )gy + VU Ver, Zox = (L4 28U + Y Ve )lUox + Y U Ve, (3.23)

Zer = (L+ 2Bu, + yve)[ (ke (0)zZex) , + tefie (614, ve) | + yueve,  ((6,0) € Qr).  (3.24)

Multiplying (3.24) by (ki (%)zex)x and then integrating it over Q;, from (3.4), (3.9), (3.14),
and Cauchy’s inequality we see that, for any ¥ > 0,

1 !
2 / kie (x)zfx(x, t)dx + / (1+2Bu, + va)(klg (x)zgx)i dxdt
0 Qt

i
= l f klg(x)zgx(x, 0)dx - //Q [(1 +2Bue + YV )Uefie (X, Ue, Ve) + yugvgt]

2 Jo
X (kL9 (x)zgx)x dxdz

<C@)+v f/ (klg(x)zgx)i dxdt.
Qt
Choosing ¥ =1/2 and using (3.24) and (3.9), we further get

||k18(x)zex” Va(Qr) + ”Zé‘t”LZ(QT) = C

As in the proof of Lemma 3.3, from (3.23), (3.24), (3.9), (3.10), and Chapter II, equation
(3.8) in [18] we conclude that (3.21) and (3.22) hold. a

Lemma 3.8 Forany ¢1,¢&; >0, we have

lete, — they Ve, = Vey llva(p) < Cle1 + &) V4. (3.25)
Proof Let
U=Ug — Uy, V=V — Ve, w = (i,7).

Then it follows from the second equation of (3.5) that

vy — {kz,31 () + 28v81)1_/x}x - {[k251 () + 28vg;) — kog, (2)(1 + 28V92)]V92x}x

=)= 1_/f281 (, Uy Vsl) t Ve, [f2£1 (%, Ugys Vsl) _f252 (x, Ugy, Vez)]~

Multiplying this equation by v and integrating by parts over Q;, from (3.6), (3.14), and
Cauchy’s inequality we find that, for any @ > 0,

1 I
3 / V2 (x, £) doe + / koe, ()(1 + 25VS1)‘_’aZc dxde
0 Q
= // [kzgz () (L + 28V, ) — ko () (1 + 28V51)]V52x1_’x dxdz + /_/ Vhdxde

<0 / / Pdede+CO) [ [ [(Kkaey (%) — koey ()7 + % + 77] d e,
¢ Q:
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where W := |t x| + |Ueyx] + [Verx| + [Vegx| + 1. Taking & = p0/2, we get

l
/Dz(x,t)dx+/f iﬁdxdt
0 Q:

<C f Y2 [ (koey (0) = Koy (1)) + @ + 7] dx . (3.26)
Qt
Similarity, we see from the first equation of (3.5) that

fie = {Kuey () (L + 2Bk, + yve) )ik},
+ {[k181 ()1 + 2Bue + VV81) — ki, ()1 + 2Bther +y Ve, )]ugzx}"
+ {klal ()Y ey Vers — K, (%) y e, V‘EZ"}x

+ Ijt_flsl (x) uslr Vel) + usz [ﬁ81 (xr uel ’ Vsl) __fl82 (x’ MEZ ’ Vsz )] M

As we have done in the derivation of (3.26), by a direct computation we have

I
/itz(x,t)dx+// tftfcdxdt
0 t

=2 2 _ 2, -2, =2
SC//Q, vxdxdt+/ Q;w [(klgl(x) klez(x)) +U+V ]dxdt. (3.27)

Combining (3.26) and (3.27) leads us to the inequality

!
/ IV'VIZ(x,t)dx+// |W,|? dx de
0 Q:

