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Abstract
In this paper, we use monotone iterative technique in the presence of (coupled)
upper and lower solutions in the reversed order to discuss the existence of extremal
solutions (quasi-solutions) for causal differential equations with nonlinear boundary
conditions. Two examples are provided to illustrate the efficiency of the obtained
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1 Introduction
Causal differential equations are recognized as an excellent model for real world problems;
compared with the traditional model [], one has wider real-time applications in a variety
of disciplines. Its theory also has the powerful quality of unifying ordinary differential
equations, integro differential equations, differential equations with finite or infinite delay,
Volterra integral equations, and neutral equations. For more information, the reader can
refer to the monograph by Lakshmikantham [] and to [–].

The monotone iterative technique is an effective and important tool to prove existence
results for initial and boundary value problems [] and nonlinear boundary value prob-
lems [–]. In the last decades, this method has been extended to causal differential equa-
tions; see for example [–]. It is important to indicate that this method combined with
the method of upper and lower solutions is an interesting and powerful mechanism that
offers the theoretical as well as constructive existence results for nonlinear problems in a
closed set, generated by the lower and upper solutions. Since recently, there are numer-
ous results in studying boundary value problems for ordinary differential equations in the
presence of a lower solution α and an upper solution β with α ≤ β . But in many cases,
the upper and lower solutions occur in the reversed order, that is, β ≤ α. However, only a
few works discuss the existence results for the non-ordered case [–]. In this paper, we
consider the following casual differential equations under the assumption of the existing
upper and lower solutions in the reversed order, which is different from the classical lower
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and upper solutions used in [, ]. The type of the equation is as follows:

{
u′(t) = (Qu)(t), t ∈ J ,
g(u(), u(T)) = ,

()

where J = [, T], T > , E = C(J ,R), Q ∈ C(E, E) is a causal operator, g ∈ C(R×R,R).
Our boundary conditions is given by a nonlinear function, and more general than ones

given before. This paper is organized as follows. In Section , we prove a new comparison
principle. In Section , we show the existence and uniqueness of the solutions for the linear
problem of (). Then by using the monotone iterative technique coupled with the upper
and lower solutions in the reversed order, we obtain the existence of extremal solutions
for problem (). In Section , using the notion of coupled upper and lower solutions in the
reversed order, the existence of coupled minimal and maximal quasi-solutions for () is
established. Finally, two examples are given to illustrate our results.

2 Comparison results
In this section, we present a definition and a lemma which help to prove our main results.

Put E = C(J ,R), J = [, T], and � = E ∩ C(J ,R) are Banach spaces with the respective
norms:

‖y‖ = max
t∈J

∣∣y(t)
∣∣.

A function u ∈ � is called a solution of () if it satisfies ().

Definition . Suppose that Q ∈ C(E, E), then Q is said to be a causal map or a nonantic-
ipative map if u(s) = v(s), t ≤ s ≤ t ≤ T , where u, v ∈ E, then

(Qu)(s) = (Qv)(s), t ≤ s ≤ t.

Lemma . Let m ∈ � and

{
m′(t) ≥ M(t)m(t) + (Lm)(t), t ∈ J = [, T],
λm() ≥ m(T),

()

where M ∈ C(R,R+) and L ∈ C(E, E) is a positive linear operator.
In addition, we assume that

∫ T



(
M(t) + (L)(t)

)
dt ≤ λ

λ + 
,  < λ ≤ . ()

Then m(t) ≤  for t ∈ J .

Proof Suppose that m(t) ≤ , t ∈ J is not true, then we have the following two cases:
Case : there exists t̄ ∈ J such that m(t̄) >  and m(t) ≤  for all t ∈ J\{t̄}.
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By (), we know that m′(t) ≥  on J and m(t) is nondecreasing on J , thus we have

m(t) = m() +
∫ t


m′(s) ds

≥ m() +
∫ t



(
M(s)m(s) + (Lm)(s)

)
ds

≥ m()
(

 +
∫ t



(
M(s) + (L)(s)

)
ds

)
.

