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1 Introduction
One of the most used elements in structures such as aircraft, buildings, ships, and bridges
is the elastic beam. The deformation of an elastic beam in equilibrium state whose two
ends are simply supported can be described by a fourth-order ordinary differential equa-
tion boundary value problem. Fourth-order equations arise in a variety of different areas
of applied mathematics and physics and so on. To identify a few and for more on the ap-
plications of the fourth-order boundary value problems, we refer the reader to [–] and
related topics.

With the rapid development of science and technology, a series of boundary value prob-
lems with integral boundary conditions appeared in various industries and fields, for ex-
ample, thermal conduction, chemical engineering, semiconductors, underground water
flow, hydrodynamics, thermoelasticity, and related topics; one may refer to [–].

Recently, because of the wide application, boundary value problems with integral
boundary conditions have attracted many authors’ attention. It is to be observed that
such problems include two-point, three-point, multi-point and nonlocal boundary value
problems as special cases, hence they are more general.

The existence of multiple solutions to some boundary value problems involving integral
boundary conditions has recently been studied by many authors, for instance, Boucherif
in [] obtain the existence of at least one positive solution for a two-order boundary value
problem, by using Krasnoselskii’s fixed point theorem of cone. In [], the authors consid-
ered a class of boundary value problems using a fixed-point theorem of cone expansion
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and compression of norm type. In [], Ma concerned with the existence of at least one
symmetric positive solution to a boundary value problem, by the application of the fixed
point index in cones.

Motivated by the work mentioned above, in this paper, we study the existence of mono-
tonic iteration positive symmetric solutions to the following boundary value problem with
p-Laplacian and Stieltjes integral boundary conditions:

⎧
⎪⎨

⎪⎩

(φp(u′′(t)))′′(t) = λq(t)f (t, u(t), u′(t), u′′(t), u′′′(t)),  < t < ,
u() = u() =

∫ 
 u(s) dg(s),

φp(u′′()) = φp(u′′()) =
∫ 

 φp(u′′(s)) dh(s),
(.)

where λ > , φp(s) = |s|p–s with p >  is a p-Laplacian operator and φ–
p = φq, 

p + 
q = .

The main features of this paper are as follows. Comparing with [–], we discuss prob-
lem (.) involving integral boundary conditions. It includes two-point, three-point, multi-
point, and nonlocal boundary value problems as special cases, so it is more general. Com-
paring with [, , ], we consider the p-Laplacian operator which is nonlinear. In addition,
we consider the symmetric positive solutions to (.) by the application of a monotone it-
erative technique. To our knowledge, there is no paper in the literature dealing with the
fourth-order boundary value problems with p-Laplacian and Stieltjes integral boundary
conditions via a monotone iterative technique, especially when the nonlinear term is in-
volved explicitly with all the lower derivatives of u. Hence we improve and generalize some
results in the literature.

In our work, we obtain not only the existence of positive symmetric solutions to the
problems we are concerned with, but we also construct some successive iterative schemes
whose starting point is a known constant function or a simple quartic function for ap-
proximating the solutions. We emphasize that the construction of the monotone iterative
schemes does not require the existence of lower and upper solutions for the boundary
value problems we will study.

Finally, an example is given to illustrate the applicability of our results. We remark that
knowledge of how to find the solutions is probably most important from a numerical and
application standpoint.

2 Preliminaries
Now, we present the necessary definitions from the theory of cones in Banach spaces.

Definition . Let E be a real Banach space. A nonempty closed set P ⊂ E is said to be a
cone provided that:

(i) au + bv ∈ P for all u, v ∈ P and all a ≥ , b ≥ , and
(ii) u, –u ∈ P implies u = .

Definition . The map α is said to be concave on [, ], if

α
(
tu + ( – t)v

) ≥ tα(u) + ( – t)α(v)

for all u, v ∈ [, ] and t ∈ [, ].

Definition . An operator is called completely continuous if it is continuous and maps
bounded sets into precompact sets.



