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1 Introduction
In this paper, we investigate the following non-autonomous Navier-Stokes equation with
nonlinear damping:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut – μ�u + (u · ∇)u + α|u|β–u + ∇p = f (x, t), x ∈ �, t > τ ,
div u = , x ∈ �, t > τ ,
u|t=τ = uτ , x ∈ �,
u|∂� = , t > τ .

()

μ >  is the kinematic viscosity of the fluid and f = f (x, t) is the external body force. The
unknown functions here are u = u(x, t) = (u(x, t), u(x, t), u(x, t)) and p = p(x, t), which
stand for the velocity field and the pressure of the flow, respectively. In the damping term,
β ≥  and α >  are two constants. The given function uτ = uτ (x) is the initial velocity.

When α = , problem () becomes the classical D Navier-Stokes equation with external
force, which has been studied by many authors (see [–]). The damping arises from the
resistance to the motion of the flow and describes various physical phenomena, such as
porous media flow, drag or friction effects, and some dissipative mechanisms (see [–]).
For the autonomous case, in [], Cai and Jiu proved that Cauchy problem () possesses
global strong solutions when β ≥ 

 , and the global strong solution is unique when 
 ≤

β ≤ . In [], Zhang, Wu and Lu also investigated the uniqueness of strong solution of
problem (). They established that the strong solution exists when β > , and the global
strong solution is unique when  < β ≤ . This improved the earlier results in []. In
[, ], some authors discussed the L-decay rate of solutions of problem (). In [, ],

© 2016 Song et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13661-016-0654-z
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-016-0654-z&domain=pdf
mailto:songxlmath@163.com


Song et al. Boundary Value Problems  (2016) 2016:145 Page 2 of 15

we studied the existence of global attractors and uniform attractors of strong solution of
problem () when 

 ≤ β ≤ .
In this paper, our aim is to study the long-time behavior of strong solution of problem

() by the theory of pullback attractors. Pullback attractor theory is a natural generaliza-
tion of the theory of global attractors developed to study autonomous dynamical systems,
and it is well suited to study the non-autonomous dynamical systems. We shall prove the
existence of pullback attractors in (H

(�)) and (H(�)) under the assumption of an ex-
ternal force f (x, t) satisfying a certain integrability condition. To attain our goal we use
the methods introduced in [–], which will be explained in more detail in Section .
Before formulating the main results of the paper, we shall introduce some function spaces
and some notations.

We define the function spaces

V =
{

u ∈ (
C∞

 (�)
) : div u = 

}
, H = cl(L(�)) V , V = cl(H

(�)) V ,

where clX denotes the closure in the space X. It is well known that H , V are separable
Hilbert spaces and identifying H and its dual H ′, we have V ↪→ H ↪→ V ′ with dense and
continuous injections, and V ↪→ H is compact. H and V endowed, respectively, with the
inner products

(u, v) =
∫

�

u · v dx, ∀u, v ∈ H ,

(
(u, v)

)
=

∑

i=

∫

�

∇ui · ∇vi dx, ∀u, v ∈ V ,

and norms | · | = (·, ·)/, ‖ · ‖ = ((·, ·))/. In this paper, H(�) = (H(�)), Lp(�) = (Lp(�)),
and we use | · |p to denote the norm in Lp(�).

If u ∈ L∞(τ , T ; H) ∩ L(τ , T ; V ) ∩ Lβ+(τ , T ; Lβ+(�)) satisfies

{
d
dt (u, v) + μ((u, v)) + b(u, u, v) + (α|u|β–u, v) = (f , v), ∀v ∈ V ,∀t > τ ,
u(τ ) = uτ ,

()

then we say that u is a weak solution of () on [τ , T].
The weak formulation () is equivalent to the function equation

{
du
dt + μAu + B(u) + G(u) = f (x, t), for t > τ ,
u(τ ) = uτ ,

()

where Au = –P̃�u is the Stokes operator defined by 〈Au, v〉 = ((u, v)), and P̃ is the orthog-
onal projection of (L(�)) onto H . G(u) = P̃F(u) and F(u) = α|u|β–u. B : V × V → V ′ is
a bilinear operator defined by 〈B(u, v), w〉 = b(u, v, w), B(u) = B(u, u), where

b(u, v, w) =
∑

i=

∫

�

ui
∂vj

∂xi
wj dx,

and 〈·, ·〉 is the duality product between V and V ′.
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In this paper, we assume the external force f (x, t) ∈ L
loc(R; H), and the derivative df

dt ∈
L

b(R; H). Recall that a function g(t) is said to be translation bounded (tr.b.) in L
loc(R; H) if

‖g‖
L

b
= ‖g‖

L
b(R;H) = sup

t∈R

∫ t+

t

∣
∣g(s)

∣
∣
 dt < ∞.

L
b(R; H) denotes the collection of functions that are tr.b. in L

loc(R; H). Furthermore, we
assume that f (x, t) is uniformly bounded in H , i.e., there exists a positive constant K , such
that

sup
t∈R

∣
∣f (x, t)

∣
∣
 ≤ K .