2
< C// wZZ(k;al(x)—1982(x))2dxdt+6/ w2 w)? dede
Qt

j=1 Q¢

t ploter+er
< C/ f Y2 dxde + Cy(t)
0 Jip

< Cler + &)1V 1 aq,, + OV, (3.28)

where y(t) := fot{||¢("t)||%oo(o,1) fol |w|? dx} dt. In view of (3.10) and (3.22), it follows from
(3.28) that

d)’(t)/dt = C” 1/f(, t) ”ioo(o,l)y(t) + C(Sl + 82)1/2 || ‘//(» t) Hiw(o,l)‘

Moreover, Gronwall’s inequality leads to

t t
¥() < Cler +£2)" /0 ||w<~,t>||iw<o,,)dtexp{c /0 ||w(-,t>||§m(o,,)dt}

< Cley +&2)"?,

which along with (3.28) implies (3.25). O
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3.5 Uniform estimates of [|ucxe, Vext |l 27 x (2,7
To get the regularity of the limit function of sequence {(u.,v,)}, we need to derive the

uniform estimates of ||y, Vextll 21 x (2, 17)-

Lemma 3.9 For any open interval I' CC (0,1) and any number t € (0, T), we have
sup || 4z (0 12y + Nttesell 20 e, ) + Wtetsll 2 e,y < C(d'5 T), (3.29)
[,T]

[SUP] || Ver (- £) ||L2(1’) + ”stt”Lz(I’x(r,T])) + ”Vetx"Lz(I’x(r,T]) = C(d/, T)' (3.30)
7,T

Proof Choose open intervals I/ and positive number 17j, j = 1,2,3, such that I' CC I; CC
I cc I cc (0,]) and 7 < 73 < 73 < 7. Differentiating the second equation of (3.5) with
respect to ¢ and noting that v,y = v., we get

Vetr = [k2£ ()1 + 28V8)V£tx]x + [ZkZS (x)avatst]x
+[Vefre e, ve) ], ((x0) € Qr). (3.31)
Let A = A(x,t) be an arbitrary smooth function taking values in [0,1] such that A =1 for
(x,t) €Iy X (13, T], A =0 for x ¢ I] or t < 7, and |A| + |A¢| < C/d’ + C/7 for all (x,1).

Multiplying equation (3.31) by v¢,A2 and then integrating by parts over I; x (t;,t] for t; €
(z, T], from (3.6), (3.9), (3.14), (3.21), and Cauchy’s inequality we deduce that, for any 9 > 0,

1 4
3 / Vft(x, )2 (t) dx + / / koe () (1 + 28v5)v:§’txk2 dxedt
1{ T Ii

5]
= / / {_2k2s(x)5V€tV5xVEtx)V2 + [VSfZS(x¢ Ug, Vs)]tvst)"2
1 I{
+ V2 AN — 2Ky, (x)[(l + 28V )VepxVer + 28V§tvm]k)\x} dxdt

t 5]
< 19/ / vt dxde + C(ﬁ)/ / V2 Vi A2 dedt + C(d, 7).
1 I{ 1 1{

Choosing ¥ = po/4, we have

5]
/Vzt(x,t1))»2(tl)dx+/ fvftxAdedt
1{ T1 1{

5]
<C(d,1)+C / {va(-,t)Him(oy,) /1 vﬁtxzdx}dt.
1

3t

As in the proof of Lemma 3.8, employing Gronwall’s inequality and (3.10), from this in-
equality we get (3.30) and the uniform estimate of ||vgt||V2(1§X(T2YT]). Chapter II, equation
(3.8) in [18] further implies that

Iveellzow <z, < C(d, 7). (3.32)

Based on (3.30) and (3.32), we next show that (3.29) holds. Let & = £(x, t) be a smooth
function with values between 0 and 1 such that & =1 for (x,£) € I x (13, T], £ =0 forx ¢ I,
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ort < 1y,and |&;| +|&| < C/d' + C/z for all (x, ¢). Similarly, differentiating the first equation
of (3.5) with respect to ¢, multiplying the resulting equation by u,,&2 and integrating it over
I, x (13, T], we find from (3.6), (3.9), (3.14), (3.21), and Cauchy’s inequality that, for any
9 >0,

),
2]’

2

5]
= f /]" {[Msﬁe(xr Ug, Vs)]tustgz + Mgt%'ft
© JI,

5]
uft(x, 8)E2(8) dx + f / kie ()1 + 2Bu, + yvg)ugtxéz dxdt
T ]é

- kls(x)[(zlguet + Vvst)usx + V(uetvsx + Ms"stx)]”atxéz

= 2Kkie (%) [ 2Bter + Y Ver)then + ¥ (UerVex + UeVers) |eEEx | dx dt

151 5]
519/ /uitxézdxdt+C(19)/ /Vﬁtxdxdt+C(d/,t,z‘})
T Ié T Ié
5]
+C(d/,r,z9)f /(ufx+vgt)dxdt
19 Ié
5% 9
+Cf /uﬁt(|um|+|vm|) £2dxde.
1) Ié