Sun Boundary Value Problems  (2016) 2016:151 Page 3 of 12

Definition . For t ∈ [, ], a function u is said to be symmetric on [, ] if u(t) = u( – t).

Throughout, it is assumed that the following conditions hold:

(H): f (t, x, y, z, δ) ∈ C([, ] × [, +∞) × R, [, +∞)), f (t, x, y, z, δ) is symmetric about t on
[, ] and f (t, x, y, z, δ) = f (t, x, –y, z, –δ).

(H): q(t) ∈ C((, ), [, +∞)) and symmetric about t on [, ], q(t) �≡  on any subinterval
of (, ), and

∫ 
 q(t) dt < +∞.

(H): g(t), h(t) ∈ C([, ], [, +∞)) are bounded variation and symmetric about t on [, ].

Let the Banach space E = C[, ] be endowed with the norm

‖u‖ := max
{

max
≤t≤

∣
∣u(t)

∣
∣, max

≤t≤

∣
∣u′(t)

∣
∣, max

≤t≤

∣
∣u′′(t)

∣
∣, max

≤t≤

∣
∣u′′′(t)

∣
∣
}

.

We define the cone P ⊂ E by

P =
{

u ∈ E | u(t) ≥ , u is concave and symmetric about t on [, ]
}

.

Lemma . Let y ∈ L[, ], then the boundary value problem
{

φp(u′′(t)) = y(t),  < t < ,
u() = u() =

∫ 
 u(s) dg(s),

has a unique solution

u(t) = –
∫ 



∫ 


G(t, s)φq

(
y(s)

)
ds dg(t) –

∫ 


G(t, s)φq

(
y(s)

)
ds, (.)

where

G(t, s) =

{
t( – s),  ≤ t ≤ s ≤ ,
s( – t),  ≤ s ≤ t ≤ .

(.)

Proof The proof follows by routine calculations, so we omit it here. �

Lemma . For u ∈ C[, ] the boundary value problem
{

y′′(t) = λq(t)f (t, u(t), u′(t), u′′(t), u′′′(t)),  < t < ,
y() = y() =

∫ 
 y(s) dh(s),

(.)

has a unique solution,

y(t) = –
∫ 



∫ 


G(s, τ )λq(τ )f

(
τ , u(τ ), u′(τ ), u′′(τ ), u′′′(τ )

)
dτ dh(s)

–
∫ 


G(t, s)λq(s)f

(
s, u(s), u′(s), u′′(s), u′′′(s)

)
ds, (.)

where

G(t, s) =

{
t( – s),  ≤ t ≤ s ≤ ,
s( – t),  ≤ s ≤ t ≤ .
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Proof The proof follows by routine calculations, so we omit it here. �

Define an operator T : P → E by

(Tu)(t) = u(t)

=
∫ 



∫ 


G(s, τ )φq

[∫ 



∫ 


G(τ , ζ )λq(ζ )f

(
ζ , u(ζ ), u′(ζ ), u′′(ζ ), u′′′(ζ )

)
dζ dh(τ )

+
∫ 


G(τ , ζ )λq(ζ )f

(
s, u(ζ ), u′(ζ ), u′′(ζ ), u′′′(ζ )

)
dζ

]

dτ dg(s)

+
∫ 


G(t, s)φq

[∫ 



∫ 


G(s, τ )λq(τ )f

(
τ , u(τ ), u′(τ ), u′′(τ ), u′′′(τ )

)
dτ dh(s)

+
∫ 


G(s, τ )λq(τ )f

(
τ , u(τ ), u′(τ ), u′′(τ ), u′′′(τ )

)
dτ

]

ds; (.)

by Lemma . and Lemma ., boundary value problem (.) has a solution u = u(t) if and
only if u is a fixed point of T .

Lemma . Assume that (H)-(H) hold. Then T : P → P defined by (.) is completely
continuous.

