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Abstract
The aim of this paper is to deal with the existence and nonexistence of weak solutions
to the initial and boundary value problem for ut = div(|∇u|p(x,t)–2∇u + b(x, t)∇u) + f (u).
By constructing suitable function spaces and applying the method of Galerkin’s
approximation as well as weak convergence techniques, the authors prove the
existence of local solutions. Furthermore, we choose a suitable test-function, make
integral estimates, and apply Gronwall’s inequality to prove the uniqueness of weak
solutions. At the end of this paper, the authors construct a suitable energy functional,
obtain a new energy inequality, and apply a convex method to prove the
nonexistence of solutions. Especially, it is worth pointing out that the results are
obtained with the assumption that pt(x, t) is only negative and integrable, which is
weaker than most of the other papers required.

Keywords: nonstandard growth condition; nonexistence of solutions; Galerkin’s
approximation

1 Introduction
Consider the following initial and boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

ut = div(|∇u|p(x,t)–∇u + b(x, t)∇u) + f (u), (x, t) ∈ � × (, T) := QT ,

u(x, t) = , (x, t) = ∂� × (, T) := �T ,

u(x, ) = u(x), x ∈ �,

(.)

where � ⊂ R
N (N ≥ ) is a bounded domain, ∂� is Lipschitz continuous, and f is a con-

tinuous function satisfying

∣
∣f (s)

∣
∣ ≤ a|s|α–,  < a = constant,  < α = constant. (.)

It will be assumed throughout the paper that the exponent p(x, t) is continuous in Q = QT

with logarithmic module of continuity:

 < p– = inf
(x,t)∈Q

p(x, t) ≤ p(x, t) ≤ p+ = sup
(x,t)∈Q

p(x, t) < ∞, (.)
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∀z = (x, t), ξ = (y, s) ∈ QT , |z – ξ | < ,
∣
∣p(z) – p(ξ )

∣
∣ ≤ ω

(|z – ξ |), (.)

where

lim sup
τ→+

ω(τ ) ln

τ

= C < +∞,

and the coefficient b(x, t) is a Carathéodory function.
Model (.) proposed by Růžička may describe some properties of electro-rheological

fluids which change their mechanical properties dramatically when an external electric
field is applied [, ]. The variable exponent p in Model (.) is a function of the external
electric field |E| which is subject to the quasi-static Maxwell equations

div(ε
E + 
P) = , Curl(
E) = ,

where ε is the dielectric constant in vacuum and the electric polarization 
P is linear in 
E,
i.e. 
P = λ
E. Another important application is the image processing where the anisotropy
and nonlinearity of the diffusion operator are used to underline the borders of the dis-
torted image and to eliminate the noise [, ]. For more physical background, the inter-
ested reader may refer to [–].

In the case when p(x, t) is a fixed constant, there have been many results about the exis-
tence, uniqueness, nonexistence, extinction of the solutions [, , ]. For nonconstant
case, the authors of [–] and the authors of [] studied the existence and uniqueness
of weak solutions of the initial and Dirichlet boundary value problem with variable expo-
nent of nonlinearity. Besides, the authors of [] applied the differential and variational
techniques to prove the existence of solutions when the exponent p only depends on the
spatial variable. Motivated by the work above, we consider the existence and uniqueness
of solutions to Problem (.). However, since the coefficient b(x, t) is degenerate or singu-
lar, it is natural to ask: which kind of conditions on the coefficient b(x, t) guarantees that
Problem (.) admits a local solution? In our paper, we construct suitable function spaces
and apply Galerkin’s method to prove the existence of weak solutions to Problem (.) with
necessary uniform estimates and compactness argument. In addition, there exist some dif-
ficulties such as the failure of the monotonicity of the energy functional, the anisotropy
of the diffusive operator and the gap between the norm and the modular, which make the
methods used in [] fail. In order to overcome such difficulties, we have to search a new
technique or method. In this paper, by constructing a revised energy functional and com-
bining a new energy estimate with convex method, we obtain the nonexistence of weak
solutions when the exponents p is a function with respect to time and spatial variables.
Especially, it is worth pointing out that the results are obtained with the assumption that
pt(x, t) is only negative and integrable which is weaker than those the most of the other
papers required.

The outline of this paper is the following: In Section , we shall introduce the function
spaces of Orlicz-Sobolev type, give the definition of the weak solution to the problem, and
prove the existence of weak solutions with Galerkin’s method and the uniqueness of the
solution. In Section , we establish sufficient condition of nonexistence of weak solutions
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of Problem (.) with the assumption that the exponent p(x, t) depends on the time and
spatial variables.