Setting ¥ = po/4 and using (3.10), (3.22), (3.30), and (3.32), we have

5
f Mgt(x: tl)gz(tl) dx + / / M?txsz dx dt
Ié 19 Ié

5]
= C(d/’ ‘L’) + C/ { H ’Mex(', t)’ + ’Vex(': t)| ”ioo(o‘l) /I’ Vgtgz dX} dt.
[¥) 5
Again by Gronwall’s inequality we obtain (3.29). g

4 The proof of Theorem 2.1

To prove Theorem 2.1, let us discuss the behavior of vector sequence {(u,,v,)} governed
by (3.5) as ¢ — 0.

Lemma 4.1 The sequences {u.} and {v.} converge to nonnegative bounded functions u
and v in Vo(Qr), respectively. Moreover, (u,v) possesses property (i) in Definition 2.1, and
satisfies pointwise the equations in (1.1) on Q(Ti) (i = 1,2) and the initial conditions on
{(x,8) :x €(0,0),£ =0}. Forany n € Wzl’O(QT), the following integral identities hold.:

// [um + kl(x)((l + Bu + yv)u)xnx] dxdt = // ufi(x, u,v)ndxde, (4.1)
Q¢ Q¢
// [vm + kz(x)((l + SV)V)xnx] dxdt = // v (x, u, v)n dx dt. (4.2)
Qt Q¢
Proof We see from estimate (3.25) that there exist functions u,v € V,(Qr) such that

Uy —> U, ve > v in V5(Qr), (4.3)
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and from (3.9), (3.21) that there exist subsequences (hereafter we retain the same notations
for them) {u.}, {v.}, such that

Ugs — Uz, Ver = v, weakly in L*(Qr). (4.4)

In addition, it follows from (3.6), (3.14), (3.16), and the Arzela-Ascoli theorem that, for any
given open interval I’ CC (0, /), there exist subsequences {u.}, {v.}, such that {u.}, {v.}
converge to %, vin C(I' x [0, T]), respectively, and from (3.17) that, for any given i € {1,2},
I"cc Q(;) and t € (0, T), there exist subsequences {u.}, {v.}, such that {u.}, {v.} converge
to u, v in C*'(I" x [t, T]), respectively. Then u, v are in WZI'I(QT) NncYd x [0,T]) N
CZ'I(Q(;)) N2 1" 12(17 » [¢, T)). Furthermore, (3.5) implies that (i, v) satisfies pointwise
the equations in (1.1) on Q(;) (i =1,2) and the initial conditions on {(x,#) : x € (0,1),t = 0}.
By (3.6), (3.9), (3.14), and (3.21) we have

(0) O) < (M, V) < (Clr CO) ((x) t) € QT)r (45)
S[uP : H Uy (1), V(- 2) ||L2(0,1)’ e, vell 2o < C. (4.6)
tel0,T

For any 5 € W,°(Qr), multiply the equations in (3.5) by 7 and then integrate by parts
over Q; to get

/ /Q [ttem + ki) (1 + Bt + yv)use) ] e
= // Uefie (%, ue, ve)n dxdt, (4.7)
Q
// [Vern + koo (%) (1 + 8ve)ve) mx ] dacdt = // Vefae (%, Ue, ve)n dx dt. (4.8)
Q Q

We next investigate the limit of each term in (4.7), (4.8). It follows from (3.1), (4.3), and
(4.5) that

2
|| Mafls (x, Ue, VE) - ufl(x7 u, V) ||L2(QT)
2
S C”Ms - u”iZ(QT) + C|Lfls(x; Ug, Vs:) _fl(xr u, V) ||L2(QT)
2
= C[”ué‘ - u”iZ(QT) + Hfl,l(us: Vs) _ﬁ,l(u» V) ||L2(Q(71~>)
2
+ A2 te, ve) = fia(u,v) ||L2((lo+a,l)><(0,T])
2
+ ”fls(x’ Ues Ve) = fL(%, 1, V) HLZ((lg,lg+8)><(0,T])]
= C(”us - MHEZ(QT) + ”VS - V”iZ(QT)) +Ce
0 (4.9)
and
2
sup qus(x)(l +2Bu, + yve) —ki(x)(1 +2Bu + yv) ||L2(0,1)
te[0,T]

