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Abstract
This article is concerned with a fourth-order elliptic equation i.e., (�2 – κ2�)[u] = 0
(κ > 0) coupled by Riemann boundary value conditions in Clifford analysis. In the
framework of a Clifford algebra Cl(V3,3), we obtain factorizations of the fourth-order
elliptic equation and construct the explicit expressions of higher-order kernel
functions. Some integral representation formulas and properties of the null solution
of the fourth-order elliptic equations in Clifford analysis are presented. Based on these
integral representation formulas, the boundary behavior of some singular integral
operators, and the Clifford analytic approach, we prove that the fourth-order elliptic
Riemann type problem in R

3 is solvable. The explicit representation formula of the
solution is also established.
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1 Introduction
Fourth-order elliptic equations have become a very important and useful area of math-
ematics over the last few decades, which is caused both by the intensive development
of the theory of partial differential equations and their applications in various fields of
physics and engineering such as theory of elasticity, micro-electro-mechanical systems,
bi-harmonic systems, and so on. We refer to [–]. Recently the fourth-order elliptic
equations

B�[u] – T�[u] =  (B > , T > ),

arise in the modeling of micro-electro-mechanical systems; see [, ]. The equations com-
bining bi-harmonic equations with harmonic equations can be rewritten as

(
� – κ�

)
[u] = , (.)

with κ =
√

T
B .

The Riemann type problem is one of the famous problems in complex analysis and
Clifford analysis; see [–, –]. It is natural and important to study fourth-order el-
liptic equations coupled by the Riemann boundary conditions in R

n (n ≥ ). In general,
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two methods are used to deal with higher-order boundary value problems. One approach
is to transform the boundary value problems for k-regular functions and poly-harmonic
functions into equivalent boundary value problems for regular functions in Clifford anal-
ysis by the Almansi type decomposition theorem []. The other is to make use of higher-
order integral representation formulas and a Clifford algebra approach [, , ]. Obvi-
ously, the first method fails to solve a system of the fourth-order elliptic equation i.e.,
(� –κ�)u = , coupled by the Riemann boundary conditions. Using the second method,
we need to investigate factorizations of the fourth-order elliptic operator in the framework
of a Clifford algebra. Furthermore, we will construct higher-order kernels. The key idea is
to choose an appropriate framework of the Clifford algebra. A lot of boundary value prob-
lems for some functions with the Clifford algebra Cl(Vn,) (n ≥ ) have been studied; for
example, see [, , –, , , ]. However, we fail to obtain factorizations of the fourth-
order elliptic equation (� – κ�)u =  (κ > ) using the Clifford algebra Cl(Vn,). In this
article, using a Clifford algebra Cl(V,), we get the decomposition of the fourth-order el-
liptic operator i.e., (� – κ�), and, moreover, construct higher-order kernel functions,
which is different from [, ] due to choosing different Clifford algebra.

The article is organized as follows. In Section , we recall some basic facts about the
Clifford analysis needed in the sequel. In Section , in the framework of the Clifford algebra
Cl(V,), we construct the explicit expressions of the kernel functions and obtain some
integral representation formulas, we study some properties of null solutions for the fourth-
order elliptic equations (� –κ�)u = , for instance, the mean value formula, the Painlevé
principle, and so on. Section , on the basis of the above results, considers a Riemann
boundary value problem for the fourth-order elliptic equation.

2 Preliminaries and notations
Let V, be an -dimensional real linear space with basis {e, e, e}, Cl(V,) be the Clifford
algebra over V, and the -dimensional real linear space with basis

{
eA, A = {l, . . . , lr} ∈PN ,  ≤ l < · · · < lr ≤ 

}
,

where N stands for the set {, , } and PN denotes the family of all order-preserving
subsets of N in the above way. We denote e∅ by e and eA by el···lr for A = {l, . . . , lr} ∈PN .
The product on Cl(V,) is defined by

{
eAeB = (–)n((A∩B)\N)(–)P(A,B)eA�B, if A, B ∈PN ,
λμ =

∑
A,B∈PN λAμBeAeB, if λ =

∑
A∈PN λAeA,μ =

∑
B∈PN μBeB,

where n(A) is the cardinal number of the set A, the number P(A, B) =
∑

j∈B P(A, j), P(A, j) =
n{i, i ∈ A, i > j}, the symmetric difference set A�B is order-preserving in the above way, and
λA ∈ R is the coefficient of the eA-component of the Clifford number λ. It follows from the
multiplication rule above that e is the identity element written now as  and, in particular,
eiej + ejei = δij, i, j = , , . Thus Cl(V,) is a real linear, associative, but non-commutative
algebra. An involution is defined by

{
eA = (–)

n(A)(n(A)+)
 eA, if A ∈PN ,

λ =
∑

A∈PN λAeA, if λ =
∑

A∈PN λAeA.
(.)
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The norm of λ is defined by ‖λ‖ = (
∑

A∈PN |λA|) 
 . Throughout this article, suppose

that � is an open bounded non-empty subset of R with a Lyapunov boundary ∂�, we
denote �+ = �, �– = R

 \ �. We now introduce the Dirac operator D =
∑

i= ei
∂

∂xi
. In

particular, we have DD = � where � is the Laplacian over R. A function u : � �→ Cl(V,)
is said to be left monogenic if it satisfies the equation D[u](x) =  for each x ∈ �. A similar
definition can be given for right monogenic functions.