2 Existence of local solutions
In this section, the existence of weak solutions will be studied. First of all, we introduce
some Banach spaces:

Lp(x)(�) =
{

u(x)
∣
∣
∣u is measurable in �, Ap(·)(u) =

∫

�

|u|p(·) dx < ∞
}

,

‖u‖p(·) = inf
{
λ > , Ap(·)(u/λ) ≤ 

}
;

W ,p(x)(�) :=
{

u : u ∈ Lp(·)(�), |∇u| ∈ Lp(·)(�)
}

,

‖u‖W ,p(·)(�) = ‖u‖p(·),� + ‖∇u‖p(·),�;

Vt(�) =
{

u|u ∈ L(�) ∩ W ,
 (�), |u|p(x,t) ∈ L(�), |∇u|p(x,t) ∈ L(�)

}
,

‖u‖Vt (�) = ‖u‖,� + ‖∇u‖p(·),�;

H(QT ) =
{

u : [, T] → Vt(�)|u ∈ L(QT ), |∇u| ∈ Lp(x,t)(QT ), u =  on �T
}

,

‖u‖H(QT ) = ‖u‖,QT + ‖∇u‖p(·),QT ,

and denote by H ′(QT ) the dual of H(QT ) with respect to the inner product in L(QT ).
From [], we know that condition (.) implies that M �= {u : u ∈ W ,p(x)(�), u =  on ∂�}
is equivalent to W ,p(x)

 (�) (the closure of C∞
 (�) in W ,p(x)(�)).

Lemma . [, ] For any u ∈ Lp(x)(�),

() ‖u‖p(·) <  (= ; > ) ⇔ Ap(·)(u) <  (= ; > );

() ‖u‖p(·) <  ⇒ ‖u‖p+

p(·) ≤ Ap(·)(u) ≤ ‖u‖p–

p(·);

‖u‖p(·) ≥  ⇒ ‖u‖p–

p(·) ≤ Ap(·)(u) ≤ ‖u‖p+

p(·);

() ‖u‖p(·) →  ⇔ Ap(·)(u) → ;

‖u‖p(·) → ∞ ⇔ Ap(·)(u) → ∞.

Lemma . [, ] (Hölder’s inequality) For any u ∈ Lp(x)(�) and v ∈ Lq(x)(�) with q(x) =
p(x)

p(x)– ,

∣
∣
∣
∣

∫

�

uv dx
∣
∣
∣
∣ ≤

(


p– +


q–

)

‖u‖p(·)‖v‖q(·) ≤ ‖u‖p(·)‖v‖q(·).

Because of the degeneracy, Problem (.) does not admit classical solutions in general.
So we introduce weak solutions in the following sense.

Definition . A function u(x, t) ∈ H(QT ) ∩ L∞(, T ; L(�)), b(x, t)|∇u| ∈ L(, T ; L(�))
is called a weak solution of Problem (.) if for every test-function

ξ ∈Z �≡ {
η(z) : η ∈ H(QT ) ∩ L(, T ; H

(�)
)
,ηt ∈ H ′(QT )

}
,
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and every t, t ∈ [, T] the following identity holds:

∫ t

t

∫

�

[
uξt –

(
b(x, t)∇u + |∇u|p(x,t)–∇u

)∇ξ + f (u)ξ
]

dx dt =
∫

�

uξ dx|t
t . (.)

Remark . On one hand, u ∈ H(QT ), ξ ∈Z , implies that

∫ t

t

∫

�

uξt dx dt < ∞,

∫ t

t

∫

�

|∇u|p(x,t)–∇u∇ξ dx dt < ∞,

∫

�

uξ dx|t
t < ∞.

On the other hand,

u ∈ Lα(QT ),
∣
∣f (u)

∣
∣ ≤ a|u|α– and ξ ∈ Lα(QT ) �⇒

∫ t

t

∫

�

f (u)ξ dx dt < ∞;

b(x, t)|∇u| ∈ L(, T ; L(�)
)
, ξ ∈ H(QT ) �⇒

∫ t

t

∫

�

b(x, t)∇u∇ξ dx dt < ∞,

which imply that the definition of weak solutions is well defined.

The main theorem in this section is the following.