Throughout this paper, we assume that the external force f (x, t) satisfies

∫ t

–∞
eσ s∣∣f (s)

∣
∣
 ds < ∞, for all t ∈R, ()

where  < σ < μλ
 , and λ is the first eigenvalue of the Stokes operator. Let D be the class

of all families {D(t) : t ∈R} of nonempty subsets of (H
(�)) such that

lim
t→–∞ eσ t[D(t)

]
= , ()

where [D(t)] = sup{‖u‖
(H

(�)) : u ∈ D(t)}.
In this paper, the letter C is a generic positive constant, which may change its value from

line to line, even in the same line.
In the next section, we provide basic definitions and results we shall use in this paper. In

Section  we give some prior estimates of solutions. Based on these uniform estimation,
in Section  we prove the existence of pullback attractors.

2 Preliminaries and abstract results
In this section, we will recall some basic definitions and abstract results about pullback
attractor and state the theorems about the existence and uniqueness of global solutions of
problem ().

Let X be a complete metric space. A two-parameter family of mappings acting on X:
U(t, τ ) : X → X, t ≥ τ , τ ∈R, is said to be an evolutionary process if

() U(t, τ ) = U(t, r)U(r, τ ), for all τ ≤ r ≤ t,
() U(τ , τ ) = Id is the identity operator, ∀τ ∈R.
Let D be a nonempty class of families D̂ = {D(t) : t ∈R} of nonempty subsets of X.

Definition . A family Â = {A(t) : t ∈R} of nonempty subsets of X is said to be a pullback
D-attractor for the process {U(t, τ )}t≥τ in X, if

() Â(t) is compact in X for any t ∈R,
() Â is invariant, i.e., U(t, τ )A(τ ) = A(t) for any τ ≤ t,
() Â is pullback D-attracting, i.e.,

lim
τ→–∞ dist

(
U(t, τ )D(τ ), A(t)

)
= ,

for any t ∈R and any D̂ ∈D.
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Such a family Â is called minimal if A(t) ⊂ C(t) for any family Ĉ = {C(t) : t ∈ R} of closed
subsets of X such that limτ→–∞ dist(U(t, τ )B(τ ), C(t)) =  for any B̂ ∈D.

Definition . It is said that B̂ ∈ D is pullback D-absorbing for the process {U(t, τ )}t≥τ ,
if for any D̂ ∈ D and any t ∈ R, there exists a τ(t, D̂) ≤ t such that U(t, τ )D(τ ) ⊂ B(t) for
any τ ≤ τ(t, D̂).

Definition . Let X be a Banach space. A process U(t, τ ) is said to be norm-to-weak
continuous on X if for all t, τ ∈R with t ≥ τ and for every sequence xn ∈ X,

xn → x strongly in X ⇒ U(t, τ )xn ⇀ U(t, τ )x weakly in X.

Obviously, a continuous process is a norm-to-weak continuous process. The following
result is very useful to check that the process is norm-to-weak continuous.

Theorem . (see [, , ]) Let X, Y be two Banach spaces. X∗, Y ∗ be, respectively,
their dual spaces. Assume that X is dense in Y , the injection i : X → Y is continuous, its
adjoint i∗ : Y ∗ → X∗ is dense, and U is a norm-to-weak continuous process on Y . Then U
is a norm-to-weak continuous process on X if and only if for any τ ∈R, t ≥ τ , U(t, τ ) maps
compact sets of X into bounded sets of X.

Definition . The process {U(t, τ )}t≥τ is said to be pullback D-asymptotically compact,
if for any t ∈ R and any D̂ ∈ D, any sequence τn → –∞ and any sequence xn ∈ D(τn), the
sequence {U(t, τn)xn}∞n= is relatively compact in X.

Lemma . (see [–]) Let {U(t, τ )}t≥τ be a process in X satisfying the following condi-
tions:

() {U(t, τ )}t≥τ is norm-to-weak continuous in X ;
() there exists a family B̂ of pullback D-absorbing sets {B(t) : t ∈R} in X ;
() {U(t, τ )}t≥τ is pullback D-asymptotically compact.

Then there exists a minimal pullback D-attractor Â = {A(t) : t ∈R} in X given by

A(t) =
⋂

s≤t

⋃

τ≤s
U(t, τ )B(τ ).

Now, we recall the existence and uniqueness theorem for strong solution of problem ().

Theorem . ([]) Suppose f ∈ L
b(R; H), uτ ∈ H , and β ≥ . Then for any given T > τ ,

there exists at least one solution u that satisfies (). Moreover,

u ∈ L∞(τ , T ; H) ∩ L(τ , T ; V ) ∩ Lβ+(τ , T ; Lβ+(�)
)
.