Proof By (.), we have, for each u ∈ P, Tu ∈ C[, ], which satisfies (.).
Since

(Tu)′(t) =
∫ 

t
( – s)φq

[∫ 



∫ 


G(s, τ )λq(τ )f

(
τ , u(τ ), u′(τ ), u′′(τ ), u′′′(τ )

)
dτ dh(s)

+
∫ 


G(s, τ )λq(τ )f

(
s, u(τ ), u′(τ ), u′′(τ ), u′′′(τ )

)
dτ

]

ds

–
∫ t


sφq

[∫ 



∫ 


G(s, τ )λq(τ )f

(
τ , u(τ ), u′(τ ), u′′(τ ), u′′′(τ )

)
dτ dh(s)

+
∫ 


G(s, τ )λq(τ )f

(
τ , u(τ ), u′(τ ), u′′(τ ), u′′′(τ )

)
dτ

]

ds

and

(Tu)′′(t) = –φq

[∫ 



∫ 


G(t, τ )λq(τ )f

(
τ , u(τ ), u′(τ ), u′′(τ ), u′′′(τ )

)
dτ dh(t)

+
∫ 


G(t, τ )λq(τ )f

(
s, u(τ ), u′(τ ), u′′(τ ), u′′′(τ )

)
dτ

]

,

we have (Tu)′′(t) ≤  for  ≤ t ≤ .
On the other hand, by (.), we obtain

(Tu)() = (Tu)()

=
∫ 



∫ 


G(s, τ )φq

[∫ 



∫ 


G(τ , ζ )λq(ζ )f

(
ζ , u(ζ ), u′(ζ ), u′′(ζ ), u′′′(ζ )

)
dζ dh(τ )

+
∫ 


G(τ , ζ )λq(ζ )f

(
s, u(ζ ), u′(ζ ), u′′(ζ ), u′′′(ζ )

)
dζ

]

dτ dg(s)
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+
∫ 


G(, s)φq

[∫ 



∫ 


G(s, τ )λq(τ )f

(
τ , u(τ ), u′(τ ), u′′(τ ), u′′′(τ )

)
dτ dh(s)

+
∫ 


G(s, τ )λq(τ )f

(
τ , u(τ ), u′(τ ), u′′(τ ), u′′′(τ )

)
dτ

]

ds ≥ .

Then it follows that Tu is concave and nonnegative on [, ].
Moreover, we show that Tu is symmetric about t on [, ].
In fact, from (H)-(H), we get

(Tu)( – t)

=
∫ 



∫ 


G(s, τ )φq

[∫ 



∫ 


G(τ , ζ )λq(ζ )f

(
ζ , u(ζ ), u′(ζ ), u′′(ζ ), u′′′(ζ )

)
dζ dh(τ )

+
∫ 


G(τ , ζ )λq(ζ )f

(
s, u(ζ ), u′(ζ ), u′′(ζ ), u′′′(ζ )

)
dζ

]

dτ dg(s)

+
∫ 


G( – t, s)φq

[∫ 



∫ 


G(s, τ )λq(τ )f

(
τ , u(τ ), u′(τ ), u′′(τ ), u′′′(τ )

)
dτ dh(s)

+
∫ 


G(s, τ )λq(τ )f

(
τ , u(τ ), u′(τ ), u′′(τ ), u′′′(τ )

)
dτ

]

ds

= –
∫ 



∫ 


G( – s,  – τ )φq

[∫ 



∫ 


G( – τ , ζ )λq(ζ )

· f
(
ζ , u(ζ ), u′(ζ ), u′′(ζ ), u′′′(ζ )

)
dζ dh( – τ )

+
∫ 


G( – τ , ζ )λq(ζ )f

(
s, u(ζ ), u′(ζ ), u′′(ζ ), u′′′(ζ )

)
dζ

]

dτ dg( – s)

+
∫ 


G( – t,  – s)φq

[∫ 



∫ 


G( – s,  – τ )λq( – τ )