Theorem . Suppose that the continuous function f (s) and the exponents p(x, t), α satisfy
conditions (.)-(.). If the following conditions hold:

(H)  < p– < p+ < max

{

N ,
Np–

N – p–

}

,  < α < p–;

(H) u ∈ L(�), b(x, t) ∈ L
p–

p––
(
,∞; L

p–
p–– (�)

)
,

then Problem (.) has at least one weak solution u(x, t) ∈ H(QT ) ∩ L∞(, T ; L(�)),
b(x, t)|∇u| ∈ L(, T ; L(�)).

Due to p– >  and b(x, t) ∈ L
p–

p–– (,∞; L
p–

p–– (�)), the term b(x, t)|∇u| can be controlled
by the nonlinear diffusion term |∇u|p(x,t), and then one may follow the lines of the proof
of Theorem .(a) in [] or Theorem .(a) of Chapter  in [] to complete the rest of the
proof.

Corollary . Let the conditions of Theorem . be fulfilled, then the solution u ∈ H(QT )
to Problem (.) satisfies the identity

∫∫

QT

utξ dx +
∫∫

QT

[|∇u|p(x,t)–∇u∇ξ + b(x, t)∇u∇ξ – f (u)ξ
]

dx dt

= , ∀ξ ∈Z . (.)
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When b(x, t) ≥ , we follow the line of the proof of Theorem . in [] to obtain the
following theorem.

Theorem . Suppose that the conditions in Theorem . are fulfilled and b(x, t) ≥ , then
the bounded solution of Problem (.) is unique provided that the following condition holds

(H) the function f (s) is decreasing in s ∈R.

Furthermore, we have the following comparison theorem.

Corollary . (Comparison principle) Let u, v ∈ H(QT ) ∩ L(, T ; H
(�)) be two bounded

weak solutions of Problem (.) such that u(x, ) ≤ v(x, ) a.e. in �. If the nonlinearity ex-
ponents and the function f (s) satisfy the conditions of Theorem ., then u(x, t) ≤ v(x, t) a.e.
in QT .

3 Nonexistence of global weak solutions
In this section, we concentrate on the study of nonexistence of weak solutions to Problem
(.). For convenience, we first state that the function f (s) and the coefficient b(x, t) satisfy
the following conditions:

b(x, t) ≥ , bt(x, t) ≤ , ∀(x, t) ∈ QT ; (.)

f (u) ∈ C(R), f (u)u – p+G(u) ≥ , ∀u ∈R, (.)

with G(u) =
∫ u

 f (s) ds. Before stating the main results, we give the definition of global so-
lutions.

Definition . A function u(x, t) is called a global solution to Problem (.) if ∀T >  the
following property holds:

sup
t∈(,T)

∥
∥u(x, t)

∥
∥

L∞(�) < +∞.

Otherwise, we say that Problem (.) does not admit global weak solutions.

First, we consider the case p(x, t) ≡ p(x). Our main result is as follows.

Theorem . Assume that u(x, t) ∈ H(QT ) ∩ L∞(, T ; L(�)), b(x, t)|∇u| ∈ L(, T ; L(�))
is the local solution to Problem (.). If (.) and (.) are fulfilled and u ∈ W ,p(x)

 (�),
p+ > , such that

∫

�

G(u) dx >
∫

�

b(x, )


|∇u| dx +
∫

�


p(x)

|∇u|p(x) dx

+
(p+ – )

Tp+(p+ – )

∫

�

|u| dx. (.)

Then there exists a T∗ ∈ (, T] such that

lim
t→T∗–

∥
∥u(·, t)

∥
∥∞,� = +∞.
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To prove Theorem ., we need the following lemma.

Lemma . Assume that u ∈ H(QT ) is the solution to Problem (.), then u(x, t) satisfies
the following relation:

∫

�


p(x)

∣
∣∇u(x, t)

∣
∣p(x) dx +

∫

�

b(x, t)


∣
∣∇u(x, t)

∣
∣ dx –

∫

�

G
(
u(x, t)

)
dx

+
∫ t



∫

�

(uτ ) dx dτ –
∫ t



∫

�

bτ |∇u|


dx dτ

=
∫

�


p(x)

∣
∣∇u(x)

∣
∣p(x) dx +

∫

�

b(x, )


∣
∣∇u(x)

∣
∣ dx –

∫

�

G
(
u(x)

)
dx. (.)