Denote

zj = xje – xeej, j = , ,

and

Vl,...,lp (x) =

p!

∑

π (lr ,...,lp)

zl · · · zlp ,

where (l, . . . , lp) ∈ {, }p, the sum is taken over all permutations with repetition of the
sequence (l, . . . , lp). In particular we define Vl,...,lp (x) =  for p =  and Vl,...,lp (x) =  for
p < .

Lemma . [] Let Cj,p and Vl,...,lp (x) be as above, then for j ∈ N∗,

D
[
Cj,pxjVl,...,lp (x)

]
= Cj–,pxj–Vl,...,lp (x), (.)

where x =
∑

i= xiei,

Cj,p =

⎧
⎨

⎩

, j = ,


[ j
 ]([ j

 ])!
∏[ j–

 ]
μ= (+p+μ)

, j ∈ N∗ = N \ {}.

In the following, we define

	(r, u) � max
‖x‖≤r

{∥∥u(x)
∥∥}

, M(r, u) � max
‖x‖=r

{∥∥u(x)
∥∥}

.

Lemma . [, ] Let D[u] =  in R
 and lim infr→∞ M(r,u)

rm = L < ∞, m ∈ N∗. Then

u(x) =
m∑

p=

∑

(l,...,lp)

Vl,...,lp (x)Cl,...,lp . (.)

For more information as regards the properties of Dirac operators and left monogenic
functions can be found in [, , –].

3 Some integral representation formulas in Clifford analysis
The fourth-order elliptic partial differential operator � – κ�, for κ > , corresponds to
the fourth-order elliptic equation:

(
� – κ�

)
[u] = . (.)
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Using the multiplication rule on the Clifford algebra Cl(V,), equation (.) may also be
written as

DDLκL–κ [u] = DDL–κLκ [u] = L–κLκDD[u] = LκL–κDD[u] = ,

where Lκ = D + κ and L–κ = D – κ .

Lemma . [, ] Let

E(κ , x) =


πκ
e–κ‖x‖ – 

‖x‖ . (.)

Then the kernel function E(κ , x) is the fundamental solution to (.) in R
.

Let
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

H(κ , x) = 
π

x
‖x‖ ,

H(κ , x) = – 
π


‖x‖ ,

H(κ , x) = 
πκ [( x

‖x‖ + κ 
‖x‖ )(e–κ‖x‖ – ) + κ x

‖x‖ e–κ‖x‖],
H(κ , x) = –E(κ , x) = – 

πκ
e–κ‖x‖–

‖x‖ ,

(.)

and
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

E(κ , x) = 
π

[ x
‖x‖ + κ x

‖x‖ + κ 
‖x‖ ]e–κ‖x‖,

E(κ , x) = – 
π

e–κ‖x‖
‖x‖ ,

E(κ , x) = 
πκ [ x

‖x‖ (e–κ‖x‖ – ) + κ x
‖x‖ e–κ‖x‖],

E(κ , x) = –E(κ , x) = – 
πκ

e–κ‖x‖–
‖x‖ ,

(.)

where κ > , x ∈R
 \ {}.

Lemma . Let Hi(κ , x) and Ei(κ , x) be as in (.) and (.), i = , , , . Then

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

L–κ [H(κ , x)] = [H(κ , x)]L–κ = H(κ , x),
Lκ [H(κ , x)] = [H(κ , x)]Lκ = H(κ , x),
L–κ [E(κ , x)] = [E(κ , x)]L–κ = E(κ , x),
Lκ [E(κ , x)] = [E(κ , x)]Lκ = ,

and
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D[E(κ , x)] = [E(κ , x)]D = E(κ , x),
D[E(κ , x)] = [E(κ , x)]D = E(κ , x),
D[H(κ , x)] = [H(κ , x)]D = H(κ , x),
D[H(κ , x)] = [H(κ , x)]D = ,

here κ > , x ∈R
 \ {}.

Remark . Let

H∗
 (κ , x) =


πκ

[(
x

‖x‖ – κ


‖x‖
)(

e–κ‖x‖ – 
)

+ κ
x

‖x‖ e–κ‖x‖
]

(.)
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and

E∗
 (κ , x) =


π

[
x

‖x‖ + κ
x

‖x‖ – κ


‖x‖
]

e–κ‖x‖. (.)

When H∗
 (κ , x), E∗

 (κ , x) replace H(κ , x), E(κ , x) in (.), (.), respectively, we have the
following results:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Lκ [H(κ , x)] = [H(κ , x)]Lκ = H∗
 (κ , x),

L–κ [H∗
 (κ , x)] = [H∗

 (κ , x)]L–κ = H(κ , x),
Lκ [E(κ , x)] = [E(κ , x)]Lκ = E∗

 (κ , x),
L–κ [E∗

 (κ , x)] = [E∗
 (κ , x)]L–κ = .

(.)

Let � be an open non-empty subset ofR with a Lyapunov boundary, u(x) =
∑

A eAuA(x),
where uA(x) are real functions. u(x) is called a Hölder continuous function on � if the fol-
lowing condition is satisfied:

∥∥u(x) – u(x)
∥∥ =

[∑

A

∥∥uA(x) – uA(x)
∥∥
] 

 ≤ C‖x – x‖α ,

where, for any x, x ∈ �, x �= x,  < α ≤ , C is a positive constant independent of x, x.