· f
(
 – τ , u( – τ ), u′( – τ ), u′′( – τ ), u′′′( – τ )

)
dτ dh( – s)

+
∫ 


G( – s,  – τ )λq( – τ )

· f
(
 – τ , u( – τ ), u′( – τ ), u′′( – τ ), u′′′( – τ )

)
dτ

]

ds

=
∫ 



∫ 


G(s, τ )φq

[∫ 



∫ 


G(τ , ζ )λq(ζ )f

(
ζ , u(ζ ), u′(ζ ), u′′(ζ ), u′′′(ζ )

)
dζ dh(τ )

+
∫ 


G(τ , ζ )λq(ζ )f

(
s, u(ζ ), u′(ζ ), u′′(ζ ), u′′′(ζ )

)
dζ

]

dτ dg(s)

+
∫ 


G(t, s)φq

[∫ 



∫ 


G(s, τ )λq(τ )f

(
τ , u(τ ), u′(τ ), u′′(τ ), u′′′(τ )

)
dτ dh(s)

+
∫ 


G(s, τ )λq(τ )f

(
τ , u(τ ), u′(τ ), u′′(τ ), u′′′(τ )

)
dτ

]

ds

= (Tu)(t).

Therefore, Tu is symmetric about t on [, ]. Thus, T : P → P.
It is obvious that T is continuous. And the Arzela-Ascoli theorem guarantees that T is

compact. Then we see that T is completely continuous. �
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3 Existence of monotonic iteration positive symmetric solutions to (1.1)
For notational convenience, we denote

Q =
∫ 


q(s) ds, A = max

{
, (q – )

}
(




λQ
)q–

.

Theorem . Assume that (H)-(H) hold, and there exists a > , such that

(H): f (t, x, y, z, δ) ≤ f (t, x, y, z, δ) for any  ≤ t ≤ ,  ≤ x ≤ x ≤ a,  ≤ |y| ≤ |y| ≤
a, –a ≤ z ≤ z ≤ ,  ≤ |δ| ≤ |δ| ≤ a;

(H): max≤t≤ f (t, a, a, –a, a) ≤ ( a
A )p–;

(H): f (t, , , , ) �≡  for  ≤ t ≤ .

Then the boundary value problem (.) has at least one positive symmetric concave solution
w∗ or v∗, such that

 ≤ w∗ ≤ a,  ≤ ∣
∣
(
w∗)′∣∣ ≤ a,

–a ≤ (
w∗)′′ ≤ ,  ≤ ∣

∣
(
w∗)′′′∣∣ ≤ a,

w∗ = lim
n→∞ wn = lim

n→∞ Tnw,
(
w∗)′ = lim

n→∞(wn)′ = lim
n→∞

(
Tnw

)′,
(
w∗)′′ = lim

n→∞(wn)′′ = lim
n→∞

(
Tnw

)′′,
(
w∗)′′′ = lim

n→∞(wn)′′′ = lim
n→∞

(
Tnw

)′′′,

where w(t) = a
(




t –



t +



t +



)

,  ≤ t ≤ ,

and

 ≤ v∗ ≤ a,  ≤ ∣
∣
(
v∗)′∣∣ ≤ a,

–a ≤ (
v∗)′′ ≤ ,  ≤ ∣

∣
(
v∗)′′′∣∣ ≤ a,

v∗ = lim
n→∞ vn = lim

n→∞ Tnv,
(
v∗)′ = lim

n→∞(vn)′ = lim
n→∞

(
Tnv

)′,
(
v∗)′′ = lim

n→∞(vn)′′ = lim
n→∞

(
Tnv

)′′,
(
v∗)′′′ = lim

n→∞(vn)′′′ = lim
n→∞

(
Tnv

)′′′,

where v(t) = ,  ≤ t ≤ ,

where (Tu)(t) is defined by (.).