Proof Following the lines of the proof of Lemma . and Theorem . in [], we know that
ut ∈ L(QT ). Noting that

∂

∂t

( |∇u|p(x)

p(x)

)

= |∇u|p(x)–∇u∇ut ,
∂

∂t
(
G

(
u(x, t)

))
= f

(
u(x, t)

)
ut ,

∂

∂t

(

b(x, t)
|∇u|



)

= b(x, t)∇u∇ut + bt
|∇u|



and using the idea of the proof of Lemma  in [], we arrive at the relation

d
dt

∫

�

( |∇u|p(x)

p(x)
+

b(x, t)


∣
∣∇u(x)

∣
∣ – G

(
u(x, t)

)
)

dx –
∫

�

bt|∇u|


dx = –
∫

�

u
t dx.

After integrating over (, t), it is obvious that Lemma . holds. �

Proof of Theorem . Let

β =


T(p+ – )

∫

�

u
 dx, t =

T(p+ – )


,

K(t) =



∫ t



∫

�

u dx dτ + (T – t)
∫

�




u
 dx + β(t + t).

Clearly

K ′(t) =



∫

�

u dx dt –



∫

�

u
 dx + β(t + t)

=
∫∫

Qt

(
–b(x, τ )|∇u| – |∇u|p(x) + f (u)u

)
dx dt + β(t + t);

K ′′(t) =
∫

�

(
–b(x, τ )|∇u| – |∇u|p(x) + f (u)u

)
dx + β .

By Hölder’s inequality, we have




∫

�

u dx dt –



∫

�

u
 dx =




∣
∣
∣
∣

∫ t



∫

�

(
u)

τ
dx dτ

∣
∣
∣
∣

≤
(∫ t



∫

�

u dx dτ

)/(∫ t



∫

�

|uτ | dx dτ

)/

.
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Thus by Schwarz’s inequality and the definition of K(t), we have

(
K ′(t)

) ≤
(∫ t



∫

�

u dx dτ

)(∫ t



∫

�

u
τ dx dτ

)

+ β(t + t)

+ β(t + t)
(∫ t



∫

�

u dx dτ

)/(∫ t



∫

�

u
τ dx dτ

)/

≤
(∫ t



∫

�

u dx dτ

)(∫ t



∫

�

u
τ dx dτ

)

+ β(t + t)

+ 
∫ t



∫

�

u
τ dx dτ

[

(T – t)
∫

�




u
 dx + β(t + t)

]

+ β(t + t)
(∫ t



∫

�




u dx dτ

)(

(T – t)
∫

�




u
 dx + β(t + t)

)–

≤ K(t)
(


∫ t



∫

�

u
τ dx dτ + β

)

.

Therefore by Lemma ., we obtain the following inequality:

K(t)K ′′(t) –
p+


(
K ′(t)

)

≥ K(t)
(∫

�

b(x, t)
(

p+


– 

)

|∇u| dx +
∫

�

(
p+

p(x)
– 

)

|∇u|p(x) dx

+
∫

�

(
uf (u) – p+G(u)

)
dx

)

– β
(
p+ – 

)

+
p+



∫

�

[

G(u) – b(x, )|∇u| –


p(x)
|∇u|p(x)

]

dx

–
p+



∫ t



∫

�

bt|∇u|


dx dt. (.)

Noticing p+ > , K(t) > , we conclude from (.), (.), (.) that

K(t)K ′′(t) –
p+


(
K ′(t)

) ≥ , for t ∈ (, T),

which implies

(
K – p+

 (t)
)′′ ≤ , for t ∈ (, T).

Noting that K – p+
 () > , (K – p+

 )′() ≤ , then

K – p+


(
T∗) = , for some T∗ ∈

(

,
–K – p+

 ()

(K – p+
 )′()

)

.

Here

–K – p+
 ()

(K – p+
 )′()

=
T

∫

�
u

 dx + βt


(p+ – )βt


≤ T .
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Thus,  < T∗ ≤ T and

lim
t→T∗–

∣
∣u(·, t)

∣
∣∞,� = +∞.

This completes the proof of Theorem .. �

Next, we consider the case when p is dependent of t. Before stating the conclusion, we
first give a useful lemma.

Lemma . Assume u ∈ W ,p(x,)
 (�), p+ > , pt ≤ . Then the solution of Problem (.)

satisfies

∫

�


p(x, t)

∣
∣∇u(x, t)

∣
∣p(x,t) dx +

∫

�

b(x, t)


∣
∣∇u(x, t)

∣
∣ dx –

∫

�

G
(
u(x, t)

)
dx

+
∫ t



∫

�

|uτ | dx dτ –
∫ t



∫

�

bτ |∇u|


dx dτ

≤
∫

�


p(x, )

∣
∣∇u(x)

∣
∣p(x,) dx +

∫

�

b(x, )


∣
∣∇u(x)

∣
∣ dx –

∫

�

G
(
u(x)

)
dx

+
∫

�

(


p(x, t)
–


p(x, )

)

dx. (.)

