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Abstract

We prove an interior [P-estimate of X-gradient of weak solutions to a class of
quasilinear subelliptic equations with VMO coefficients under controllable growth.
Here, we use a reverse Holder inequality and De Giorgi's iteration to establish the
boundedness of their weak solutions. Then a local [P-estimate of the X-gradient of
the weak solutions is derived by way of the bootstrap argument.
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1 Introduction

Given a family of smooth vector fields X = (X3, X5,...,X,,) defined on R” satisfying the
Hoérmander finite rank condition, we assume that each component by;(x) with 1 <k <m
and 1 < i < n of vector field X = Y ", bk,»(x)aixl_, for k =1,2,...,m, is a smooth function
defined on R”. By X* = (X{, X3, ..., X;,) we denote the formal adjoint operator to X. Let
be a bounded open set of R” for n > 2. In this paper, we consider the following quasilinear
subelliptic equations:

m
X:X;k (Ajx, W) Xju + aj(x, u)) = b(x,u, Xu), ae.x€S, (1.1)
if

where A;(x, u) satisfies an uniformly sub-ellipticity, and b(x, u, Xu) is supposed under the
controllable growth; for details see the assumptions H1-H3 below.

Before imposing some structural assumptions on Aj(x, #) and b(x, u, Xu); and stating
our main result, let us first recall a few of notations and basic facts involving the Carnot-
Carathéodory metric induced by the smooth vector fields X on R”.

Definition 1.1 An absolutely continuous path y : [0, T] — R” is called an X-subunit, if
there exist functions ¢;: [0, T] — R forj =1,2,...,m; such that

p(6) =Y ¢O)X;(r(2)
j=1
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with
m
>’ <1
j=1

for almost every ¢ € [0, T']; for details see [1, 2].

In the context, we assume that Xj, ..., X,, satisfy the Hormander finite rank condition
Rank(Lie[X}, Xa,...,X;n]) =1, VxeR" 1.2)

It is well known that if the vector fields satisfy the Hormander condition (1.2) at every point
of R”, there are subunitary curves connecting any two given points x,y € R”. Therefore,
we can introduce a distance function induced by the smooth vector fields X as follows:

plx,y) = inf{ T>0:3y:[0,T] - R"X-subunit with y(0) =x, y(T) :y}.

This is the most natural metric associated to the stratification of the Lie algebra, which
have been studied in a celebrated paper [3]. Here (R”, p) is called the Carnot-Carathéodory
space with a C.-C. distance; see [1, 4, 5]. Note that these vector fields (Xj, ..., X,,) are free up
to the order r, then there exists a positive constant C > 0 satisfying the following relation
between the C.-C. distance and the Euclidean metric (cf. [6]):

1
CHx—y| <dx(x,y) <Clx—y|r.

In the sequel, all distances which we use except a special explanation will be regarded as
the C.-C. distance. In particular, for any fixed x € Q2 let Br(x) denote the ball {y € R” :
px,y) < R} with R < p(x,9%). In fact, the distance function p(:,-) satisfies the local dou-
bling property: namely, for Byr(x) C €2 there exists a positive constant Ry depending only
on vector fields X and 2 such that for all 0 < R < R, we have

|Bor(x)| < 29|Br(x)], (1.3)

where the least integer Q is the homogeneous dimension of X in R”; see [3, 7, 8].
Next, let us recall the following horizontal Sobolev spaces with respect to the horizontal
vector fields X (cf [1, 4, 5]). Forany 1 < p < oo and k € N, we set

HW'Y(Q,X) = {u € [X(Q): Xju € IP(Q),j =1,...,m] (1.4)
with the norm

el rwe ) = lullzr@) + 1 Xullr ),
where Xju denotes the X;-gradient of « in the sense of distribution. Additionally, the clo-

sure of C5°(R2) in HW'?(Q) is denoted by HWS’”(Q). In order to impose some structure as-
sumptions on A(x, ) and b(x, i, Xu), we need to recall two useful notations (see [2, 9-11]).
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Definition 1.2 (BMO functions) Let Q(x,7) = 2 N B,(x). For any 0 < s < +00, we say that

ue Ll (RQ)belongsto BMO(S) if

loc
1 _
My(s):= sup ——— |bt()/) — UQ(x,r) ’ dy < +00
x€Q,0<r<s |Q(x’ 7‘)| Q(x,r)

with

1
e dy = —— dy.
mm)léwﬂ@)y|guﬂLAwﬂ@)y

Definition 1.3 (VMO functions) Let M, (s) be defined as above. For u € BMO(£2), we say
u € VMO(Q) if

lim M, (s) = 0,
s—0
where M, (r) is called the VMO modulus of #.