Therefore,

λm() ≥ m(T) ≥ m()
(

 +
∫ T



(
M(t) + (L)(t)

)
dt

)
> m(),

so λ > , which is a contradiction.
Case : there exist t∗ and t∗ such that m(t∗) <  and m(t∗) > .
Let mint∈J m(t) = –r, r > . Without loss of generality, we suppose m(t∗) = –r. From ()

we get

m(t) ≥ m() +
∫ t



(
M(s)m(s) + (Lm)(s)

)
ds

≥ m() – r
∫ t



(
M(s) + (L)(s)

)
ds.

Set t = t∗, we have

–r ≥ m() – r
∫ T



(
M(s) + (L)(s)

)
ds,

thus, we obtain

m() ≤ –r + r
∫ T



(
M(s) + (L)(s)

)
ds.

On the other hand,

m(t) = m(T) –
∫ T

t
m′(s) ds.

Take t = t∗, we have

 < m
(
t∗) = m(T) –

∫ T

t∗
m′(s) ds.

Then

m(T) >
∫ T

t∗
m′(s) ds ≥ –r

∫ T



(
M(s) + (L)(s)

)
ds.

Using the fact λm() ≥ m(T), we get

–rλ + rλ
∫ T



(
M(s) + (L)(s)

)
ds ≥ λm() ≥ m(T) > –r

∫ T



(
M(s) + (L)(s)

)
ds.
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A contradiction is then elicited due to (). Hence m(t) ≤ , and this completes the
proof. �

3 Extremal solutions
In this section, we shall establish the existence of extremal solutions of problem ().

Definition . Functions α,β ∈ � are called lower and upper solutions of () if

{
α′(t) ≤ (Qα)(t), t ∈ J ,
g(α(),α(T)) ≤ ,

and {
β ′(t) ≥ (Qβ)(t), t ∈ J ,
g(β(),β(T)) ≥ .

Now we state our theorems. First we discuss the existence of solutions for the following
linear problem:

{
u′(t) = M(t)u(t) + (Lu)(t) + ση(t), t ∈ J ,
g(η(),η(T)) + M(u() – η()) – M(u(T) – η(T)) = ,

()

where ση(t) = (Qη)(t) – M(t)η(t) – (Lη)(t).

Theorem . A function u ∈ � is a solution of () if and only if u is a solution of the
following integral equation:

u(t) =
Bηe

∫ t
 M(s) ds

M – Me
∫ T

 M(s) ds
+

∫ T


G(t, s)

(
ση(s) + (Lu)(s)

)
ds, ()

where Bη = –g(η(),η(T)) + Mη() – Mη(T), M ∈ C(R,R+), M, M are constants satis-
fying M 	= Me

∫ T
 M(s) ds and

G(t, s) =


M – Me
∫ T

 M(s) ds

{
Me

∫ t
s M(r) dr,  ≤ s < t ≤ T ,

Me
∫ T

s M(r) dre
∫ t

s M(r) dr,  ≤ t ≤ s ≤ T .

Proof Assume u ∈ � is a solution of (). Set u(t) = v(t)e
∫ t

 M(s) ds, we see that v(t) satisfies

{
v′(t) = (ση(t) + (Lu)(t))e

∫ t
 –M(s) ds,

v() = Bη

M
+ M

M
v(T)e

∫ T
 M(s) ds.

()

By using (), we have

v(t) = v() +
∫ t



(
ση(s) + (Lu)(s)

)
e
∫ s

 –M(r) dr ds. ()

If we set t = T in (), then we get

v(T) = v() +
∫ T



(
ση(s) + (Lu)(s)

)
e
∫ s

 –M(r) dr ds. ()
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From the boundary condition v(T) = Mv()–Bη

Me
∫ T
 M(t) dt

, we obtain

v() =
Bη

M – Me
∫ T

 M(t) dt
+

Me
∫ T

 M(t) dt

M – Me
∫ T

 M(t) dt

∫ T



(
ση(s) + (Lu)(s)

)
e
∫ s

 –M(r) dr ds. ()

Substituting () into () and using v(t) = u(t)e
∫ t

 –M(s) ds, t ∈ J , we have

u(t) =
Bηe

∫ t
 M(s) ds

M – Me
∫ T

 M(t) dt
+

M

M – Me
∫ T

 M(t) dt

∫ T



(
ση(s) + (Lu)(s)

)
e
∫ t

s M(r) dr ds

+
Me

∫ T
 M(t) dt

M – Me
∫ T

 M(t) dt

∫ T



(
ση(s) + (Lu)(s)

)
e
∫ t

s M(r) dr ds.