Proof Following the lines of the proof of Lemmas . and Lemma . of [], we know
ut ∈ L(QT ) and

∂

∂t

( |∇u|p(x,t)

p(x, t)

)

= |∇u|p(x,t)–∇u∇ut +
pt

p |∇u|p(x,t)(ln |∇u|p(x,t) – 
)
,

∂

∂t
(
G

(
u(x, t)

))
= f

(
u(x, t)

)
ut ,

∂

∂t

(

b(x, t)
|∇u|



)

= b(x, t)∇u∇ut + bt
|∇u|


.

On one hand, a simple analysis shows that

d
dt

∫

�

( |∇u|p(x,t)

p(x, t)
+

b(x, t)


∣
∣∇u(x)

∣
∣ – G

(
u(x, t)

)
)

dx –
∫

�

bt|∇u|


dx

=
∫

�

[

–u
t +

pt

p |∇u|p(x,t)(ln |∇u|p(x,t) – 
)
]

dx. (.)

On the other hand, we apply the condition pt ≤  to obtain

∫

{|∇u|p≤e}
|∇u|p(x,t)

p(x, t)
(
ln |∇u|p(x,t) – 

)
pt(x, t) dx

≤
∫

{|∇u|p≤e}
–pt(x, t)
p(x, t)

dx ≤
∫

�

–pt(x, t)
p(x, t)

dx. (.)

The second inequality above follows from

–

e

≤ s ln s ≤ ,  ≤ s ≤ .

Lemma . follows from (.) and (.). �



Gao et al. Boundary Value Problems  (2016) 2016:149 Page 9 of 10

Our main result is as follows.

Theorem . Suppose that (.) and (.) hold and p+ > , pt ≤ . If u ∈ W ,p(x,)
 (�)

satisfies

∫

�

G(u) dx >
∫

�

b(x, )


|∇u| dx +
∫

�


p(x, )

|∇u|p(x,) dx

+
(p+ – )

Tp+(p+ – )

∫

�

|u| dx +
∫

�

(


p– –


p(x, )

)

dx, (.)

then there exists T∗ ∈ (, T] such that

lim
t→T∗–

∣
∣u(·, t)

∣
∣∞,� = +∞.

Proof We argue by contradiction. Define

β =


T(p+ – )

∫

�

u
 dx, t =

T(p+ – )


,

K(t) =



∫ t



∫

�

u dx dτ + (T – t)
∫

�




u
 dx + β(t + t).

It is easy to verify that

K ′(t) =



∫

�

u dx dt –



∫

�

u
 dx + β(t + t)

=
∫∫

Qt

(
–b(x, τ )|∇u| – |∇u|p(x,t) + f (u)u

)
dx dt + β(t + t);

K ′′(t) =
∫

�

(
–b(x, τ )|∇u| – |∇u|p(x,t) + f (u)u

)
dx + β ;

(
K ′(t)

) ≤ K(t)
(


∫ t



∫

�

u
τ dx dτ + β

)

.

(.)

Therefore by Lemma . and (.), we obtain the following inequality:

K(t)K ′′(t) –
p+


(
K ′(t)

)

≥ K(t)
[∫

�

b(x, t)
(

p+


– 

)

|∇u| dx +
∫

�

(
p+

p(x, t)
– 

)

|∇u|p(x,t) dx

+
∫

�

(
uf (u) – p+G(u)

)
dx – β

(
p+ – 

)

+
p+



∫

�

[

G(u) – b(x, )|∇u| –


p(x, )
|∇u|p(x,)

]

dx

–
p+



∫ t



∫

�

bτ |∇u|


dx dτ +
p+



∫

�

(


p(x, t)
–


p(x, )

)

dx
]

. (.)

In the rest of the proof, we follow the lines of the proof of Theorem . to finish the proof
of this theorem. �
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At the end of this paper, we give an example to illustrate that the condition on pt(x, t) is
weaker than that of [, ].

Example . Set p(x, y, z, t) =
√

t cos x
 + 

 , x ∈ ( π
 ,π ), y, z ∈ (, π

 ),  < t < . A simple com-
putation shows that

pt(x, y, z, t) =
cos x


√

t
< ,

∫ 



∫ π

π


∫∫ π




∣
∣pt(x, y, z, t)

∣
∣dx dy dz dt =

π


, pt(x, y, z, t) /∈ L∞.
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