On account of these notations above, we are now in a position to impose some struc-
ture assumptions on the leading coefficients A; = A;(x, u) and the lower terms a;(x, u),
b(x, u, Xu):

HI. (Uniform ellipticity) There exist constants L > p > 0 such that

WIEP < Y1 Ak < LIEP? for any € €R”.

H2. (VMO in x and continuity in u to A;(x, u)) A;(x, %) is VMO in x uniformly to any
u € R; and A;i(x, u) is continuous in u for any x € R”; namely, there exist a positive
constant C and a nonnegative continuous function w(r) : R* — R* satisfying
®(0) = 0, such that

|Aj(x, ) — Ay, v)| < Co(lu—v]), Vu,veR. (L5)
H3. (Controllable growth) There exist constants p1, ip > 0 such that

|ai(x, )| < pa(Jul® +£i()), (1.6)

|b(x, u, Xu)| < [J,2(|Xl/l|2(1_%) +ul” ™+ g), (1.7)

where f(x) = (fi(x),f2(x), ..., fu(x)) € [LP(Q)]™ with p > Q, g(x) € L1(2) with
q> 5_-?17’ and

. 3%, Q>2,
y>2, Q=2

As we know, the weak solutions u € HW*($2) of quasilinear subelliptic equations (1.1) are

understood in the distributional sense:

/ (A,-j(x, w)Xju + a;(x, u))X,xp dx = / b(x,u, Xu)pdx, Ve HW(}’Z(Q). (1.8)
Q Q
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Let us now review some recent studies on the subelliptic topic. Recent tremendous
studies on subelliptic PDEs arising from non-commuting vector fields have been well de-
veloped; for details see [3, 6, 7, 12—19] and references therein. The regularity of subelliptic
operators was first introduced by Hérmander in [20], which stimulated people’s interest
in subelliptic problems to a large degree. Since then, many important results about the
fundamental solution to subelliptic operators and harmonic analysis theory on stratified
nilpotent Lie groups have been obtained by Folland [21], Rothschild and Stein [13], and
Nagel,Stein and Wainger [3]. These results laid a solid foundation for further investigation
of subelliptic Partial Differential Equations theory. Up to the 1990s, the function theory
and harmonic analysis tools on Carnot groups, such as the Sobolev embedding inequality
of X-gradient and the isoperimetric inequality, became increasingly mature; for more de-
tails see [1, 3, 5, 13, 16, 21-24] and references therein. From this, there was a large amount
of literature as regards the problems of subelliptic PDEs on the Carnot-Carathéodory
metric space. For instance, Capogna, Danielli and Garofalo [1] in 1993 studied an embed-
ding theorem and the Harnack inequality for nonlinear subelliptic equations. Meanwhile,
the Harnack inequality for solutions to quasilinear subelliptic differential equations con-
cerning (1.1), a class of degenerate subelliptic equations and a class of strongly degenerate
Schrédinger operators were already established by Franchi, Lu and Wheeden in [14, 22,
25], respectively. In addition, Lu [15] also obtained the existence and size estimates for
the Green’s functions of differential operators constructed from degenerate vector fields.
Lately, Xu and Zuily in [6] obtained Schauder estimates of quasilinear subelliptic equations
with smooth coefficients under natural growth, and further proved that their weak solu-
tions are smooth if all given datum are smooth. Recently, Bramanti, Brandolini and Fanci-
ullo [9, 26-28] studied L?-estimates for nonvariational hypoelliptic operators with VMO
coefficients, Schauder estimates for parabolic nondivergence operators, C**-regularity to
quasilinear equations, and BMO estimates for nonvariational operators with discontinu-
ous coefficients structured on Hérmander’s vector fields, respectively. Closely related to
this article, we would like to mention that Di Fazio and Fanciullo established L”-theory of
nonlinear operators with coefficients under the Cordes conditions in Heisenberg group
[29] and Carnot groups [30]. As for the problems of geometric subelliptic equations, Jost
and Xu [31] and Wang [8] got partial regularities of subelliptic harmonic mappings, re-
spectively. Moreover, a similar result for subelliptic p-harmonic mappings was obtained
by Hajtasz and Strzelecki in [32]. Zheng and Feng [18] very recently gave various esti-
mates of the Green’s function of quasilinear subelliptic equations and their applications
to regularity problems.