Lemma . Let f , g ∈ C(�, Cl(V,)) ∩ C(�, Cl(V,)). Then

∫

∂�

f dσyg =
∫

�

[f ]Lκg dV +
∫

�

fL–κ [g] dV

=
∫

�

[f ]L–κg dV +
∫

�

fLκ [g] dV ,

where dV denotes Lebesgue volume measure, dσ stands for Cl(V,)-valued -differential
form.

Proof From Stokes’ theorem in Clifford analysis in [], the results can be directly proved.
�

Theorem . Suppose that � is an open bounded non-empty subset of R with a Lyapunov
boundary ∂�, u ∈ C(�, Cl(V,)) ∩ C(�, Cl(V,)). Then

∑

i=

(–)i–
∫

∂�

Hi(κ , y – x) dσyDi–[u](y)

–
∫

∂�

H(κ , y – x) dσyL–κ�[u](y)

+
∫

�

H(κ , y – x)
(
� – κ�

)
[u](y) dV

=

{
u(x), x ∈ �,
, x ∈R

 \ �,
(.)

where Hi(κ , y – x) (i = , , , ) are as in (.).
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Proof Let x ∈R
 \ �. Using Lemma . and Lemma ., we get

∫

�

H(κ , y – x)
(
� – κ�

)
[u](y) dV

=
∫

�

H(κ , y – x)Lκ [L–κ�u](y) dV

=
∫

∂�

H(κ , y – x) dσyL–κ�[u](y)

–
∫

�

[
H(κ , y – x)

]
L–κ · L–κ�[u](y) dV

=
∫

∂�

H(κ , y – x) dσyL–κ�[u](y)

–
∫

�

H(κ , y – x)L–κ�[u](y) dV . (.)

Assume

I =
∫

�

H(κ , y – x)L–κ�[u](y) dV .

Applying Lemma . and Lemma . once again, we continue to calculate the integral I

and get

I =
∫

∂�

H(κ , y – x) dσy�[u](y) –
∫

�

[
H(κ , y – x)

]
Lκ · �[u](y) dV

=
∫

∂�

H(κ , y – x) dσy�[u](y) –
∫

�

H(κ , y – x)�[u](y) dV

=
∫

∂�

H(κ , y – x) dσy�[u](y) –
∫

∂�

H(κ , y – x) dσyD[u](y)

+
∫

�

[
H(κ , y – x)

]
D · D[u](y) dV

=
∫

∂�

H(κ , y – x) dσy�[u](y) –
∫

∂�

H(κ , y – x) dσyD[u](y)

+
∫

∂�

H(κ , y – x) dσyu(y), (.)

From (.) and (.), in this case, the result follows.
Now, let x ∈ � and take r >  such that B(x, r) ⊂ �. Invoking the previous case, we may

write

∑

i=

(–)i–
∫

∂(�\B(x,r))
Hi(κ , y – x) dσyDi–[u](y)

–
∫

∂(�\B(x,r))
H(κ , y – x) dσyL–κ�[u](y)

+
∫

�\B(x,r)
H(κ , y – x)

(
� – κ�

)
[u](y) dV = . (.)
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Here we take the limits for r → . As regards the weak singularity of H(κ , y – x), it follows
that

lim
r→

∫

�\B(x,r)
H(κ , y – x)

(
� – κ�

)
[u](y) dV

=
∫

�

H(κ , y – x)
(
� – κ�

)
[u](y) dV . (.)

Furthermore we write

∑

i=

(–)i–
∫

∂(�\B(x,r))
Hi(κ , y – x) dσyDi–[u](y)

–
∫

∂(�\B(x,r))
H(κ , y – x) dσyL–κ�[u](y)

=
∑

i=

(–)i–
∫

∂�

Hi(κ , y – x) dσyDi–[u](y)

–
∫

∂�

H(κ , y – x) dσyL–κ�[u](y)

–
∑

i=

(–)i–
∫

∂B(x,r)
Hi(κ , y – x) dσyDi–[u](y)

+
∫

∂B(x,r)
H(κ , y – x) dσyL–κ�[u](y). (.)

We denote

I � –
∑

i=

(–)i–
∫

∂B(x,r)
Hi(κ , y – x) dσyDi–[u](y)

+
∫

∂B(x,r)
H(κ , y – x) dσyL–κ�[u](y).

Applying the Stokes formula and the Lebesgue differentiation theorem, we have

lim
r→

I = –u(x). (.)

Combining (.) with (.)-(.), we get the desired result. �

Theorem . Suppose that � is an open bounded non-empty subset ofR with a Lyapunov
boundary ∂�, u ∈ C(�, Cl(V,)) ∩ C(�, Cl(V,)). Then

∫

∂�

E(κ , y – x) dσyu(y) –
∫

∂�

E(κ , y – x) dσyL–κ [u](y)

+
∫

∂�

E(κ , y – x) dσyLκL–κ [u](y)

–
∫

∂�

E(κ , y – x) dσyDLκL–κ [u](y)
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+
∫

�

E(κ , y – x)�
(
� – κ)[u](y) dV

=

{
u(x), x ∈ �,
, x ∈R

 \ �,
(.)

where Ei(κ , y – x) (i = , , , ) are as in (.).