The successive iterative scheme in the theorem is w(t) = a( 
 t – 

 t + 
 t + 

 ), wn+ =
Twn = Tnw, n = , , , . . . , which starts off with a known simple quartic function or v(t) =
, vn+ = Tvn = Tnv, n = , , , . . . , which starts off with the zero function.
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Proof Now in order to investigate the properties of the operator T , let us denote Pa = {u ∈
P | ‖u‖ ≤ a}. In the following, we will prove that T : Pa → Pa firstly.

If u ∈ Pa, (H), and (H) implies that

 ≤ f
(
t, u(t), u′(t), u′′(t), u′′′(t)

) ≤ f (t, a, a, –a, a)

≤ max
≤t≤

f (t, a, a, –a, a) ≤ a
A

for  ≤ t ≤ .

Since

max
≤t≤

∣
∣(Tu)(t)

∣
∣ ≤

∫ 



∫ 






φq

[∫ 



∫ 






λq(ζ )f
(
ζ , u(ζ ), u′(ζ ), u′′(ζ ), u′′′(ζ )

)
dζ dh(τ )

+
∫ 






λq(ζ )f
(
ζ , u(ζ ), u′(ζ ), u′′(ζ ), u′′′(ζ )

)
dζ

]

dτ dg(s)

+
∫ 






φq

[∫ 



∫ 






λq(τ )f
(
τ , u(τ ), u′(τ ), u′′(τ ), u′′′(τ )

)
dτ dh(s)

+
∫ 






λq(τ )f
(
τ , u(τ ), u′(τ ), u′′(τ ), u′′′(τ )

)
dτ

]

ds

=



φq

[∫ 






λq(τ )f
(
τ , u(τ ), u′(τ ), u′′(τ ), u′′′(τ )

)
dτ

]

≤ a
A




(



λQ
)q–

< a,

max
≤t≤

∣
∣(Tu)′(t)

∣
∣ ≤

∫ 

t
( – s)φq

[∫ 



∫ 


G(s, τ )λq(τ )

· f
(
τ , u(τ ), u′(τ ), u′′(τ ), u′′′(τ )

)
dτ dh(s)

+
∫ 


G(s, τ )λq(τ )f

(
τ , u(τ ), u′(τ ), u′′(τ ), u′′′(τ )

)
dτ

]

ds

≤
∫ 

t
( – s)φq

[∫ 



∫ 






λq(τ )f
(
τ , u(τ ), u′(τ ), u′′(τ ), u′′′(τ )

)
dτ dh(s)

+
∫ 






λq(τ )f
(
τ , u(τ ), u′(τ ), u′′(τ ), u′′′(τ )

)
dτ

]

ds

≤
∫ 

t
( – s)φq

[∫ 






λq(τ )f
(
τ , u(τ ), u′(τ ), u′′(τ ), u′′′(τ )

)
dτ

]

ds

≤ a
A




(



λQ
)q–

< a,

max
≤t≤

∣
∣(Tu)′′(t)

∣
∣ ≤ φq

[∫ 



∫ 






λq(τ )f
(
τ , u(τ ), u′(τ ), u′′(τ ), u′′′(τ )

)
dτ dh(t)

+
∫ 






λq(τ )f
(
τ , u(τ ), u′(τ ), u′′(τ ), u′′′(τ )

)
dτ

]

≤ φq

[∫ 






λq(τ )f
(
τ , u(τ ), u′(τ ), u′′(τ ), u′′′(τ )

)
dτ

]

≤ a
A

(



λQ
)q–

≤ a,
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and

max
≤t≤

∣
∣(Tu)′′′(t)

∣
∣ ≤ (q – )

[∫ 



∫ 






λq(τ )f
(
τ , u(τ ), u′(τ ), u′′(τ ), u′′′(τ )

)
dτ dh(t)

+
∫ 






λq(τ )f
(
τ , u(τ ), u′(τ ), u′′(τ ), u′′′(τ )