On the other hand, there has been tremendous work on the L?-theory of elliptic equa-
tions with discontinuous coefficients. It was remarkable and unpredictable that Chiarenza
et al. [33] first derived results as regards W2?-estimates for elliptic equations with VMO
coefficients based on the Calder6n-Zygmund theorem and estimates of commutators.
Later, L”-estimates were extended to divergence form elliptic equations with discontinu-
ous coefficients by Di Fazio in [34]. In recent years, two different approaches to elliptic and
parabolic equations with VMO coefficients were developed in Byun and Wang [35] and
Dong, Kim, and Krylov [36], respectively. Zhu, Bramanti and Niu [37] recently attained
interior L”-estimates for divergence degenerate elliptic systems in Carnot groups by way
of rather geometric arguments from Byun and Wang’s work on series, which include the
Hardy-Littlewood maximal functions and modified versions of the Vitali covering lemma.
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In general, when quasilinear or nonlinear equations are considered, the regularity of weak
solutions has been investigated under various growth conditions on lower order terms.
For the quasilinear setting, Zheng and Feng [38] recently obtained an optimal interior
Holder continuity by way of an interior reverse Holder’s inequality for quasilinear elliptic
equations with the controlled growth conditions under the assumption that the leading
coeflicients are in the class of VMO functions with respect to x variables. Later, Dong
and Kim [2] used a unified approach to get global Holder continuity by the interior and
boundary reverse Holder’s inequalities and bootstrap argument for quasilinear divergence
form elliptic and parabolic equations over Lipschitz domains with controlled growth con-
ditions on low order terms. Yu and Zheng [39] also derived the same Holder continuity to
quasilinear elliptic equations with the controlled growth based on a modified A-harmonic
approximation and the Caccioppoli inequality, also see [40, 41].

Motivated by these recent papers, we are here devoted to the study of the L”-theory of
weak solutions to quasilinear divergence form subelliptic equations, which originates from
these papers [2, 38, 39] with a controllable growth in the case of usual Euclidean metric
with standard gradient. Another reason is partially inspired by interior L”-estimates of
divergence degenerate elliptic equations in Carnot groups [37]. Therefore, our aim of this
paper is to attain the L”-theory for quasilinear subelliptic equations, whose conclusions
and approach are different from the Holder estimates of weak solutions derived in [2, 38,
39]. Now, let us summarize our main result as follows.

Theorem 1.4 Let u € HWY2(Q) be any weak solution to quasilinear subelliptic equations
(1.1) satisfying the structural conditions H1-H3. Suppose that f(x) = (fi(x), f2(%), ..., fu(x)) €
[L2(Q2)]™ and g(x) € L1(2) with p, q satisfyingp > Q and q > 5—&. Then, for any Q' CC L,
we have u € HWY (') with r = min{p, g*}; moreover, for any Q' CC Q we have

IXullzrey < C(|€®) | g + €60 Loy + 14ll2() (1.9)
where
e &, <q<Q
T>q 9=Q

is the Sobolev conjugate index of q.

The main difficulty of our proof is that the bootstrap argument in [2] cannot be applied
directly to weak solutions under the controlled growth. To this end, we first establish an
interior reverse Holder’s inequality. Additionally, the relaxation of the regularity assump-
tions on the leading coefficients from uniform continuity to VMO relies on the L?-theory
of linear equations with VMO coefficients. So, it is another challenging role how to make
use of L”-theory of linear subelliptic equations with VMO coefficients, and here we do
it by De Giorgi’s iteration argument. In the context, we do not consider boundary-value
problems for the reasons that it also makes the presentation clearer.