We say that u(x, t) is a strong solution of (), if it is a weak solution of (), and satisfies

u ∈ L∞(τ , T ; V ) ∩ L(τ , T ; H(�)
) ∩ L∞(

τ , T ; Lβ+(�)
)
.
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Theorem . Suppose β > , uτ ∈ V ∩Lβ+(�), and f ∈ L
b(R; H). Then there exists a strong

solution u(x, t) that satisfies (),

u ∈ L∞(τ , T ; V ) ∩ L∞(
τ , T ; Lβ+(�)

) ∩ L(τ , T ; H(�)
)
,

∇u|u| β–
 ∈ L(τ , T ; H), ut ∈ L(τ , T ; H).

Moreover, when  < β ≤ , the strong solution is unique.

Proof In [], Zhang, Wu and Lu have proved this theorem in the autonomous case. For
the non-autonomous case, it is similar to the proof of Theorem . in [], so we omit it
here. �

Because � ⊂ R is sufficiently regular, so V ↪→ L(�), and because L(�) ↪→ Lβ+(�)
( < β ≤ ), so V ∩ Lβ+(�) = V . In the following, we use uτ ∈ V to replace uτ ∈ V ∩
Lβ+(�).

In [], we have proved that the strong solution u(x, t) is continuous with respect to
the initial value condition u in the space V when 

 ≤ β ≤  (Proposition ). From the
proof, we can easily deduce that, when  < β ≤ , for the non-autonomous case, the strong
solution u(x, t) is also continuous with respect to the initial data uτ in V .

In order to construct a process {U(t, τ )}t≥τ for problem (), we define U(t, τ ) : V → V
by U(t, τ )uτ = u(t), t ≥ τ . Obviously, the process {U(t, τ )}t≥τ is a continuous process in V ,
so it is also a norm-to-weak continuous process in V .

3 Uniform estimates of solutions
In this section, we derive uniform estimates on solutions of problem () when τ → –∞.
These estimates are necessary to prove the existence of pullback D-absorbing sets and the
pullback asymptotic compactness of process {U(t, τ )}t≥τ associated with the system.

Lemma . Under the assumptions ()-() and f ∈ L
loc(R; H). Let  < β ≤ , τ ∈ R, and

u(t) be the solution of problem (). Then for any D̂ ∈D and t ∈R, there exists τ = τ(t, D̂) <
t, such that

∣
∣u(t)

∣
∣
 ≤ Ce–σ t

∫ t

–∞
eσξ

∣
∣f (ξ )

∣
∣
 dξ ;

∫ t

τ

eσξ
∥
∥u(ξ )

∥
∥ dξ ≤ C

∫ t

–∞
eσξ

∣
∣f (ξ )

∣
∣
 dξ ;

∫ t

τ

eσξ
∣
∣u(ξ )

∣
∣β+
β+ dξ ≤ C

∫ t

–∞
eσξ

∣
∣f (ξ )

∣
∣
 dξ ,

for any uτ ∈ D(τ ) and τ ≤ τ(t, D̂).

Proof Taking the inner product of () with u, we obtain

d
dt

|u| + μ‖u‖ + α|u|β+
β+ = (f , u) ≤ μλ|u| +


μλ

|f |

≤ μ‖u‖ +


μλ
|f |,
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where λ is the first eigenvalue of the Stokes operator. Thus,

d
dt

|u| +
μλ


|u| +

μ


‖u‖ + α|u|β+

β+ ≤ 
μλ

|f |. ()

Multiplying () by eσ t and then integrating over (τ , t), we derive that

∣
∣u(t)

∣
∣
 +

μ


e–σ t

∫ t

τ

eσξ
∥
∥u(ξ )

∥
∥ dξ + αe–σ t

∫ t

τ

eσξ
∣
∣u(ξ )

∣
∣β+
β+ dξ

≤
(

σ –
μ


λ

)

e–σ t
∫ t

τ

eσξ
∣
∣u(ξ )

∣
∣
 dξ +


μλ

e–σ t
∫ t

τ

eσξ
∣
∣f (ξ )

∣
∣
 dξ + e–σ teστ

∣
∣u(τ )

∣
∣
.

Since  < σ < μλ
 , we have

∣
∣u(t)

∣
∣
 +

μ


e–σ t

∫ t

τ

eσξ
∥
∥u(ξ )

∥
∥ dξ + αe–σ t

∫ t

τ

eσξ
∣
∣u(ξ )

∣
∣β+
β+ dξ

≤ 
μλ

e–σ t
∫ t

–∞
eσξ

∣
∣f (ξ )

∣
∣
 dξ + e–σ teστ

∣
∣u(τ )

∣
∣
. ()

Since u(τ ) ∈ D(τ ), for every t ∈R, there exists τ = τ(t, D̂) < t such that, for all τ ≤ τ,

eστ
∣
∣u(τ )

∣
∣
 ≤ 

μλ

∫ t

–∞
eσξ

∣
∣f (ξ )

∣
∣
 dξ . ()

By () and (), we find that

∣
∣u(t)

∣
∣
 +

μ


e–σ t

∫ t

τ

eσξ
∥
∥u(ξ )