)
dτ

]q–

·
∫ 

t
( – τ )λq(τ )f

(
τ , u(τ ), u′(τ ), u′′(τ ), u′′′(τ )

)
dτ

≤ (q – )
[∫ 






λq(τ )f
(
τ , u(τ ), u′(τ ), u′′(τ ), u′′′(τ )

)
dτ

]q–

·
∫ 


λq(τ )f

(
τ , u(τ ), u′(τ ), u′′(τ ), u′′′(τ )

)
dτ

≤ a
A

(q – )
(




λQ
)q–

≤ a,

we get T : Pa → Pa.
Let w(t) = a( 

 t – 
 t + 

 t + 
 ),  ≤ t ≤ , then w(t) ∈ Pa. Let w = Tw, then w ∈ Pa.

We denote wn+ = Twn, n = , , , . . . . Then we have wn ⊆ Pa, n = , , . . . . Since T is com-
pletely continuous, we assert that {wn}∞n= is a sequentially compact set.

Next, we investigate the convergence property of the iterative scheme; since

w(t) = Tw(t)

=
∫ 



∫ 


G(s, τ )φq

[∫ 



∫ 


G(τ , ζ )λq(ζ )f

(
ζ , w(ζ ), w′

(ζ ), w′′
(ζ ), w′′′

 (ζ )
)

dζ dh(τ )

+
∫ 


G(τ , ζ )λq(ζ )f

(
s, w(ζ ), w′

(ζ ), w′′
(ζ ), w′′′

 (ζ )
)

dζ

]

dτ dg(s)

+
∫ 


G(t, s)φq

[∫ 



∫ 


G(s, τ )λq(τ )f

(
τ , w(τ ), w′

(τ ), w′′
(τ ), w′′′

 (τ )
)

dτ dh(s)

+
∫ 


G(s, τ )λq(τ )f

(
τ , w(τ ), w′

(τ ), w′′
(τ ), w′′′

 (τ )
)

dτ

]

ds

≤
∫ 


G(t, s)φq

[∫ 


G(s, τ )λq(τ )f

(
τ , w(τ ), w′

(τ ), w′′
(τ ), w′′′

 (τ )
)

dτ

]

ds

≤ a
(




t –



t +



t +



)

,  ≤ t ≤ ,

∣
∣w′

(t)
∣
∣ =

∣
∣(Tw)′(t)

∣
∣

=
∣
∣
∣
∣

∫ 

t
( – s)φq

[∫ 



∫ 


G(s, τ )λq(τ )f

(
τ , w(τ ), w′

(τ ), w′′
(τ ), w′′′

 (τ )
)

dτ dh(s)

+
∫ 


G(s, τ )λq(τ )f

(
s, w(τ ), w′

(τ ), w′′
(τ ), w′′′

 (τ )
)

dτ

]

ds

–
∫ t


sφq

[∫ 



∫ 


G(s, τ )λq(τ )f

(
τ , w(τ ), w′

(τ ), w′′
(τ ), w′′′

 (τ )
)

dτ dh(s)

+
∫ 


G(s, τ )λq(τ )f

(
τ , w(τ ), w′

(τ ), w′′
(τ ), w′′′

 (τ )
)

dτ

]

ds
∣
∣
∣
∣
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≤
∣
∣
∣
∣

∫ 

t
( – s)φq

[∫ 


G(s, τ )λq(τ )f

(
s, w(τ ), w′

(τ ), w′′
(τ ), w′′′

 (τ )
)

dτ

]

ds
∣
∣
∣
∣

≤ a
(




t – t +



)

,  ≤ t ≤ ,

w′′
 (t) = (Tw)′′(t)

= –φq

[∫ 



∫ 


G(t, τ )λq(τ )f

(
τ , u(τ ), u′(τ ), u′′(τ ), u′′′(τ )

)
dτ dh(t)

+
∫ 


G(t, τ )λq(τ )f

(
s, u(τ ), u′(τ ), u′′(τ ), u′′′(τ )