The rest of the paper is organized as follows. In Section 2, we will recall some basic facts
and improve an integrable index of equation (1.1) to one larger than 2 by the reverse Holder
inequality. In Section 3, we prove our main theorem, Theorem 1.4. Our argument is first
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to establish the boundedness of the weak solutions of equation (1.1) by using De Giorgi’s
iteration, and then improve gradually the integrable index of X-gradient via the L”-theory
of linear subelliptic equations, perturbation argument and a bootstrap argument.

2 Preliminaries

In the context, we adopt the usual convention of denoting by C a general constant, which
may vary from line to line in the same chain of inequalities. This section is devoted to
establishing the reverse Holder inequality to equation (1.1) and introducing some useful
lemmas. Now let us first recall the Sobolev embedding inequality with respect to the hor-
izontal vector fields (cf [1, 4, 5]). Indeed, one of our main techniques to do the Moser
iteration is to use the Poincaré and Sobolev embedding theorems for vector fields satisfy-
ing Hérmander condition.

Lemma 2.1 Let1<p<Qandl<g< QQ—_’;, where Q is the homogeneous dimension of X
in R".
(1) Ifu(x) € HWP(Bg,, X), then there exists a positive constant C = C(p, q, Q, X) such
that for any 0 < R < Ry, we have

_ 11
llot = il a(sgy < CR™ ™5 Xutl| o s, 2.1)

- 1 .
where iig = 5 fBR udx;

(2) Ifue HWé’q(BRO,X), then there exists a positive constant C = C(p, q, Q, X) such that
forany 0 < R < Ry, we have

N\ D\’
(f ) ()

We would like to remark that the Poincaré and Sobolev embedding theorems for vector
fields satisfying Hormander condition are very important to study subelliptic PDE, which
was first established due to Jerison’s work [42]. Later, the optimal result for g = 5—39 and
p > 1 was first proved by Lu in his two very earlier papers [23, 25]. As their applications, Lu
also established the Harnack inequality for a class of degenerate subelliptic equations. In
the case g = g—?p and p > 1 (including p = 1), the optimal results above and isoperimetric
inequalities were proved by Franchi, Lu and Wheeden in [22].

Next, we recall the following reverse Holder inequality from Theorem 2.3 of Chapter 5
in [11].

Lemma 2.2 Suppose that h(x) and u(x) are nonnegative measurable functions satisfying
h(x) € LY(Q2) and u(x) € L*(Q) with t > s > 1. If forVxo € Qand VR : 0 < R < Ry < dist(xo, d2)
we have

][ usdxfb({][ udx} +][ hsdx) +9][ u’ dx, (2.3)
B R (%0) Br(xo) Br(xo) Br(xo)

with constants b > 1 and 0 < 0 < 1, then there exist positive constants § = §(b,Q,q,s) and
C=C(b,Q,q,r) such thatu € L (Q) foranyt € [s,s +§) and

loc

1 1 1
7 5 7
{][ utdx} §C{7[ usdx} +C{][ htdx} . (2.4)
Bg(xo) J Br(xo) Bp(xo)
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On the basis of the reverse Holder inequality above, we can obtain a self-improving
integrability of X-gradient to equation (1.1) by a standard approach. For our papers to be
self-contained we give its complete proof as follows.

Lemma 2.3 Let u € HW'%(Q2) be a weak solution to equation (1.1) under the controllable
growth. Suppose that the coefficients and the lower terms satisfy the structural assumptions

H1 and H3, with f(x) € [L?(Q2)]" for p > 2 and g(x) € L1(2) forq > % Then there exists an

integrable index t € (2, min{p, @q}) such that for any Q' CC Q we have u € HWY(Q').
Moreover, for any open ball Br(x) C Q we have

(f (jul? + | Xuf?) dx)t
ki
= C{(j[ (" + |Xu|2)dx)7 ' ( |f(x)|pdx)ﬁ +R<][ Iglquy } (25)
Bpr Br Br

where C = C(u,L,Q,p,q) > 0.