< C||kue (x) = ki (x) ||iz(10,10+s)
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+C sup [“ué‘(r t) - I/t(', t) ||i2(0,1) + ” Ve(') t) - V(') t) ||i2(0,l)]
te[0,T]
— 0. (4.10)

Furthermore, (3.22) and (4.10) yield
/f |k1€(x)(1 +2Bu, +yve) —ki(x)(1 +2Bu + yv)|2u§x dxedt
Qr

!
< sup f ke (0) (1 + 2B, + yve) — k()1 + 2Bu + yv)|* dx
te[0,T]1J0

T
X/o ||”6x("t)Hioc([o,Z]>dt
—0

Consequently,

2
”kls(1 +2Bue + Y Ve)ex — ki (1 + 2Bu + VV)ux||L2(QT)
2
< 2|[kue (1 + 280 + yve) = k(L + 21 + y ) Jutex | 12, + Clltten = il 2

— 0. (4.11)
Similar arguments show that

Vefoe (% e, V) = VH(X,1,V),  YUeVexr — yuvy  in L*(Qr), (4.12)

koe (X)(1 + 28V ey — ko(x)(1 + 28v)v,  in L2(Q7). (4.13)

Letting ¢ — 0 and using (4.4) and (4.9)-(4.13), we find from (4.7), (4.8) that the integral
identities (4.1), (4.2) hold. O

We next investigate the regularity of (1, v) in the neighborhood of inner boundary I'r.

Lemma4.2 Foranyl' cC (0,0)andt € (0,T),v, € C*(I'x [t, T)) and v, € C¥ (I’ NIV) x
[7,T]) (i=1,2) forsome & =a'(d,t) € (0,1).

Proof Tt follows from (3.29), (3.30), (4.3), and (4.6) that there exist subsequences {u.}, {v.},

such that
Uggt — Ugs Vet — Vr  weakly in L? (I' x (z, 1),

and
sup e 0, ve O o oy Nttsts Vil 2y < C(d' 7). (4.14)
T,

Let B:= B(x, t,w, q) = ka(x)(1 + 28w)q, B:=B(x,t,w) = —wha(x, u(x, t),w). Then v(x, ) is a
generalized solution of the single equation w; — (B(x, £, w, wy))x + B(x, £, w) = 0 in the sense
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of Definition 1.1 in [19]. We find that when (x, ¢, w,q) € (I' N 1D x (¢, T] x [0,Co] x R,

dB dB 9B 0B

—_— = kz,i(l + 28W), —_— = 2k2,15q, —_— == 0,

aq ow dx Ot

aB Ofy.i(u(x, t), w)

% = _fé,i(u(xr t)y W) - WfélTy

A 8 i\U, a 8 i\U,

Bo= w2l ®) wlt), By =-wie®) Uy (%, 1).
ou u=u(x,t) ou u=u(x,t)

Hence when (x,¢,w,q) € (I' N 1Y) x (7, T] x [0,Co] x R,

|Bx,t,w,q)| <C(1+1ql), mo<B,<C,  |B.I<Clql

|Bex,t,w)| + 1Byl <C,  |Bul <Cynlt),  [Bel < Cynln, 1),
where vy (%, £) := |uy(x, £)| + |u(x, £)|. By (4.6) and (4.14), we have

sup [[1(,8)] 20, = C(d' 7).

telr,T]

According to Theorem 1.1 in [19], there exists &; = &;(d’, T) € (0,1) such that

Vell it ooy = €(@57)- (4.15)
Note that v € C*' (I’ x [0, T]) and (ko i (1 + 28v)vy)x = v¢ — Vfo,i(u,v) On Q(%). We see that
(ka,i(1 + 28V)v,), € Co2((I' N 1) x [z, T1), and kyi(1 + 28v)v, € Ce2%((I' N 19) x [¢, T1)
for some @;, € (0,1). Thus v, € CH(I' NID) x [1,T]). Since (kyp(1 + 28V)vy)x = kos(1 +
28V)Vax + 2ko,;8v2 on Q(Ti),

/
Vs, VxxHC&é @I x[7,71) = C(d ’ f)- (416)

This completes the proof of Lemma 4.2. O

Lemma 4.3 For any I' CC (0,{) and t € (0,T), u; € C¥(T x [t,T)) and u, € C¥((I' N
19) x [r,T]) (i = 1,2) for some & = &'(d',t) € (0,1). Furthermore, (u,v) satisfies point-
wise the inner boundary conditions in (1.1) on I'r, and satisfies the homogeneous Neumann
boundary conditions on St for almost all t € [0, T].