)
dτ

]

≥ –φq

[∫ 


G(t, τ )λq(τ )f

(
s, u(τ ), u′(τ ), u′′(τ ), u′′′(τ )

)
dτ

]

≥ a
(
t – t

)
,  ≤ t ≤ ,

and

∣
∣w′′′

 (t)
∣
∣ =

∣
∣(Tw)′′′(t)

∣
∣

≤ (q – )
[∫ 



∫ 


G(t, τ )λq(τ )f

(
τ , u(τ ), u′(τ ), u′′(τ ), u′′′(τ )

)
dτ dh(t)

+
∫ 


G(t, τ )λq(τ )f

(
s, u(τ ), u′(τ ), u′′(τ ), u′′′(τ )

)
dτ

]q–

·
(∫ 

t
( – τ )λq(τ )f

(
s, u(τ ), u′(τ ), u′′(τ ), u′′′(τ )

)
dτ

–
∫ t


τλq(τ )f

(
s, u(τ ), u′(τ ), u′′(τ ), u′′′(τ )

)
dτ

)

≤ (q – )
[∫ 


G(t, τ )λq(τ )f

(
s, u(τ ), u′(τ ), u′′(τ ), u′′′(τ )

)
dτ

]q–

·
∫ 

t
( – τ )λq(τ )f

(
s, u(τ ), u′(τ ), u′′(τ ), u′′′(τ )

)
dτ

≤ a
A

(q – )
(




λQ
)q–

t ≤ at,  ≤ t ≤ .

We get

w(t) = Tw(t) ≤ Tw(t) = w(t),
∣
∣w′

(t)
∣
∣ =

∣
∣(Tw)′(t)

∣
∣ ≤ ∣

∣(Tw)′(t)
∣
∣ =

∣
∣w′

(t)
∣
∣,

w′′
(t) = (Tw)′′(t) ≥ (Tw)′′(t) = w′′

 (t),
∣
∣w′′′

 (t)
∣
∣ =

∣
∣(Tw)′′′(t)

∣
∣ ≤ ∣

∣(Tw)′′′(t)
∣
∣ =

∣
∣w′′′

 (t)
∣
∣,  ≤ t ≤ .

By induction, the iterative scheme is clear, then

wn+ ≤ wn,
∣
∣w′

n+(t)
∣
∣ ≤ ∣

∣w′
n(t)

∣
∣, w′′

n+(t) ≥ w′′
n(t),

∣
∣w′′′

n+(t)
∣
∣ ≤ ∣

∣w′′′
n (t)

∣
∣,  ≤ t ≤ , n = , , , . . . .
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Thus, we see that there exists w∗ ∈ Pa such that wn → w∗. Combining with the continuity
of T and wn+ = Twn, we obtain Tw∗ = w∗.

On the other hand, another way to approach this is to start off with the zero function.
Let v(t) = ,  ≤ t ≤ , then v(t) ∈ Pa. Let v = Tv, then v ∈ Pa. We denote vn+ = Tvn,
n = , , , . . . . Then we have vn ⊆ Pa, n = , , . . . . Since T is completely continuous, we
assert that {vn}∞n= is a sequentially compact set.

In a similar way, since v = Tv ∈ Pa, we have v(t) = Tv(t) ≥ , |v′
(t)| = |(Tv)′(t)| ≥ ,

v′′
 (t) = (Tv)′′(t) ≤ , |v′′′

 (t)| = |(Tv)′′′(t)| ≥ , for  ≤ t ≤ . Then v(t) ≥ v(t), |v′
(t)| ≥

|v′
(t)|, v′′

(t) ≤ v′′
 (t), |v′′′

 (t)| ≥ |v′′′
 (t)|, for  ≤ t ≤ . By an induction argument similar to

the above we easily obtain

vn+ ≥ vn,
∣
∣v′

n+(t)
∣
∣ ≥ ∣

∣v′
n(t)

∣
∣, v′′

n+(t) ≤ v′′
n(t),

∣
∣v′′′

n+(t)
∣
∣ ≥ ∣

∣v′′′
n (t)

∣
∣,  ≤ t ≤ , n = , , , . . . .