Let

G(t, s) =


M – Me
∫ T

 M(t) dt

{
Me

∫ t
s M(r) dr,  ≤ s < t ≤ T ,

Me
∫ T

 M(t) dte
∫ t

s M(r) dr ,  ≤ t ≤ s ≤ T ,

we see that u is a solution of (). The proof is complete. �

In the following paper, we denote ξ = ‖G(t, s)‖ = max{| Me
∫ T
 M(t) dt

M–Me
∫ T
 M(t) dt

|, | Me
∫ T
 M(t) dt

M–Me
∫ T
 M(t) dt

|}.

Theorem . Assume that M ∈ C(R,R+), M 	= Me
∫ T

 M(s) ds, and

ξ‖L‖T < . ()

Then problem () has a unique solution.

Proof By Theorem ., we know that u ∈ � is the solution of () if and only if u is a solution
of the integral equation (). Now we prove () has a unique solution u ∈ �. Define an
operator F : � → � by

(Fu)(t) =
Bηe

∫ t
 M(s) ds

M – Me
∫ T

 M(s) ds
+

∫ T


G(t, s)

(
ση(s) + (Lu)(s)

)
ds.

For any u, u ∈ �, we have

|Fu – Fu| ≤
∫ T



∣∣G(t, s)
∣∣∣∣(L(u – u)

)
(t)

∣∣ ≤ ξT‖L‖‖u – u‖.

Hence, ‖Fu – Fu‖ = maxt∈J |Fu(t) – Fu(t)| = τ‖u – u‖, where

τ = ξT‖L‖.

By () and the Banach contraction principle, F has a unique fixed point. It is clear that
this fixed point is the solution of (). The proof is complete. �
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Theorem . Let (), () hold and Q ∈ C[E, E]. In addition, we assume that

(H) the functions α,β ∈ � are lower and upper solutions of problem (), respectively, such
that β ≤ α;

(H) L ∈ C(E, E) is a positive linear operator and M ∈ C(R,R+) such that

(Qu)(t) – (Qv)(t) ≤ M(t)
(
u(t) – v(t)

)
+

(
L(u – v)

)
(t), for β ≤ v ≤ u ≤ α;

(H) there exist M ≥ M >  satisfying M 	= Me
∫ T

 M(s) ds, and

g(ū, v̄) – g(u, v) ≥ M(ū – v̄) – M(u – v),

whenever β() ≤ u() ≤ ū() ≤ α(),β(T) ≤ v(T) ≤ v̄(T) ≤ α(T).

Then there exist monotone sequences {αn(t)} and {βn(t)} with α = α,β = β , which con-
verge to the extremal solutions of problem () in the sector [β ,α] = {u ∈ C(J ,R) : β(t) ≤
u(t) ≤ α(t), t ∈ J}.

Proof First, we construct two sequences {αn(t)}, {βn(t)} which satisfy the following equa-
tions:

{
α′

n(t) = M(t)αn(t) + (Lαn)(t) + (Qαn–)(t) – M(t)αn–(t) – (Lαn–)(t),
g(αn–(),αn–(T)) + M(αn() – αn–()) – M(αn(T) – αn–(T)) = ,

()

and
{

β ′
n(t) = M(t)βn(t) + (Lβn)(t) + (Qβn–)(t) – M(t)βn–(t) – (Lβn–)(t),

g(βn–(),βn–(T)) + M(βn() – βn–()) – M(βn(T) – βn–(T)) = ,
()

for n = , , . . . , where α = α, β = β .
It follows from Theorem . that both () and () have a unique solution, respectively.