∥
∥ dξ + αe–σ t

∫ t

τ

eσξ
∣
∣u(ξ )

∣
∣β+
β+ dξ

≤ 
μλ

e–σ t
∫ t

–∞
eσξ

∣
∣f (ξ )

∣
∣
 dξ . �

Lemma . Under the assumptions ()-() and f ∈ L
loc(R; H). Let  < β ≤ , τ ∈ R, and

u(t) be the solution of problem (). Then for any D̂ ∈D and t ∈R, there exists τ = τ(t, D̂) <
t – , such that

∫ t

t–
eσξ

∣
∣u(ξ )

∣
∣
 dξ ≤ C

∫ t

–∞
eσξ

∣
∣f (ξ )

∣
∣
 dξ ;

∫ t

t–
eσξ

∥
∥u(ξ )

∥
∥ dξ ≤ C

∫ t

–∞
eσξ

∣
∣f (ξ )

∣
∣
 dξ ;

∫ t

t–
eσξ

∣
∣u(ξ )

∣
∣β+
β+ dξ ≤ C

∫ t

–∞
eσξ

∣
∣f (ξ )

∣
∣
 dξ ,

for any uτ ∈ D(τ ) and τ ≤ τ(t, D̂).

Proof It follows from () that

d
dt

∣
∣u(t)

∣
∣
 +

μλ


∣
∣u(t)

∣
∣
 ≤ 

μλ

∣
∣f (t)

∣
∣
. ()
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Let s ∈ [t – , t]. Multiplying () by eσ t , then relabeling t as ξ and integrating with respect
to ξ over (τ , s), we get

eσ s∣∣u(s)
∣
∣
 ≤ eστ

∣
∣u(τ )

∣
∣
 +

(

σ –
μ


λ

)∫ s

τ

eσξ
∣
∣u(ξ )

∣
∣
 dξ +


μλ

∫ s

τ

eσξ
∣
∣f (ξ )

∣
∣
 dξ

≤ eστ
∣
∣u(τ )

∣
∣
 +


μλ

∫ t

–∞
eσξ

∣
∣f (ξ )

∣
∣
 dξ . ()

Since u(τ ) ∈ D(τ ), for every t ∈R, there exists τ = τ(t, D̂) < t – , such that, for all τ ≤ τ,

eστ
∣
∣u(τ )

∣
∣
 ≤ 

μλ

∫ t

–∞
eσξ

∣
∣f (ξ )

∣
∣
 dξ . ()

By () and (), we have, for s ∈ [t – , t],

eσ s∣∣u(s)
∣
∣
 ≤ 

μλ

∫ t

–∞
eσξ

∣
∣f (ξ )

∣
∣
 dξ . ()

Integrating () with respect to s over the interval (t – , t) produces

∫ t

t–
eσ s∣∣u(s)

∣
∣
 ds ≤ 

μλ

∫ t

–∞
eσξ

∣
∣f (ξ )

∣
∣
 dξ . ()

Multiplying () by eσ t , then relabeling t as ξ and integrating with respect to ξ over (t – , t),
by () we obtain, for all τ ≤ τ,

eσ t∣∣u(t)
∣
∣
 +

μ



∫ t

t–
eσξ

∥
∥u(ξ )

∥
∥ dξ + α

∫ t

t–
eσξ

∣
∣u(ξ )

∣
∣β+
β+ dξ

≤ eσ (t–)∣∣u(t – )
∣
∣
 +

(

σ –
μ


λ

)∫ t

t–
eσξ

∣
∣u(ξ )

∣
∣
 dξ +


μλ

∫ t

–∞
eσξ

∣
∣f (ξ )

∣
∣
 dξ

≤ 
μλ

∫ t

–∞
eσξ

∣
∣f (ξ )

∣
∣
 dξ ,

which along with () completes the proof. �

Corollary . Under the assumptions ()-() and f ∈ L
loc(R; H). Let  < β ≤ , τ ∈R, and

u(t) be the solution of problem (). Then for any D̂ ∈D and t ∈ R,

∫ t

t–

∣
∣u(ξ )

∣
∣
 dξ ≤ Ce–σ t

∫ t

–∞
eσξ

∣
∣f (ξ )

∣
∣
 dξ ;

∫ t

t–

∥
∥u(ξ )

∥
∥ dξ ≤ Ce–σ t

∫ t

–∞
eσξ

∣
∣f (ξ )

∣
∣
 dξ ;

∫ t

t–

∣
∣u(ξ )

∣
∣β+
β+ dξ ≤ Ce–σ t

∫ t

–∞
eσξ

∣
∣f (ξ )

∣
∣
 dξ ,

for any uτ ∈ D(τ ) and τ ≤ τ(t, D̂).