Proof The result can be similarly proved to Theorem .. �

Applying Theorems . and ., we directly have the following results.

Theorem . Suppose that � is an open bounded non-empty subset of R with a Lyapunov
boundary ∂�, u ∈ C(�, Cl(V,)) ∩ C(�, Cl(V,)), and (� – κ�)[u] =  in �. Then

∑

i=

(–)i–
∫

∂�

Hi(κ , y – x) dσyDi–[u](y)

–
∫

∂�

H(κ , y – x) dσyL–κ�[u](y)

=

{
u(x), x ∈ �,
, x ∈R

 \ �,
(.)

where Hi(κ , y – x) (i = , , , ) are as in (.).

Theorem . Suppose that � is an open bounded non-empty subset of R with a Lyapunov
boundary ∂�, u ∈ C(�, Cl(V,)) ∩ C(�, Cl(V,)), and (� – κ�)[u] =  in �. Then

∫

∂�

E(κ , y – x) dσyu(y) –
∫

∂�

E(κ , y – x) dσyL–κ [u](y)

+
∫

∂�

E(κ , y – x) dσyLκL–κ [u](y)

–
∫

∂�

E(κ , y – x) dσyDLκL–κ [u](y)

=

{
u(x), x ∈ �,
, x ∈R

 \ �,
(.)

where Ei(κ , y – x) (i = , , , ) are as in (.).

In this article, as usual dS denotes the Lebesgue surface measure. Using Theorem .
or ., we have the following result.

Corollary . Suppose that (� – κ�)[u](x) =  in R
. Then

u(x) =
 + κR

πR( + κR + κR
 )

∫

∂B(x,R)
u(y) dS

+
κ

πR( + κR + κR
 )

∫

B(x,R)
u(y) dV +


κ + R

κ
+ R

 – eκR

κ

 + κR + κR


�[u](x).
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Proof For arbitrary x ∈R
, Theorem . and Stokes’ formula imply

u(x) =


πR

∫

∂B(x,R)
u(y) dS +


πR

∫

B(x,R)
�[u](y) dV

+
(

e–κR – 
πκR +

e–κR

πκR

)∫

∂B(x,R)
�[u](y) dS

+
e–κR – 
πκR

∫

B(x,R)
�[u](y) dV . (.)

Using the mean value formula for harmonic functions and the condition (� –κ�)[u] = ,
from (.), we have

u(x) = e–κR  + κR
πR

∫

∂B(x,R)
u(y) dS + e–κR κ

πR

∫

B(x,R)
u(y) dV

+
(

 – eκR

κ +
R
κ

+
R



)
e–κR�[u](x)

–
(

 – eκR + κR +
Rκ



)
e–κRu(x). (.)

Thus the result follows. �

Theorem . Suppose that (� – κ�)[u] =  in R
 and limr→∞ 	(r,u)

rm = l < ∞, m ∈ N∗.
Then

⎧
⎪⎨

⎪⎩

lim infr→∞ M(r,D[u])
rm– < ∞,

�[u](∞) = ,
L±κ�[u](∞) = .

(.)

Proof For arbitrary x ∈R
, by Corollary ., we have

�[u](x) =
 + κR + κR



κ + R

κ
+ R

 – eκR

κ

u(x)

–
( + κR)

πR( 
κ + R

κ
+ R

 – eκR

κ )

∫

∂B(x,R)
u(y) dS

–
κ

πR( 
κ + R

κ
+ R

 – eκR

κ )

∫

B(x,R)
u(y) dV . (.)

Taking R = ‖x‖ in (.), we obtain

∥
∥�[u](x)

∥
∥ ≤

∣∣
∣∣

 + κ‖x‖ + κ‖x‖



κ + ‖x‖

κ
+ ‖x‖

 – eκ‖x‖
κ

∣∣
∣∣
∥
∥u(x)

∥
∥

+
∣∣
∣∣

 + κ‖x‖

κ + ‖x‖

κ
+ ‖x‖

 – eκ‖x‖
κ

∣∣
∣∣ max
‖y‖≤‖x‖

{∥∥u(y)
∥
∥}

+
∣
∣∣
∣

κ‖x‖


κ + ‖x‖

κ
+ ‖x‖ –  eκ‖x‖

κ

∣
∣∣
∣ max
‖y‖≤‖x‖

{∥∥u(y)
∥∥}

. (.)
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Denoting ‖x‖ = r, we get from (.)

max
‖x‖=r

{∥∥�[u](x)
∥∥} ≤

∣
∣∣
∣

 + κr + κr



κ + r

κ
+ r

 – erκ

κ

∣
∣∣
∣ max
‖x‖=r

{∥∥u(x)
∥∥}

+
∣
∣∣∣

 + rκ

κ + r

κ
+ r

 – erκ

κ

∣
∣∣∣ max
‖y‖≤r

{∥∥u(y)
∥∥}

+
∣∣
∣∣

κr


κ + r

κ
+ r –  erκ

κ

∣∣
∣∣ max
‖y‖≤r

{∥∥u(y)
∥
∥}

. (.)