Proof For any given x¢ € €2 and By := Br(xo) C €2, we suppose that n € C5°(Bg) is a cut-off
function satisfying

1K@

0=nl) =1, n(x)=1 on Bgp, 1Xn| < —. (2.6)

Let us take ¢ = n?(u — itg) as the test function in equation (1.8) to get
/QAlj(x, u)Xi(nZ(u - L_tR))Xju dx + /Qai(x, u)Xi(n2(u - IZR)) dx
= /Q b(x, u, Xu)n*(u — ug) dx.
By uniformly ellipticity H1 and the controllable growth H3, we have
"w /Q 02| Xul|? dx < /Q r]zAij(x, w)XiuXudx
= <2 | Ayl (= ) X 1)
- /g; a;(, w)X; ((u — g)n?) dx
+ /Q b(x, u,Xu)nz(u —ug)dx
< 2L/Q|(u—12R)Xn| - nXu| dx
1o [ J1 40 X (- )| d

+ o2 / X208 1l + ¢)] - | )2 dix
Q

= 2L11 + /,L112 + [,Lz[g. (27)
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In the sequel, we focus on the estimates of the integral expressions I, I, I3, respec-
tively.
Estimate of I: by Young’s inequality it follows that

16L
Ilfi/ InXulzdx+—/}(u—ﬁR)Xr/!de.
16L Jq “oJa

Estimate of I;: by using Young’s inequality again it yields

I /(n|u|%)-|nXu|dx+/|17f(x)|-|nXu|dx
Q Q

+2/(r)|u|%)'|(u—ELR)Xn|dx+2/|nf(x)|-|(u—12R)Xn|dx
Q Q

H 2

16M1/anXu| dx

+C(u,u1){/B |u|de+/B |f(x)|2dx+1%/3 |(u—ﬁR)|2dx}.

Estimate of I3: we further divide it in three parts as follows:

1 _ _ _
I < / (1Xul™ "7 | = i | + [l Yot — fig] + | @) (= iR) ) A := Ty + o + Ja.
Br

To estimate J;, we employ Holder inequality, the Sobolev embedding inequality in
Lemma 2.1 and (2.6), and obtain

;
A 5( |Xu|2dx> </ |u—ﬁR|de)
Br Br

1 1
27y
scze@%%)”( IXuIzdx) ( |Xu|2dx).
Bp Bp

Applying Young’s inequality to the estimates of J, and /5 yields

=<
162 /B,

= iigl” dx + C(%Mz)/ ) d,
Br

J3 <

a
< |lu—iig|” dx+ C(y, i2) [ |g@)|7 d.
16442 /B, Br

As to the second term on the right-hand side of /, above, by the Holder inequality, for any

s>1 we have

Y
|u|de52V-1< |u—ﬁR|de+|BR|<][ |u|dx) )
Br Bp Br

2
52V-1< |u—itR|ydx+|BR|(— ul’ dx) ) (2.8)
Bp Br
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Note that the Sobolev inequality implies

51
| Xu|? dx) | Xu|? dx. (2.9)

|lu— ig|” dx < CRV[Q(%%)”](
Br

Br Br

Let us put the estimates of /1, /5, J3 and (2.8), (2.9) together, which yields

1 1 Y1
27y 2
IgsC{RK< |Xu|2dx> +RV"< |Xu|2dx) } | Xu|? dx
Br Br Br

2
+C|BR|(][ |u|V2$dx) +C/ |g(x)|%dx,
Br Bp

where k& =1+Q(% - %) ZO,andmin{% - %,% —1}>0duetoy >2.
We are now in a position to put the estimates of I1, I, I3 and (2.8) into (2.7), then we can

conclude that there exists a positive constant C = C(u, i1, (42, y) such that

2
/B(lXu| +ul”) dx

2

2
C s s v
<— |u—£¢R|2+C|BR|< |u|Vzdx> +c/ (|g(x)|7*1+|f(x)|2)dx
R Br Br Br
1.1 Y4
27y 2
+C[R“< |Xu|2dx) +R7”‘< |Xu|2dx> ] | Xu|? dx. (2.10)
BR BR BR