Hence there exists v∗ ∈ Pa such that vn → v∗. Combining with the continuity of T and
vn+ = Tvn, we get Tv∗ = v∗.

The assumption (H) indicates that f (t, , , , ) �≡ ,  ≤ t ≤ , then the zero function
is not the solution of (.). Thus we have v∗ > , for  < t < .

It is well known that each fixed point of T in P is a solution of (.). Hence, we assert that
the boundary value problem (.) has at least one positive symmetric concave solution w∗

or v∗.
The proof is completed. �

Remark . If limn→∞ wn �= limn→∞ vn, then w∗ and v∗ are two positive symmetric con-
cave solutions of the problem (.). And if limn→∞ wn = limn→∞ vn, then w∗ = v∗ is a pos-
itive symmetric concave solution of the problem (.). Anyway, the problem (.) has at
least one positive symmetric concave solution.

The following corollary follows easily.

Corollary . Assume that (H)-(H) and (H) hold, and there exists a > , such that

(H): lim�→+∞ max≤t≤
f (t,�,a,–a,a)

�p– ≤ 
Ap– (particularly, lim�→+∞ max≤t≤

f (t,�,a,–a,a)
�p– = ).

Then the boundary value problem (.) has at least one positive symmetric concave solution
w∗ or v∗, such that the conclusion of Theorem . hold.

4 Example
In what follows, we discuss an example and simulations. Our purpose is to illustrate the
main results of the previous arguments.

Example . Let p = , q(t) = , h(t) = g(t) = t( – t), we consider the following boundary
value problem

⎧
⎪⎨

⎪⎩

(φp(u′′(t)))′′(t) = f (t, u(t), u′(t), u′′(t), u′′′(t)),  < t < ,
u() = u() =

∫ 
 u(s) d(s( – s)),

φp(u′′()) = φp(u′′()) =
∫ 

 φp(u′′(s)) d(s( – s)),
(.)

where f (t, x, y, z, δ) = t(t – ) + 
 x + 

 y – 
 z + 

δ. Choose a = , then we have A = .
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So by Theorem ., the boundary value problem (.) has at least one positive symmetric
concave solution w∗ or v∗, such that

 ≤ w∗ ≤ ,  ≤ ∣
∣
(
w∗)′∣∣ ≤ ,

– ≤ (
w∗)′′ ≤ ,  ≤ ∣

∣
(
w∗)′′′∣∣ ≤ ,

w∗ = lim
n→∞ wn = lim

n→∞ Tnw,
(
w∗)′ = lim

n→∞(wn)′ = lim
n→∞

(
Tnw

)′,
(
w∗)′′ = lim

n→∞(wn)′′ = lim
n→∞

(
Tnw

)′′,
(
w∗)′′′ = lim

n→∞(wn)′′′ = lim
n→∞

(
Tnw

)′′′,

where w(t) =



t –



t +



t +



,  ≤ t ≤ ,

and

 ≤ v∗ ≤ ,  ≤ ∣
∣
(
v∗)′∣∣ ≤ ,

– ≤ (
v∗)′′ ≤ ,  ≤ ∣

∣
(
v∗)′′′∣∣ ≤ ,

v∗ = lim
n→∞ vn = lim

n→∞ Tnv,
(
v∗)′ = lim

n→∞(vn)′ = lim
n→∞

(
Tnv

)′,
(
v∗)′′ = lim

n→∞(vn)′′ = lim
n→∞

(
Tnv

)′′,
(
v∗)′′′ = lim

n→∞(vn)′′′ = lim
n→∞

(
Tnv

)′′′,

where v(t) = ,  ≤ t ≤ ,

where (Tu)(t) is defined by (.).
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