The inequality (.) can be rewritten as

M
(
r,�[u]

) ≤
∣∣∣
∣
rm + κrm+ + κrm+



κ + r

κ
+ r

 – erκ

κ

∣∣∣
∣
M(r, u)

rm

+
∣
∣∣
∣

rm + rm+κ


κ + r

κ
+ r

 – erκ

κ

∣
∣∣
∣
	(r, u)

rm

+
∣∣
∣∣

κrm+


κ + r

κ
+ r –  erκ

κ

∣∣
∣∣
	(r, u)

rm . (.)

In view of (.) and limr→∞ 	(r,u)
rm = l < ∞, when r → ∞, we get �[u](∞) = .

Using Lemma . in [] and (� – κ)�[u](x) = , we obtain

L–κ�[u](∞) =  (.)

and

Lκ�[u](∞) = . (.)

From (.) and (.), we further obtain D[u](∞) = .
We finally verify the remaining of the result of the theorem. For all x ∈ R

, from Theo-
rem ., Lemma ., Remark ., and Stokes’ formula it follows that

D[u](x) =


π

∫

∂B(x,R)

y – x
‖y – x‖ dσyD[u](y)

+


π

∫

∂B(x,R)


‖y – x‖e–κ‖y–x‖ dσy�[u](y)

+


πκ

∫

∂B(x,R)

y – x
‖y – x‖

(
e–κ‖y–x‖ – 

)
dσyD[u](y)

+


πκ

∫

∂B(x,R)

y – x
‖y – x‖ e–κ‖y–x‖ dσyD[u](y)

=


πR

∫

∂B(x,R)
dσyu(y) +


πR

∫

B(x,R)
(y – x)�[u](y) dV

+
e–κR

πR

∫

∂B(x,R)
dσy�[u](y)

+
(e–κR – )

πκR

∫

∂B(x,R)
dσy�[u](y)
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+
e–κR – 
πR

∫

B(x,R)
(y – x)�[u](y) dV

+
e–κR

πκR

∫

∂B(x,R)
dσy�[u](y)

+
κe–κR

πR

∫

B(x,R)
(y – x)�[u](y) dV

=


πR

∫

∂B(x,R)
dσyu(y) +

(
 + Rκ

πR

)
e–κR

∫

B(x,R)
(y – x)�[u](y) dV

+
[

e–κR

πR
+

(e–κR – )
πκR +

e–κR

πκR

]∫

∂B(x,R)
dσy�[u](y). (.)

Taking R = ‖x‖ in (.), in view of the maximum principle of the modified Helmholtz
equation in [, ], it immediately follows that

∥∥D[u](x)
∥∥ ≤ 

	(‖x‖, u)
‖x‖ +

e–κ‖x‖


‖x‖M

(
‖x‖,�[u]

)

+ κ
e–κ‖x‖


‖x‖M

(
‖x‖,�[u]

)
+ e–κ‖x‖‖x‖M

(
‖x‖,�[u]

)

+
( – e–κ‖x‖)

κ‖x‖ M
(
‖x‖,�[u]

)
+

e–κ‖x‖

κ
M

(
‖x‖,�[u]

)
. (.)

Denoting ‖x‖ = r, we conclude from (.)

M
(
r, D[u]

) ≤ 
	(r, u)

r
+ e–κr

(
r


+
κr


+


κ

)
M

(
r,�[u]

)

+
( – e–κr)

κr
M

(
r,�[u]

)
. (.)

Then by (.), we have

M(r, D[u])
rm– ≤  · 	(r, u)

rm +
e–κr

rm–

(
r


+
κr


+


κ

)
M

(
r,�[u]

)

+
( – e–κr)

κrm M
(
r,�[u]

)
. (.)

Applying the maximum principle of the modified Helmholtz equation and the condition
limr→∞ 	(r,u)

rm = l < ∞, we have lim infr→∞ M(r,D[u])
rm– < ∞. The proof is completed. �

Next, denote some integral operators as follows:

(Fu)(x) �
∑

i=

(–)i–
∫

∂�

Hi(κ , y – x) dσyDi–[u](y)

–
∫

∂�

H(κ , y – x) dσyL–κ�[u](y), x ∈ R
 \ ∂�, (.)

(Su)(x) �
∑

i=

(–)i–
∫

∂�

Hi(κ , y – x) dσyDi–[u](y)

–
∫

∂�

H(κ , y – x) dσyL–κ�[u](y), x ∈ ∂�, (.)
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where Hi(κ , y – x) (i = , , , ) are as in (.) and the above singular integral is taken in
the principal sense.

Lemma . Let � be an open, bounded non-empty subset of R with Lyapunov boundary
∂�, u(x) ∈ Hα(∂�, Cl(V,)),  < α ≤ . Then, for x ∈ ∂�,

⎧
⎨

⎩

limx→x∈∂�
x∈�

(Fu)(x) = u(x)
 + (Su)(x),

limx→x∈∂�

x∈R\�
(Fu)(x) = – u(x)

 + (Su)(x). (.)

Proof Applying the Plemelj formulas with parameter (Theorem . in []), the result fol-
lows. �

In the following, we denote

u±(x) = lim
y→x∈∂�

x∈�±
u(y), (.)

where � = �+ and �– = R
 \ �.