1_1
Setting ¥ = C[R"(fBR | Xu|?>dx)2"7v + RV"(fBR |Xu|? dx) 271]. By virtue of Lebesgue’s abso-
lute continuity with respect to the integral domain, we know that # — 0 as R — 0. There-

fore, we can obtain 0 < ¥ < 1 by only choosing R to be a suitable small positive constant. Let

us apply the Sobolev embedding inequality in Lemma 2.1 to fBR |u—itg|*dx with s = 5—?2 >1
in (2.10), then we get
][ (IXul® + |ul”) dx
Bpr
3
2
< c{ (7[ (IXul® + |u|y)2> dx
J BR
+][ (|H®)|” + |£@)|*) dx + 19][ |Xu|2dx}, (2.11)
Bp Br

_r
where H(x) = |g(x)|2¥-D. By the reverse Holder inequality in Lemma 2.2, we know there
exists a £ € (2, min{p, @q}) such that

(][BR(MV + |Xu|2)%>%

2
1 1

< c(ﬁkuuw + [ Xul?) dx) " C(]ik(|H(x)|2 +|f@)[})? dx) t
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2(y-1)

N

: C{(f (" + X dx>2 ’ (][ |f(x)|tdx>z +R<7[ FEG dx>
J BR Be Ts.
: C{ (7[ (" + |Xu|2)dx)7 ' (7[ |f(")|pdx)ﬁ +R<][ Igl”dx)a }

where we employed the monotone increasing of ( JEBR If (x) | dx)% with respect to ¢ in the
last inequality,which is due to 2 < £ < p and % < g when ¢t € (2, min{p, @q}). This
lemma is proved. 0

3 The proof of main theorem

In this section, we are devoted to enhancing the integrable index of X-gradient of their
weak solutions based on L”-estimates of linear subelliptic equations, perturbation argu-
ment and the bootstrap argument. First of all, we prove the boundedness of the weak so-
lutions to equation (1.1) by way of the idea from De Giorgi’s iteration; also see [25]. To this
end, let us consider in HW'%(Q2) the following linear subelliptic equations in divergence
form:

ZX;" (aij(x))(/u) = ZX;‘ﬁ, ae x €, (3.1)
ij i

where a;; € VMO(£2) and satisfy uniformly ellipticity H1, and f(x) = (fi(x), (%), ..., fiu(x)) €
[L7(S2)]™ with p > 2. We recall an interior L”-estimate of X-gradient to equation (3.1),
which can be referred to Theorem 2.8 in [37].

Lemma 3.1 Let u € HW*(2) be any weak solution to linear subelliptic equations (3.1).

loc

Suppose that the leading coefficients a; € VMO(R2) and satisfy uniformly ellipticity H1, and
f(x) € [LP(RQ)]" with 2 < p < +00. Then u € HW(Q') for any Q' CC Q. Moreover, there
exists a positive constant C = C(i, L, Q, p, R) such that for any Br C Q2 we have

Xt 2 5e1) < CEE | oy + 16l 250)- (3.2)

For the convenience of studying quasilinear subelliptic equations (1.1), we here give the
following conclusion, which can be found a similar conclusion from [43] in the case of
Euclidean metric and usual gradient.

Lemma 3.2 Let Q be a bounded Lipschitz open set in R". For any g(x) € L1(2) with q > 1,

there exists a vector-valued function G(x) : Q@ — R” with G(x) = {G'(x), G*(x),...,G"(x)} €
(LT (Q2)]™ such that g(x) = > " X¥(G(x)); and we have

”G”(Lq* «)m <C(Q, q,0%2) ||g||L‘1(Q), (3.3)
where

. _ %1, I=gq<Q
anyq*>¢q, q=Q,

is the Sobolev conjugate index of q.
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Proof Given any fixed point y € R”, let I'(x,y) be the fundamental solution to sub-
Laplacian equations Zle X;X;u =0inR". By Theorem 2.2 in [4], its fundamental solution