Proof It is straightforward from Lemma .. �
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Lemma . Under the assumptions ()-() and f ∈ L
loc(R; H). Let  < β ≤ , τ ∈ R, and

u(t) be the solution of problem (). Then, for any D̂ ∈D and t ∈R,

∥
∥u(t)

∥
∥ +

∣
∣u(t)

∣
∣β+
β+ ≤ Ce–σ t

∫ t

–∞
eσξ

∣
∣f (ξ )

∣
∣
 dξ , ()

for any uτ ∈ D(τ ) and τ ≤ τ(t, D̂).

Proof Multiplying the first equation of () by ut , –�u, respectively, and then integrating
the resulting equation on �, we obtain

|ut| +
μ


d
dt

‖u‖ +
α

β + 
d
dt

|u|β+
β+

= –
∫

�

(u · ∇)uut dx + (f , ut), ()




d
dt

‖u‖ + μ|�u| + α

∫

�

|u|β–|∇u| dx +
α(β – )



∫

�

|u|β–∣∣∇|u|∣∣ dx

=
∫

�

(u · ∇)u�u dx – (f ,�u). ()

From () we have

μ
d
dt

‖u‖ +
α

β + 
d
dt

|u|β+
β+ ≤ ∣

∣(u · ∇)u
∣
∣
 +

∣
∣f (t)

∣
∣
. ()

From () we get

d
dt

‖u‖ + μ|�u| + α

∫

�

|u|β–|∇u| dx +
α(β – )



∫

�

|u|β–∣∣∇|u|∣∣ dx

≤ |(u · ∇)u|
μ

+
|f (t)|

μ
. ()

Taking (), () together, it follows that

(μ + )
d
dt

‖u‖ +
α

β + 
d
dt

|u|β+
β+ + μ|�u| + α

∫

�

|u|β–|∇u| dx

+
α(β – )



∫

�

|u|β–∣∣∇|u|∣∣ dx

≤
(


μ

+ 
)

∣
∣(u · ∇)u

∣
∣
 +

(

μ

+ 
)

∣
∣f (t)

∣
∣
. ()

From the proof of Theorem . in [], we can find that, when  < β ≤ ,

J = C
∣
∣(u · ∇)u

∣
∣


≤ C
∫

�

|u||∇u| dx

≤ α

∫

�

|u|β–|∇u| dx +
μ



∫

�

|�u| dx + C
∫

�

|u|β+ dx. ()
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Substituting () into (), we find that

d
dt

[

(μ + )
∥
∥u(s)

∥
∥ +

α

β + 
∣
∣u(s)

∣
∣β+
β+

]

≤ C
∣
∣u(s)

∣
∣β+
β+ +

(

μ

+ 
)

∣
∣f (s)

∣
∣


≤ C
[

(μ + )
∥
∥u(s)

∥
∥ +

α

β + 
∣
∣u(s)

∣
∣β+
β+

]

+
(


μ

+ 
)

∣
∣f (s)

∣
∣
. ()

Applying the uniform Gronwall lemma to () on interval [t – , t], we have

(μ + )
∥
∥u(t)

∥
∥ +

α

β + 
∣
∣u(t)

∣
∣β+
β+

≤ C
(∫ t

t–

[

(μ + )
∥
∥u(ξ )

∥
∥ +

α

β + 
∣
∣u(ξ )

∣
∣β+
β+

]

dξ +
(


μ

+ 
)∫ t

t–

∣
∣f (ξ )

∣
∣
 dξ

)

.

Noticing

∫ t

t–

∣
∣f (ξ )

∣
∣
 dξ = e–σ (t–)

∫ t

t–
eσ (t–)∣∣f (ξ )

∣
∣
 dξ

≤ e–σ (t–)
∫ t

t–
eσξ

∣
∣f (ξ )

∣
∣
 dξ

≤ Ce–σ t
∫ t

–∞
eσξ

∣
∣f (ξ )

∣
∣
 dξ ,

according to Corollary ., we have

(μ + )
∥
∥u(t)

∥
∥ +

α

β + 
∣
∣u(t)

∣
∣β+
β+ ≤ Ce–σ t

∫ t

–∞
eσξ

∣
∣f (ξ )

∣
∣
 dξ . �

Lemma . Under the assumptions ()-() and f ∈ L
loc(R; H). Let  < β ≤ , τ ∈ R, and

u(t) be the solution of problem (). Then for any D̂ ∈D and t ∈ R,

∫ t

t–

∣
∣�u(ξ )

∣
∣
 dξ ≤ Ce–σ t

∫ t

–∞
eσξ

∣
∣f (ξ )

∣
∣
 dξ , ∀t ∈ R,

for any uτ ∈ D(τ ) and τ ≤ τ(t, D̂).