Theorem . Assume that � is an open, bounded non-empty subset of R
 with a

Lyapunov boundary ∂�, u ∈ C(�, Cl(V,)) ∩ C(�, Cl(V,)), u ∈ C(�–, Cl(V,)) ∩
C(�–, Cl(V,)) and u(x) satisfies the following conditions:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(� – κ�)[u](x) = , in R
 \ ∂�,

u+(x) = u–(x) ∈ Hα (∂�, Cl(V,)), ∀x ∈ ∂�,
D[u]+(x) = D[u]–(x) ∈ Hα (∂�, Cl(V,)), ∀x ∈ ∂�,
�[u]+(x) = �[u]–(x) ∈ Hα (∂�, Cl(V,)), ∀x ∈ ∂�,
L–κ�[u]+(x) = L–κ�[u]–(x) ∈ Hα (∂�, Cl(V,)), ∀x ∈ ∂�,

(.)

where  < αi ≤ , i = , , , , then (� – κ�)[u] =  in R
.

Proof We only need to prove that for ∀x ∈ ∂�, (� –κ�)[u] = . Taking a constant r > ,
B(x, r) is an open ball with the center at x and radius r such that � ⊂ B(x, r). It is clear
that ∂� ∪ ∂B(x, r) is a Lyapunov boundary.

Let

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(x) = u+(x) = u–(x),
D[u](x) = D[u]+(x) = D[u]–(x),
�[u](x) = �[u]+(x) = �[u]–(x),
L–κ�[u](x) = L–κ�[u]+(x) = L–κ�[u]–(x),

here x ∈ ∂�. In view of Theorem ., it follows that

u(x) =
∑

i=

(–)i–
∫

∂�

Hi(κ , y – x) dσyDi–[u](y)

–
∫

∂�

H(κ , y – x) dσyL–κ�[u](y), x ∈ �, (.)
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u(x) =
∑

i=

(–)i–
∫

∂�∪∂B(x,r)
Hi(κ , y – x) dσyDi–[u](y)

–
∫

∂�∪∂B(x,r)
H(κ , y – x) dσyL–κ�[u](y),

x ∈ B(x, r) \ �. (.)

Combining (.) with (.) and using Lemma ., we obtain

u+(x) = lim
x→x

u(x)

=
u(x)


+

∑

i=

(–)i–
∫

∂�

Hi(κ , y – x) dσyDi–[u](y)

–
∫

∂�

H(κ , y – x) dσyL–κ�[u](y), (.)

u–(x) = lim
x→x

u(x)

=
u(x)


+

∑

i=

(–)i–
∫

∂�∪∂B(x,r)
Hi(κ , y – x) dσyDi–[u](y)

–
∫

∂�∪∂B(x,r)
H(κ , y – x) dσyL–κ�[u](y). (.)

From (.) and (.), we derive

u(x) =
∑

i=

(–)i–
∫

∂B(x,r)
Hi(κ , y – x) dσyDi–[u](y)

–
∫

∂B(x,r)
H(κ , y – x) dσyL–κ�[u](y). (.)

Therefore �(� – κ)[u](x) = , the result follows. �

Theorem . Let � be an open bounded non-empty subset of R with Lyapunov bound-
ary ∂�, u ∈ C(�–, Cl(V,)) ∩ C(�–, Cl(V,)), (� – κ�)[u] =  in �–, and

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u(x) ∈ Hα (∂�, Cl(V,)),
D[u](x) ∈ Hα (∂�, Cl(V,)),
�[u](x) ∈ Hα (∂�, Cl(V,)),
L–κ�[u](x) ∈ Hα (∂�, Cl(V,)),
limr→∞ 	(r,u)

rm = l < ∞, m ∈ N∗,

where  < αi ≤ , i = , , , . Then

⎧
⎪⎨

⎪⎩

lim infr→∞ M(r,D[u])
rm– < ∞,

�[u](∞) = ,
L–κ [u]�(∞) = , Lκ�[u](∞) = .
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Proof For y ∈ ∂�, let

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(y) = –f(y),
D[u](y) = –f(y),
�[u](y) = –f(y),
L–κ�[u](y) = –f(y).

For x ∈R
 \ ∂�, we get

F(x) =
∑

i=

(–)i–
∫

∂�

Hi(κ , y – x) dσyfi(y)

and

F̃(x) =

{
–F(x) x ∈ �+,
u(x) – F(x), x ∈ �–,

in view of Lemma ., it is easy to check that (� – κ�)[̃F] =  in R
 \ ∂�, combining

Lemma ., we get

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[̃F]+(x) = [̃F]–(x) ∈ H α̃ (∂�, Cl(V,)),
D[̃F]+(x) = D[̃F]–(x) ∈ H α̃ (∂�, Cl(V,)),
�[̃F]+(x) = �[̃F]–(x) ∈ H α̃ (∂�, Cl(V,)),
L–κ�[̃F]+(x) = L–κ�[̃F]–(x) ∈ H α̃ (∂�, Cl(V,)).

Thus (� – κ�)[̃F] =  in R
 where we use Theorem .. Obviously, limr→∞ 	(r,̃F(x))

rm =
l < ∞, using Theorem ., we arrive at

⎧
⎪⎨

⎪⎩

lim infr→∞ M(r,D[̃F])
rm– < ∞,

�[̃F](∞) = ,
L–κ�[̃F](∞) = , Lκ�[̃F](∞) = .