Proof To investigate the regularity of u, we need to estimate sup,c(, 7 [lvae(, D)l 21)-
Choose open intervals Ij, I3, I} and positive numbers 71, 75, 73, such that I’ CC I; CC
Iy cc i cc(0,]) and 7y < 73 < 73 < 7. According to Lemma 4.1, (i, v) satisfies pointwise
the equations in (1.1) on Q(Ti) (i=1,2). Furthermore, from (4.2) in Lemma 4.1 and the reg-
ularity of v in Lemma 4.2 we conclude that v satisfies pointwise the inner boundary con-
dition [k (x)((1 + 8v)v).]~(lo, t) = [ka (x)((1 + 8v)v),]* (lo, ) for t € (0, T].

Let w=(1+8v)v, w := (W(x, £ + At) — wix, £))/At. Then

we = (1+25V)v, = (1 + 28v) (ko (%) wy)x + (1 + 28v)Vfa(x, 1, v),

(4.17)
wy = (1 +28V)vy, Wyt = (L + 28V)Vyy + 28V, vy,
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and

Wy + {(1+28V) (ko ()W)} = {1 + 28v)vfa(x, 1, v)} )
((xr t) € Q(]i'))t i=12,

Wi (lost) = wy (o) (¢ € (0,T0),

[(ka ()W) ()]~ (Lo, 2) = [(ka(X)wi) 9] " (Lo, 2) (£ € (O, T1]).

(4.18)

Let & = £(x, £) be a smooth function taking values between 0 and 1 such that £(x,¢) =1 for
(xt) ely x (13, T), E =0 forx ¢ I or t < 1y, and |&,| + |&| < C(d',7) for all (x,¢). Since
Vext = Vernr then vy = vy, and wy = wy, on I X (71, T]. Multiplying the equations in (4.18)
by (ka(x)Wx() )£ and integrating by parts over I; x (t1,¢), by direct computation we have

1 t
5/ kz(x)wi(t)sz dx+/f[—k2 X)W & — 2k2(x)wt(t)wx(t)§:§x] dxdt
I/ 1 1/

/ /1‘ 1 +28v(x, t + At)) (kg(x)wx t))
n
+ 28V (kz(x)wx) (kz(x)wx 0 ) }52 dxdt
/ / 1+ 28v)vfalx, 1, V)] © (ko (®)wage) ) g% dxdt.
!
Employing Cauchy’s inequality we see that, for any 9,9, > 0,
E y ky (X)W’ dx + /t/l, (1+28v(x,t + A)) (ko (x)wx(t))iéz dxdt

2

<1§‘1// ka(x)wap)) “;‘ dxdt+z92//w”)“§ dedt+ C(0,92,d,7)h,  (4.19)
71 1 11

where J, = f flz [w + v (Ko (xX)wy)? + u ot v 5] dx dt. Moreover, it follows from the equa-
tions in (4.18) that

/./1 wt S dedt < C*/t ’ (kg(x)wx(t))iéz dxdt + CJy, (4.20)
7 0J1
and from (4.14)-(4.17) that
h < / / + (ko (x x)i +u; +1]dxdt < C(d, 7). (4.21)
7
Choosing 91, ¥, such that ¥ + C*%5 = 1/2, we find from (4.19)-(4.21) that

t
/ w,zc(t)éz dx + / / (kz(x)wx(t))isz dxdt < C(d/, r).
I{ 1 ]{

Then

sup [|[wae(,8)| 2y = C(d',7),

te[r,T]
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which along with (4.17) further implies that

sup ||vxt(~,t) HLZ(IQ) <C(d,7). (4.22)

te[t,T]