Proof Similar to the proof of Lemma ., applying the uniform Gronwall lemma to ()
on interval [t – , t – ], we can also prove

(μ + )
∥
∥u(t – )

∥
∥ +

α

β + 
∣
∣u(t – )

∣
∣β+
β+ ≤ Ce–σ t

∫ t

–∞
eσξ

∣
∣f (ξ )

∣
∣
 dξ . ()

Thanks to (), (), we have

d
dt

‖u‖ +



μ|�u| + α

∫

�

|u|β–|∇u| dx ≤ C|u|β+
β+ +


μ

∣
∣f (t)

∣
∣
. ()
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Integrating () from t –  to t, according to Corollary . and (), we can obtain

∥
∥u(t)

∥
∥ +




μ

∫ t

t–

∣
∣�u(ξ )

∣
∣
 dξ + α

∫ t

t–

∫

�

∣
∣u(ξ )

∣
∣β–∣∣∇u(ξ )

∣
∣ dx dξ

≤ ∥
∥u(t – )

∥
∥ + C

∫ t

t–

∣
∣u(ξ )

∣
∣β+
β+ dξ +


μ

∫ t

t–

∣
∣f (ξ )

∣
∣
 dξ

≤ Ce–σ t
∫ t

–∞
eσξ

∣
∣f (ξ )

∣
∣
 dξ , ()

which completes the proof. �

Lemma . Under the assumptions ()-() and f ∈ L
loc(R; H), df

dt ∈ L
b(R; H). Let  < β ≤ ,

τ ∈R, and u(t) be the solution of problem (). Then for any D̂ ∈D and t ∈R, there exists a
family of positive constants {r(t) : t ∈R} such that

∣
∣ut(t)

∣
∣
 ≤ r(t),

for any uτ ∈ D(τ ) and τ ≤ τ(t, D̂), where r(t) is a positive constant which is independent
of the initial data.

Proof From () and () we deduce that

|ut| +
μ


d
dt

‖u‖ +
α

β + 
d
dt

|u|β+
β+

≤ |ut|


+
∣
∣(u · ∇)u

∣
∣
 +

∣
∣f (t)

∣
∣


≤ |ut|


+ α

∫

�

|u|β–|∇u| dx +
μ


|�u| + C|u|β+

β+ +
∣
∣f (t)

∣
∣
. ()

Thus

|ut| + μ
d
dt

‖u‖ +
α

β + 
d
dt

|u|β+
β+

≤ μ


|�u| + α

∫

�

|u|β–|∇u| dx + C|u|β+
β+ + 

∣
∣f (t)

∣
∣
. ()

Integrating () from t –  to t, according to Corollary ., Lemma ., (), and (), we
can obtain

∫ t

t–

∣
∣uξ (ξ )

∣
∣
 dξ ≤ μ

∥
∥u(t – )

∥
∥ +

α

β + 
∣
∣u(t – )

∣
∣β+
β+ +

μ



∫ t

t–

∣
∣�u(ξ )

∣
∣
 dξ

+ α

∫ t

t–

∫

�

∣
∣u(ξ )

∣
∣β–∣∣∇u(ξ )

∣
∣ dx dξ

+ C
∫ t

t–

∣
∣u(ξ )

∣
∣β+
β+ dξ + 

∫ t

t–

∣
∣f (ξ )

∣
∣
 dξ

≤ Ce–σ t
∫ t

–∞
eσξ

∣
∣f (ξ )

∣
∣
 dξ . ()
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We now differentiate () with respect to t and then take the inner product with ut in H
to obtain




d
dt

|ut| + μ‖ut‖ ≤ ∣
∣b(ut , u, ut)

∣
∣ –

∫

�

(
F ′(u)ut

) · ut dx + (ft , ut).

According to Lemma . in [], (F ′(u)ut) · ut is positive definite, hence we have




d
dt

|ut| + μ‖ut‖ ≤ ∣
∣b(ut , u, ut)

∣
∣ + |ft| · |ut|

≤ C|ut|/
 ‖ut‖/‖u‖ +



|ut| +



|ft|

≤ μ


‖ut‖ + C

(
 + ‖u‖)|ut| +



|ft|. ()

Thus,

d
dt

|ut| ≤ C
(
 + ‖u‖)|ut| + |ft|. ()

Thanks to (),we have

C
∫ t

t–

(
 +

∥
∥u(ξ )

∥
∥)dξ ≤ C

(

 +
∫ t

t–

(

Ce–σ s
∫ s

–∞
eσξ

∣
∣f (ξ )

∣
∣
 dξ

)

ds
)

= C + C
∫ t

t–
r

(s) ds,

where r(s) = Ce–σ s ∫ s
–∞ eσξ |f (ξ )| dξ .

Applying the uniform Gronwall lemma to () on interval [t – , t], we can get

∣
∣ut(t)

∣
∣
 ≤

{

Ce–σ t
∫ t

–∞
eσξ

∣
∣f (ξ )

∣
∣
 dξ +

∫ t

t–

∣
∣fξ (ξ )

∣
∣
 dξ

}

· exp

{

C + C
∫ t

t–
r

(s) ds
}

≡ r(t). �

Lemma . Under the assumptions ()-() and f ∈ L
loc(R; H), df

dt ∈ L
b(R; H). Let  < β ≤

, τ ∈ R, and u(t) be the solution of problem (). Then for any D̂ ∈D and t ∈R, there exists
a family of positive constants {r(t) : t ∈ R} such that

∣
∣Au(t)

∣
∣
 ≤ r(t), ()

for any uτ ∈ D(τ ) and τ ≤ τ(t, D̂), where r(t) is a positive constant which is independent
of the initial data.