(.)

For x ∈ �–,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D[u](x) = D[̃F](x)
+ 

π

∫
∂�

y–x
‖y–x‖ dσyf(y)

+ 
πκ

∫
∂�

[( y–x
‖y–x‖ + κ

y–x
‖y–x‖ + κ 

‖y–x‖ )e–κ‖y–x‖ – y–x
‖y–x‖ ] dσyf(y)

+ 
πκ

∫
∂�

[ y–x
‖y–x‖ (e–κ‖y–x‖ – ) + κ

y–x
‖y–x‖ e–κ‖y–x‖] dσyf(y),

�[u](x) = �[̃F](x)
+ 

π

∫
∂�

[ y–x
‖y–x‖ + κ

y–x
‖y–x‖ + κ 

‖y–x‖ ]e–κ‖y–x‖ dσyf(y)

+ 
π

∫
∂�

e–κ‖y–x‖
‖y–x‖ dσyf(y),

L–κ�[u](x) = L–κ�[̃F](x)
+ 

π

∫
∂�

[ y–x
‖y–x‖ + κ

y–x
‖y–x‖ + κ 

‖y–x‖ ]e–κ‖y–x‖ dσyf(y).

(.)

Equations (.) and (.) imply that the result holds. �
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4 Riemann type problem for the fourth-order elliptic equation
In this section we will find solutions to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(� – κ�)[u] = , in R
 \ ∂�,

u+(x) = u–(x)A + g(x), x ∈ ∂�,
D[u]+(x) = D[u]–(x)B + g(x), x ∈ ∂�,
�[u]+(x) = �[u]–(x)C + g(x), x ∈ ∂�,
Lκ�[u]+(x) = Lκ�[u]–(x)D + g(x), x ∈ ∂�,
limr→∞ 	(r,u)

rm = l < ∞, m ∈ N∗,

(.)

where A, B, C, D are invertible Clifford constants and g(x), g(x), g(x), g(x) ∈ Hα(∂�,
Cl(V,)),  < α ≤ , κ > .

Theorem . The Riemann type problem (.) is solvable and the solution can be written
as

u(x) =
∑

i=

ui(x), (.)

where

u(x) =

{


πκ

∫
∂�

e–κ‖y–x‖–
‖y–x‖ dσyg(y), x ∈ �+,


πκ

∫
∂�

e–κ‖y–x‖–
‖y–x‖ dσyg(y)D–, x ∈ �–,

(.)

u(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩


πκ

∫
∂�

( y–x
‖y–x‖ – κ 

‖y–x‖ )(e–κ‖y–x‖ – ) dσy g̃(y)
+ 

πκ

∫
∂�

y–x
‖y–x‖ e–κ‖y–x‖ dσy g̃(y), x ∈ �+,


πκ

∫
∂�

( y–x
‖y–x‖ – κ 

‖y–x‖ )(e–κ‖y–x‖ – ) dσy g̃(y)C–

+ 
πκ

∫
∂�

y–x
‖y–x‖ e–κ‖y–x‖ dσy g̃(y)C–, x ∈ �–,

(.)

u(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩


π

∫
∂�


‖y–x‖ dσy g̃(y)

+
∑m

p=
∑

(l,...,lp–) C,p–xVl,...,lp– (x)C
l,...,lp–

, x ∈ �+,


π

∫
∂�


‖y–x‖ dσy g̃(y)B–

+
∑m

p=
∑

(l,...,lp–) C,p–xVl,...,lp– (x)C
l,...,lp–

B–, x ∈ �–,

(.)

u(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩


π

∫
∂�

y–x
‖y–x‖ dσy g̃(y)

+
∑m

p=
∑

(l,...,lp) Vl,...,lp (x)Cl,...,lp , x ∈ �+,


π

∫
∂�

y–x
‖y–x‖ dσy g̃(y)A–

+
∑m

p=
∑

(l,...,lp) Vl,...,lp (x)Cl,...,lp A–, x ∈ �–,

(.)

and

g̃(x) = g(x) +


π

∫

∂�

e–κ‖y–x‖

‖y – x‖ dσyg(y)
(
– + D–C

)
, x ∈ ∂�, (.)

g̃(x) =


πκ

∫

∂�

y – x
‖y – x‖

(
e–κ‖y–x‖ – 

)
dσyg(y)

(
– + D–B

)

+


πκ

∫

∂�

y – x
‖y – x‖ e–κ‖y–x‖ dσyg(y)

(
– + D–B

)

–


πκ

∫

∂�

y – x
‖y – x‖ e–κ‖y–x‖ dσy g̃(y)

(
– + C–B

)
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–


π

∫

∂�

(
y – x

‖y – x‖ –


‖y – x‖
)

e–κ‖y–x‖ dσy g̃(y)
(
– + C–B

)

+


πκ

∫

∂�

y – x
‖y – x‖ dσy g̃(y)

(
– + C–B

)

+ g(x), x ∈ ∂�, (.)

g̃(x) =


πκ

∫

∂�

e–κ‖y–x‖ – 
‖y – x‖ dσyg(y)

(
– + D–A

)

+


πκ

∫

∂�

(
y – x

‖y – x‖ – κ


‖y – x‖
)

e–κ‖y–x‖ dσy g̃(y)
(
– + C–A

)

–


πκ

∫

∂�

(
y – x

‖y – x‖ – κ


‖y – x‖
)

dσy g̃(y)
(
– + C–A

)

+


πκ

∫

∂�

y – x
‖y – x‖ e–κ‖y–x‖ dσy g̃(y)

(
– + C–A

)

+


π

∫

∂�


‖y – x‖ dσy g̃(y)

(
– + B–A

)

+
m∑

p=

∑

(l,...,lp–)

C,p–xVl,...,lp– (x)C
l,...,lp–

(
– + B–A

)

+ g(x), x ∈ ∂�. (.)