We next use (4.22) to prove that i possesses property (ii) in Definition 2.1. It is obvious
that u(x, t) is a generalized solution of the single equation z; — (A (%, 8,2, 2¢))x + A(x, t,z)=0

in the sense of Definition 1.1 in [19], where

A=Axt,z,p) =k () (1 + 2Bz + vix, 0))p + ki (x)zva(x, £),

A=A t,2):= -z, (%2, v(x,1)).
From (4.15) and (4.16) it follows that when (x, ¢, z,p) € (I} NID) x (13, T] x [0,Ci] x R,

A, t,z,p)| < C(d,T)(1+1pl),  no<A,<C,
Al <C(d,7)1+1Ipl),  1Ad=<C(d,7)(1+]Ipl),
A < Clpl+ Ch,  |Alxt,2)| + 1A, + AL + 1Al < C(d,7),

where ¢; := |vy|, and from (4.22) that

Sllp ||¢1(» t) ||L2(I£) f C(d/, 7.’).

te[ry,T]

Consequently, the conditions of Theorem 1.1 in [19] are fulfilled. Then Theorem 1.1 in [19]
shows that

I <C(d, 7). (4.23)

|Mt||C&i(fé><[13,T]) =<
Since [k, (1 + Bu + yv)u)slx = ufr,i(u,v) — u on (I, N 19) x (13, T], then by (4.23) we
get [k (A + Bu + yv)u),l, € C2 (T3 N 1P) x [z3,T]). Thus (1 + 2Bu + yV)u, + yuv, €
CH2% (7' NID) x [z, T)). In view of u,v € C* (I x [0, T]) and v, € C?((I' N 1D) x [z, T]),
we have u, € C%((I' N 19) x [, T]). Since (u,v) satisfies pointwise the equations in (1.1)
on Q({;) (i = 1,2), then we further use integral identities (4.1), (4.2), the regularity of (u,v)
in the neighborhood of I'r and the compatibility conditions in (2.3) to conclude that (x, v)
satisfies pointwise the inner boundary conditions in (1.1) on I'r, and it satisfies homoge-

neous Neumann boundary conditions on St for almost all ¢ (see Chapter III, Section 13
in [18]). O

From Lemmas 4.1-4.3 we see that problem (1.1) has at least one solution.
Lemma 4.4 The solution of problem (1.1) is unique.

Proof Suppose that (u1,v1), (142, v2) are solutions of (1.1). Let

i£=bt1—bl2, ‘17=V1—V2, ‘X’Z(l‘;t,l‘;)
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Set n =V in (4.2). Then by a subtraction of the two integral identities (4.2) for vy, v,, we
have

1 [t
—/ P(x, t) dx+// kg(x)(1+2c$v1)f/,2€ dxdt
2 Jo Qt

= // {—28k2(x)1/2x‘717x + 172f2(x, U, 1)
Qr
+va[falox, w1, v1) — fo (%, ua, v2) |7} de .

Using Cauchy’s inequality we get

I
/ P(x, £) dx + / / PRdxdt < C / U2 (i + ) dadt, (4.24)
0 t Qt

where ¥ := 1+ |uy,| + |tox| + [Vix] + [Va.
Similarly, set n = i in (4.1). By a subtraction of the two integral identities (4.1) for u;, u,,
we obtain

1 [t
5/ Etz(x,t)dx+// /q(x)(1+2,3ul+yv1)12,2€dxdt
Q:

0

- //Q {[a(x) 2B + y V) uzx + ki %)y urvie — ki (x)y uava it dx de
+//Q {afi (6, 1, v1) + w2 [fi (%, 11, v1) — fi(, 12, v2) |}k At

which, together with Cauchy’s inequality, implies that

!
/ it2(x,t)dx+/f ﬁﬁdxdtg C/ 1&2(512 +172) dxdt+C// ﬁfcdxdt. (4.25)
0 Qt Qt Qt

Furthermore, (4.24), (4.25) yield

l t I
f|\7v|2(x,t)dx+/f |v~vx|2dxdt§C/ {W(.,t)”imw,)/ |v~v|2dx}dt.
0 Q 0 7 Jo

Again by using Gronwall’s inequality we deduce that w = 0. Then the solution of (1.1) is
unique. g

By Lemmas 4.1-4.4 we complete the proof of Theorem 2.1.
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