Proof Like the proof of Proposition  in [], we can obtain

μ


∣
∣Au(t)

∣
∣
 ≤ ∣

∣ut(t)
∣
∣
 + C

∥
∥u(t)

∥
∥ + C

∣
∣u(t)

∣
∣

β+β+
–β

β+ +
∣
∣f (t)

∣
∣


≤ (
r(t)

)/ +
(

Ce–σ t
∫ t

–∞
eσξ

∣
∣f (ξ )

∣
∣
 dξ

)/
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+
(

Ce–σ t
∫ t

–∞
eσξ

∣
∣f (ξ )

∣
∣
 dξ

) β+
–β

+
∣
∣f (t)

∣
∣


≤ r(t)/ + C
(
r(t)

)/ + C
(
r(t)

) β+
–β +

∣
∣f (t)

∣
∣
 ≡ r(t). �

Lemma . Under the assumptions ()-() and f ∈ L
loc(R; H), df

dt ∈ L
b(R; H). Let  < β ≤ ,

τ ∈R, and u(t) be the solution of problem (). Then for any D̂ ∈D and t ∈R, there exists a
family of positive constants {r(t) : t ∈R} such that

∥
∥ut(t + )

∥
∥ ≤ r(t),

for any uτ ∈ D(τ ) and τ ≤ τ(t, D̂), where r(t) is a positive constant which is independent
of the initial data.

Proof From inequality () we have

d
dt

|ut| + μ‖ut‖ ≤ C
(
 + ‖u‖)|ut| + |ft|. ()

Integrating the above inequality from t to t + , then we have

μ

∫ t+

t

∥
∥ut(s)

∥
∥ ds ≤ ∣

∣ut(t)
∣
∣
 + C

∫ t+

t

(
 +

∥
∥u(s)

∥
∥)∣∣ut(s)

∣
∣
 ds +

∫ t+

t

∣
∣ft(s)

∣
∣
 ds

≤ r(t) + C
∫ t+

t

(
 +

(
r(s)

))r(s) ds +
∫ t+

t

∣
∣ft(s)

∣
∣
 ds

≡ ρ(t). ()

By Lemma ., we know that

∥
∥u(t)

∥
∥

D(A) ≤ r(t),

so using the Agmon inequality we obtain

∣
∣u(t)

∣
∣∞ ≤ C

∥
∥u(t)

∥
∥/∥∥u(t)

∥
∥/

D(A) ≤ C
(
r(t)

)/(r(t)
)/ ≡ ρ(t).

We now differentiate () with respect to t, then taking the inner product with Aut in H
to obtain




d
dt

‖ut‖ + μ|Aut| ≤ ∣
∣b(ut , u, Aut)

∣
∣ +

∣
∣b(u, ut , Aut)

∣
∣

+
∫

�

(
F ′(u)ut

) · Aut dx + (ft , Aut). ()

According to Lemma . in [], for any u, v, w ∈R
, |(F ′(u)v) · w| ≤ C|u|β–|v||w|, so

∫

�

(
F ′(u)ut

) · Aut dx ≤ C
∫

�

|u|β–|ut||Aut|dx ≤ C|u|β–
∞ |ut||Aut|

≤ C
(
ρ(t)

)β–‖ut‖|Aut| ≤ μ


|Aut| + C

(
ρ(t)

)(β–)‖ut‖. ()
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Because

∣
∣b(ut , u, Aut)

∣
∣ ≤ C‖ut‖‖u‖/|Au|/

 |Aut| ≤ μ


|Aut| + C‖u‖|Au|‖ut‖

≤ μ


|Aut| + C

(
r(t)

)/r(t)‖ut‖, ()

∣
∣b(u, ut , Aut)

∣
∣ ≤ C‖u‖‖ut‖/|Aut|/

 |Aut| ≤ μ


|Aut| + C‖u‖‖ut‖

≤ μ


|Aut| + C

(
r(t)

)‖ut‖, ()

(ft , Aut) ≤ μ


|Aut| +


μ

|ft|, ()

combining ()-() with (), we get

d
dt

‖ut‖ ≤ C
[(

ρ(t)
)(β–) +

(
r(t)

)/r(t) +
(
r(t)

)]‖ut‖ +

μ

|ft|. ()

Thanks to (), applying the uniform Gronwall lemma to () on interval [t, t + ], we
get

∥
∥ut(t + )

∥
∥ ≤

(
ρ(t)
μ

+

μ

∫ t+

t

∣
∣ft(s)

∣
∣
 ds

)

· exp

{

C
∫ t+

t

[(
ρ(s)

)(β–) +
(
r(s)

)/r(s) +
(
r(s)

)]ds
}

= r(t). ()
�

4 Existence of pullback attractors
In Section , we have known that the process {U(t, τ )}t≥τ associated with () is norm-to-
weak continuous in V . In this section, we prove the existence of pullback attractors in V
and H(�) for the non-autonomous Navier-Stokes equation with nonlinear damping.