Then we complete the proof by four steps.
Step  We prove that βn– ≤ βn and αn ≤ αn–, n = , , . . . .
Set m = α – α, t ∈ J . Employing (H), we have

m′(t) = α′
(t) – α′(t)

≥ M(t)α(t) + (Lα)(t) + (Qα)(t) – M(t)α(t) – (Lα)(t) – (Qα)(t)

= M(t)m(k) + (Lm)(t), t ∈ J ,

and

m() = –


M
g
(
α(),α(T)

)
+

M

M

(
α(T) – α(T)

)
+ α() – α() ≥ M

M
m(T).

From Lemma ., we get m(t) ≤ , t ∈ J , so α(t) ≤ α(t).
By mathematical induction, we obtain the sequence αn is a non-increasing sequence.

Analogously, we can show βn is a nondecreasing sequence.
Step  We show that β ≤ α if β ≤ α.
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Let m = β – α. Using (H), (H), and (H), we get

m′(t) = β ′
(t) – α′

(t)

= M(t)β(t) + (Lβ)(t) + (Qβ)(t) – M(t)β(t) – (Lβ)(t)

– M(t)α(t) – (Lα)(t) – (Qα)(t) + M(t)α(t) + (Lα)(t)

≥ M(t)m(t) + (Lm)(t), t ∈ J ,

and

m() = β() – α()

= –


M
g
(
β(),β(T)

)
+

M

M

(
β(T) – β(T)

)
+ β()

–
[


M

g
(
α(),α(T)

)
+

M

M

(
α(T) – α(T)

)
+ α()

]

≥ M

M
m(T).

Then based on Lemma ., we have m ≤ , which implies β ≤ α. By mathematical in-
duction, we obtain βn ≤ αn, n = , , . . . .

Step  We prove that there exists a solution of problem () that satisfies β(t) ≤ u(t) ≤ α(t)
in J .

By the first two steps, we get

β ≤ β ≤ β ≤ · · · ≤ βn ≤ · · · ≤ αn ≤ · · · ≤ α ≤ α ≤ α, ()

and each αn,βn satisfies () and (). It is easy to see that the sequence {βn(t)} is uniformly
bounded and equicontinuous, employing the Ascoli-Arzela theorem, the nondecreasing
sequences {βn(t)} converges pointwise to a function u(t) that satisfies β(t) ≤ u(t) ≤ α(t).
Therefore, there exists a solution u(t) of problem () that satisfies β(t) ≤ u(t) ≤ α(t) in J .

Step  We prove that there exist extremal solutions of problem () in [β ,α].
Apparently, from (), there exist ρ and r such that limn→∞ αn(t) = ρ(t) and

limn→∞ βn(t) = r(t) uniformly on J . Clearly, ρ(t), r(t) satisfy problem (). Let u(t) be any
solution of () such that β(t) ≤ u(t) ≤ α(t). Suppose that there exists a positive integer j
such that βn(t) ≤ u(t) ≤ αn(t). Then, setting m = βn+ – u, we have

m′(t) = �βn+(t) – u′(t)

= M(t)βn+(t) + (Lβn+)(t) + (Qβn)(t) – M(t)βn(t) – (Lβn)(t) – (Qy)(t)

≥ M(t)m(t) + (Lm)(t), t ∈ J ,

and

m() = βn+() – y()

= –


M
g
(
βn(),βn(T)

)
+

M

M

(
βn+(T) – βn(T)

)
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+ βn() – y() +


M
g
(
y(), y(T)

)
≥ M

M
m(T).

By Lemma ., m ≤ , i.e., βn+ ≤ u. Similarly, we can get u ≤ αn+ on J . Since β(t) ≤
y(t) ≤ α(t), by induction we have βn ≤ u ≤ αn, which implies r(t) ≤ u(t) ≤ ρ(t). The proof
is complete. �

4 Coupled lower and upper solutions
Definition . We say that α,β ∈ � are called coupled lower and upper solutions of () if

{
α′(t) ≤ (Qα)(t), t ∈ J ,
g(α(),β(T)) ≤ ,

and
{

β ′(t) ≥ (Qβ)(t), t ∈ J ,
g(β(),α(T)) ≥ .