Proof Let u(x) be the solution of (.) for x ∈R
 \ ∂�, we denote ω(x) = Lκ�[u](x). Then

ω+(x) = ω–(x)D + g(x), x ∈ ∂�. (.)

In view of Theorem ., (� – κ�)[u](x) = L–κLκ�[u](x) = , and limr→∞ 	(r,u)
rm = l < ∞,

we have

ω(x) =

{ 
π

∫
∂�

[ y–x
‖y–x‖ + κ(y–x)

‖y–x‖ + κ
‖y–x‖ ]e–κ‖y–x‖ dσyg(y), x ∈ �+,


π

∫
∂�

[ y–x
‖y–x‖ + κ(y–x)

‖y–x‖ + κ
‖y–x‖ ]e–κ‖y–x‖ dσyg(y)D–, x ∈ �–.

Let

u(x) =

{


πκ

∫
∂�

e–κ‖y–x‖–
‖y–x‖ dσyg(y), x ∈ �+,


πκ

∫
∂�

e–κ‖y–x‖–
‖y–x‖ dσyg(y)D–, x ∈ �–.

(.)

It is easy to check that

Lκ�[u – u](x) = , in R
 \ ∂�. (.)

If we denote

�[u](x) – �[u](x) � (x), x ∈R
 \ ∂�, (.)

and use boundary value condition

�[u]+(x) = �[u]–(x)C + g(x), x ∈ ∂�,
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we conclude

+(x) = –(x)C + g̃(x), x ∈ ∂�, (.)

here g̃(x) ∈ H α̃(∂�, Cl(V,)),  < α̃ ≤  is taken from (.). It follows that (∞) =  from
Theorem .. Using (.), we get the representation formula

(x) =

{ 
π

∫
∂�

[ y–x
‖y–x‖ + κ(y–x)

‖y–x‖ – κ
‖y–x‖ ]e–κ‖y–x‖ dσy g̃(y), x ∈ �+,


π

∫
∂�

[ y–x
‖y–x‖ + κ(y–x)

‖y–x‖ – κ
‖y–x‖ ]e–κ‖y–x‖ dσy g̃(y)C–, x ∈ �–.

Analogously, we find with u(x) from (.) that

�[u – u – u](x) = , x ∈ R
 \ ∂�. (.)

Denoting D[u] – D[u] – D[u] � �, where x ∈ R
 \ ∂� and using the boundary value

condition

D[u]+(x) = D[u]–(x)B + g(x), x ∈ ∂�, (.)

it follows that

�+(x) = �–(x)B + g̃(x), x ∈ ∂�, (.)

where g̃(x) ∈ H α̃(∂�, Cl(V,)),  < α̃ ≤  is taken from (.). Again applying Theo-
rem ., we have lim infr→∞ M(r,�)

rm– < ∞. In view of (.) and Lemma ., we obtain

�(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩


π

∫
∂�

y–x
‖y–x‖ dσy g̃(y)

+
∑m

p=
∑

(l,...,lp–) Vl,...,lp– (x)C
l,...,lp–

, x ∈ �+,


π

∫
∂�

y–x
‖y–x‖ dσy g̃(y)B–

+
∑m

p=
∑

(l,...,lp–) Vl,...,lp– (x)C
l,...,lp–

B–, x ∈ �–.

(.)

Finally, we use

u(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩


π

∫
∂�


‖y–x‖ dσy g̃(y)

+
∑m

p=
∑

(l,...,lp–) C,p–xVl,...,lp– (x)C
l,...,lp–

, x ∈ �+,


π

∫
∂�


‖y–x‖ dσy g̃(y)B–

+
∑m

p=
∑

(l,...,lp–) C,p–xVl,...,lp– (x)C
l,...,lp–

B–, x ∈ �–.

(.)

We arrive at

D[u – u – u – u] = , x ∈ R
 \ ∂�.

Defining

u(x) – u(x) – u(x) – u(x) � ϒ(x), x ∈ R
 \ ∂�. (.)
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According to the boundary value condition

u+(x) = u–(x)A + g(x), x ∈ ∂�,

we get

ϒ+(x) = ϒ–(x)A + g̃(x), x ∈ ∂�, (.)

where g̃(x) ∈ H α̃(∂�, Cl(V,)),  < α̃ ≤ , is as in (.). It is clear that lim infr→∞ M(r,ϒ)
rm <

∞. Using Lemma ., we get

ϒ(x) = u(x).

On the other hand, we can directly prove that (.) is the solution of (.). The proof is
completed. �
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