Theorem . Under the assumptions ()-() and f ∈ L
loc(R; H), df

dt ∈ L
b(R; H). Let  < β ≤

 and τ ∈ R, then the process {U(t, τ )}t≥τ associated with () has a pullback D-attractor
A in V .

Proof Let B = {B(t) : t ∈ R} and C = {C(t) : t ∈R} be pullback D-absorbing sets in V and
in D(A) obtained by Lemma . and Lemma ., respectively. Since D(A) ↪→ V is com-
pact, we have {U(t, τ )}t≥τ is pullback D-asymptotically compact in V . Then by Lemma .,
{U(t, τ )}t≥τ has a minimal pullback D-attractor A in V . �

Lemma . The process {U(t, τ )}t≥τ is norm-to-weak continuous in H(�).

Proof We know i : D(A) ↪→ V , i∗ : V ∗ ↪→ (D(A))∗ and i, i∗ are dense. From Section , we
know that {U(t, τ )}t≥τ : V → V is norm-to-weak continuous. From Lemma ., we find
that {U(t, τ )}t≥τ has a pullback D-absorbing set in D(A). That is to say, {U(t, τ )}t≥τ maps
a bounded set in V into a bounded set in D(A), therefore {U(t, τ )}t≥τ maps a compact set
in D(A) into a bounded set in D(A). By Theorem ., the proof is completed. �
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Theorem . Under the assumptions ()-() and f ∈ L
loc(R; H), df

dt ∈ L
b(R; H). Let  < β ≤

 and τ ∈ R, then the process {U(t, τ )}t≥τ associated with () has a pullback D-attractor
A in H(�).

Proof Let C = {C(t) : t ∈R} be a pullback D-absorbing set in D(A) obtained in Lemma ..
Then we need only to show that for any t ∈R, any τn → –∞, and un ∈ C(τn), {un(τn)}∞n=
is precompact in H(�), where un(τn) = u(t; τn, un) = U(t, τn)un.

Because V ↪→ H is compact, from Lemma . we know that

{
d
dt

un(τn)
}∞

n=
is precompact in L(�). ()

In the following, we prove that {un(τn)}∞n= is a Cauchy sequence in H(�). From () we
have

μ
(
Aunk(τnk) – Aunj(τnj)

)
= –

d
dt

unk(τnk) +
d
dt

unj(τnj) – B
(
unk(τnk)

)
+ B

(
unj(τnj)

)

– G
(
unk(τnk)

)
+ G

(
unj(τnj)

)
. ()

Taking the inner product of () with Aunk(τnk) – Aunj(τnj) we can obtain

μ
∣
∣Aunk(τnk) – Aunj(τnj)

∣
∣


≤
∣
∣
∣
∣

d
dt

unk(τnk) –
d
dt

unj(τnj)
∣
∣
∣
∣

· ∣∣Aunk(τnk) – Aunj(τnj)

∣
∣


+
∣
∣B

(
unk(τnk)

)
– B

(
unj(τnj)

)∣
∣
 · ∣∣Aunk(τnk) – Aunj(τnj)

∣
∣


+
∣
∣G

(
unk(τnk)

)
– G

(
unj(τnj)

)∣
∣
 · ∣∣Aunk(τnk) – Aunj(τnj)

∣
∣
. ()

Like the proof of Lemma . in [], we can also prove

∣
∣G

(
unk(τnk)

)
– G

(
unj(τnj)

)∣
∣
 → ,

∣
∣B

(
unk(τnk)

)
– B

(
unj(τnj)

)∣
∣
 → , as k, j → +∞.

()

Taking into account (), (), and (), we have

∣
∣Aunk(τnk) – Aunj(τnj)

∣
∣
 → . ()

Now, because

‖w‖H(�) ≤ C(�)|Aw|, ∀w ∈ D(A),

we have

∥
∥unk(τnk) – unj(τnj)

∥
∥

H(�) → , as k, j → +∞. ()

Equation () implies that the process {U(t, τ )}t≥τ is pullback D-asymptotically compact
in H(�). Combining Lemma ., Lemma ., and Theorem ., yields Theorem . im-
mediately. �
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5 Conclusions
In this paper, we consider the D Navier-Stokes equations with nonlinear damping
α|u|β–u with initial and Dirichlet boundary conditions which arises in the fluid dynamics.
Under suitable assumptions on the external force function f , we obtain the existence of
pullback D-attractors of solutions in V and H(�), respectively. In [] and [], we have
discussed the existence of global attractors and uniform attractors of such D NSEs in V
and H(�) with 

 ≤ β ≤ . From this paper, we find that the pullback D-attractors can
exist in V and H(�) with β ∈ (, ]. Obviously, this improves the results in [] and [].
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