Definition . Relative to the causal differential equations (), u, v ∈ � are said to be cou-
pled quasi-solution solutions if

{
u′(t) = (Qu)(t), t ∈ J ,
g(u(), v(T)) = ,{
v′(t) = (Qv)(t), t ∈ J ,
g(v(), u(T)) = .

Definition . Coupled quasi-solution ρ, r ∈ C(J ,R) are called coupled minimal and
maximal coupled quasi-solution of problem (), if for any coupled quasi-solution u, v, we
have ρ(t) ≤ u(t), v(t) ≤ r(t) on J .

Theorem . Assume that (H), (), () hold and Q ∈ C[E, E]. In addition, suppose that

(H) α,β ∈ � are coupled lower and upper solutions of problem () such that β ≤ α;
(H) the function g(u, v) ∈ C(R,R)is non-increasing in the second variable and

g(ū, v) – g(u, v) ≤ M(ū – u), for β() ≤ u() ≤ ū() ≤ α(),

where M ≥ M >  and M 	= Me
∫ T

 M(s) ds.

Then there exist monotone sequences {αn(t)} and {βn(t)} with α = α,β = β , such that
limn→∞ βn(t) = ρ(t), limn→∞ αn(t) = r(t), uniformly and monotonically on J and such that
ρ, r are coupled minimal and maximal quasi-solutions of () in the sector [β ,α].

Proof Let us consider the following equations:

{
α′

n(t) = M(t)αn(t) + (Lαn)(t) + (Qαn–)(t) – M(t)αn–(t) – (Lαn–)(t),
g(αn–(),βn–(T)) + M(αn() – αn–()) – M(αn(T) – αn–(T)) = ,

()
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{
β ′

n(t) = M(t)βn(t) + (Lβn)(t) + (Qβn–)(t) – M(t)βn–(t) – (Lβn–)(t),
g(βn–(),αn–(T)) + M(βn() – βn–()) – M(βn(T) – βn–(T)) = ,

()

for n = , , . . . , where α = α, β = β .
This is an adequate definition since by Theorem . the existence and uniqueness of the

solution for () and () are guaranteed. First, we show that β ≤ β ≤ α ≤ α and setting
m = β – β, employing (H), (H), we acquire

m′(t) = α′
(t) – α′(t)

≥ M(t)α(t) + (Lα)(t) + (Qα)(t) – M(t)α(t) – (Lα)(t) – (Qα)(t)

= M(t)m(k) + (Lm)(t), t ∈ J ,

and

m() = –


M
g
(
α(),β(T)

)
+

M

M

(
α(T) – α(T)

)
+ α() – α()

≥ M

M
m(T).

It follows that m(t) ≤  on J , which implies α ≤ α on J . Similarly, we may obtain β ≤ β

on J .
Next, take m(t) = β(t) – α(t), by (H), (H), and (H), we get

m′(t) = β ′
(t) – α′

(k)

= M(t)β(t) + (Lβ)(t) + (Qβ)(t) – M(t)β(t) – (Lβ)(t)

– M(t)α(t) – (Lα)(t) – (Qα)(t) + M(t)α(t) + (Lα)(t)

≥ M(t)m(t) + (Lm)(t), t ∈ J ,

and

m() = β() – α()

= –


M
g
(
β(),α(T)

)
+

M

M

(
β(T) – β(T)

)
+ β()

–
[

–


M
g
(
α(),β(T)

)
+

M

M

(
α(T) – α(T)

)
+ α()

]

≥ M

M
m(T).

This implies that m(t) ≤  on J , and β ≤ α.
In the following, we show that β,α are coupled lower and upper solutions of (). Using

(H), (H), and (), we have

α′
(t) = M(t)α(t) + (Lα)(t) + (Qα)(t) – M(t)α(t) – (Lα)(t)

≤ M(t)α(t) + (Lα)(t) + (Qα)(t) + M(t)
(
α(t) – α(t)

)
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+
(
L(α – α)

)
(t) – M(t)α(t) – (Lα)(t)

≤ (Qα)(t), ()

and by means of the fact β ≤ β ≤ α ≤ α, (H), and (H), we obtain

g
(
α(),β(T)

) ≤ g
(
α(),β(T)

)
– g

(
α(),β(T)

)
≤ g

(
α(),β(T)

)
– g

(
α(),β(T)

)
≤ M

(
α() – α()

)
≤ . ()

Similarly, we can get

β ′
(t) ≥ (Qβ)(t), g

(
β(),α(T)

) ≥ , ()

from ()-(), we see that α,β are coupled lower and upper solutions of problem ().
Now employing the mathematical induction, assume that, for some integer k > ,

βk– ≤ βk ≤ αk ≤ αk– on J .

We need to prove that

βk ≤ βk+ ≤ αk+ ≤ αk on J .

For this purpose, let m(t) = βk(t) – βk+(t) and using (H), (H), we note that

m′(t) = β ′
k(t) – β ′

k+(t)

≥ (Qβk)(t) – M(t)βk+(t) – (Lβk+)(t) – (Qβk)(t) + M(t)βk(t) + (Lβk)(t)

= M(t)m(k) + (Lm)(t), t ∈ J ,

and

m() = βk() – βk+()

= βk() +


M
g
(
βk(),αk(T)

)
–

M

M

(
βk+(T) – βk(T)

)
– βk()

≥ M

M
m(T).

By Lemma ., βk ≤ βk+ on J . Similarly, we can prove that αk+ ≤ αk on J .
Next, we prove βk+ ≤ αk+, set m(t) = βk+(t) – αk+(t), from (H), (H), and the fact

βk ≤ αk , we can obtain

m′(t) = β ′
k+(t) – α′

k+(t)

= M(t)βk+(t) + (Lβk+)(t) + (Qβk)(t) – M(t)βk(t) – (Lβk)(t)
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–
[
M(t)αk+(t) + (Lαk+)(t) + (Qαk)(t) – M(t)αk(t) – (Lαk)(t)

]
≥ M(t)m(k) + (Lm)(t), t ∈ J ,

m() = βk+() – αk+()

= –


M
g
(
βk(),αk(T)

)
+

M

M

(
βk+(T) – βk(T)

)
+ βk()

–
[

–


M
g
(
αk(),αk(T)

)
+

M

M

(
αk+(T) – αk(T)

)
+ αk()

]

≥ M

M
m(T).

Then m(t) ≤ , i.e., βk+ ≤ αk+. From the above discussion, we have

β ≤ β ≤ β ≤ · · · ≤ βn ≤ · · · ≤ αn ≤ · · · ≤ α ≤ α ≤ α.

Obviously, the constructed sequences {αn}, {βn} are equicontinuous and uniform
bounded. By the Ascoli-Arzela theorem, the sequences {αn}, {βn} converge uniformly to
limit functions r,ρ on J , respectively. Using the definition of (), (), and passing to the
limit when n → ∞, we see that ρ, r are coupled quasi-solutions of problem ().

It remains to show that ρ, r are coupled minimal and maximal solutions of problem ().
Let u, u ∈ [β ,α] be any coupled quasi-solutions of (). Assume that there exists a positive
integer k such that βk ≤ u, u ≤ αk on J . Then, putting m(t) = βk+ – u, and employing
(H) and (H), we have

m′(t) = �βn+(t) – u′(t)

= M(t)βn+(t) + (Lβn+)(t) + (Qβn)(t) – M(t)βn(t) – (Lβn)(t) – (Qu)(t)

≥ M(t)m(t) + (Lm)(t), t ∈ J ,

and

m() = βn+() – u()

= –


M
g
(
βn(),βn(T)

)
+

M

M

(
βn+(T) – βn(T)

)
+ βn() – u() +


M

g
(
u(), u(T)

)
≥ M

M
m(T).

By Lemma ., m(t) ≤ , which proves βk+ ≤ u. Using similar arguments we can conclude
βk+ ≤ u, u ≤ αk+ on J . Since β ≤ u, u ≤ α, by the principle of induction, βn ≤ u, u ≤
αn holds for all n. Taking the limit as n → ∞, we have ρ ≤ u, u ≤ r on J proving ρ, r
are coupled minimal and maximal quasi-solutions of (). Since any natural solution u of
() can be considered as (u, u) coupled quasi-solutions, we also have ρ ≤ u ≤ r on J . This
completes the proof. �
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5 Example
In this section, we give two simple but illustrative examples, thereby validating the pro-
posed theorems.

Example . Consider the following problem:

{
u′(t) = 

 tu(t) + tu(t) + 

∫ t

 su(s) ds, t ∈ J = [, ],
sin(u()) + u() – u() – c = ,  ≤ c ≤ ..

()

Let α(t) = ,β(t) = –, we can easily verify that α(t) is a lower solution and β(t) is an
upper solution with β(t) ≤ α(t).

Set

(Qu)(t) =



tu(t) + tu(t) +



∫ t


su(s) ds,

(Lu)(t) =



∫ t


su(s) ds,

g(u, v) = sin u + u – v – c,

by computing, we have

(Qu)(t) – (Qv)(t) ≤ t(u(t) – v(t)
)

+
(
L(u – v)

)
(t),

where β(t) ≤ v(t) ≤ u(t) ≤ α(t) on t ∈ J , M(t) = t.

g(ū, v̄) – g(u, v) ≥ (ū – u) – (v̄ – v),

where β() ≤ u ≤ ū ≤ α(),β() ≤ v ≤ v̄ ≤ α(), M = , M = , λ = M
M

= 
 .

It is easy to prove that ξ = maxt∈J{| e
∫ 
 t dt

–e
∫ 
 t dt

|, | e
∫ 
 t dt

–e
∫ 
 t dt

|} <  and

∫ 



(
M(t) + (L)(t)

)
dt =

∫ 



(
t +




t
)

dt =



≤ λ

λ + 
,

ξ‖L‖T = ξ‖L‖ ≤ 


< .

Then all conditions of Theorem . are satisfied. Therefore, via Theorem ., there exist
monotone iterative sequences {αn(t)}, {βn(t)} which converge uniformly on J to the ex-
tremal solutions of () in [β,α].

Example . Consider the following problem:

{
u′(t) = 

 tu(t) + 
 tu(t) + 

t

∫ t
 su(s) ds ≡ (Qu)(t), t ∈ J = [, ],

g(u(), u()) = –u() + u() – u() + c = ,  ≤ c ≤ .
()

Let α(t) = ,β(t) = , we can easily verify that α(t) is a lower solution and β(t) is an
upper solution with β(t) ≤ α(t).
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Take (Lu)(t) = 
t

∫ t
 su(s) ds, by computing, we get

(Qu)(t) – (Qv)(t) ≤ t

(
u(t) – v(t)

)
+

(
L(u – v)

)
(t),

where β(t) ≤ v(t) ≤ u(t) ≤ α(t) on t ∈ J , M(t) = t
 .

Set g(u, v) = –u + u – v + c, we see that the function g(u, v) is non-increasing in the
second variable and

g(ū, v) – g(u, v) ≤ (ū – u),

where β() ≤ u ≤ ū ≤ α(), M = , M = , λ = M
M

= 
 .

It is easy to prove that ξ = maxt∈J{| e
∫ 


t
 dt

–e
∫ 


t
 dt

|, | e
∫ 


t
 dt

–e
∫ 


t
 dt

|} <  and

∫ 



(
M(t) + (L)(t)

)
dt =

∫ 



(
t


+




)
dt =




≤ λ

λ + 
,

ξ‖L‖T = ξ‖L‖ <



< .

Then all conditions of Theorem . are satisfied. So problem () has coupled minimal
and maximal quasi-solutions of () in the segment [β,α].
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