["(x, y) deserves the following local properties:
P92, (3.4)

and there exists a positive constant C = C(Q) such that

p(x,)*

X°T (%, R LA —
T = e =

<Cp(x,9)**% s=1,2,.... (3.5)
Note that 9 is Lipschitz continuous, there exists an extending function g(x) defined in
R" such that g(x) = g(x) on © and ||gllzawn) < C(2)gllLa(c); moreover, g(x) has compact
support in R”, namely, there exists 2 CC V C R” such that supp(g) C V. Therefore, it is
easy to see that Ng(x) = f]Rn I"(x,y)g(y) dy satisfies Zle XiXi(Ng(x)) =g(x), a.e.x € Q.
Thanks to the Calderon-Zygmund theory of a singular integral operator, it follows that

|X*(Ng@®) | a1 < C(Q q Dligliace)

Now let us restrict G(x) := {X1(Ng(x)),..., X;n(Ng(x))} to 2 and employ the Sobolev em-
bedding inequality of X-gradient of Theorem 2.1, then it yields

|Ge) HM*(Q) = [ X (Ng() HM*(Q) = C|x*(Ng)) “Lq(v) =< Cligllza
This lemma is proved. O

Further, we consider the following linear subelliptic equations in divergence form:
-X; (ozij(x)X,»u) =-Xfilx) +g(x), aexecQ, (3.6)

where a;; € VMO(Q) satisfies the uniform ellipticity H1, and f(x) € [LP(2)]", g(x) € L1(2)
with p, g satisfying p > 2 and ¢ > Gip By a simply computation we have the following.
Lemma 3.3 Let u HVVﬁ)g(Q) be any weak solution to equation (3.6). Suppose that the
leading coefficients a; € VMO(Q) satisfy the uniform ellipticity H1 and H2, and f(x) €
[LP(2)]™, g(x) € L1(2) with p,q satisfying p > 2 and q > 29 Then, for any Q' CC €,
we have u € HWY (Q') with r = min{p,q*}. Moreover, there exists a positive constant
C=C(u,L,Q,p,q,R) such that for any By C 2, we have

IXutllzr ) < COIECO g,y + gl 20 + Nt 208 3.7)

with r = min{p, q*}.

Proof On the basis of Lemma 3.2, we know that for g(x) € L7(<2) there exists a vectorial-
valued function G(x) = (G1(x), ..., Gu(x)) € [LT (2)]™ such that g(x) = — >, X G;(x) for
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a.e.x € ,and

1G4 5y = ClIgllzaar)-
In this way, equation (3.6) can be rewritten as

-X! (aij(x)X/u) =-X/(f+G), aexeBy (3.8)
where f + G € [L"(Bg)]" and r = min{p, ¢*}. Using Lemma 3.1 it yields

(If + Gllzrsp) + Nl 285

I Xeell L Bgyp) < C
< C(IIf e + 1G a* g + Nl 25,
< C(Ifllzre) + Igllzaesg) + 1]l 2(85))
where C = C(u, Q,p, g, R). This completes the proof of Lemma 3.3. d

In order to get the boundedness of weak solutions to equation (1.1) under the control-
lable growth, we will use so-called De Giorgi’s iteration argument (¢f Lemma 5.1 in Chap-
ter 5 of [44]). We denote by Ay = {x € Q: u(x) > k} the distributional function of # on €,
and by |Ax| denote the measure of A; with the C.-C. metric.

Lemma 3.4 Let u(x) be a measurable function defined on Q. If, for any k > ko > O there
exist constants y, o, and ¢ satisfying y,e >0,0 <« <1+ ¢ such that

/ (u — k) dx < Nok®|Ag|'*. (3.9)
Ak

Then u(x) is essentially bounded on Q2; namely, there exists a positive constant N =
N(y,a, ¢, ko, ”u”LfA )) such that

ko

esssup u(x) < N.
xeQ

Based on Lemma 3.4 above and Lemma 2.1 (Sobolev inequality of X -gradient), we obtain
the following useful conclusion (¢f Lemma 5.2 in Chapter 2 of [44]).

Lemma 3.5 Let u(x) € HWYX(Q) and Q > 2. If, for any k > ko > 0, there exist constants y,
&, a satisfying y,e >0 and 0 < o <2 + ¢ such that

2
|Xu|? dx < Nok®|Ax)' 2", (3.10)
A

Then u(x) is essentially bounded on 2, and there exists a positive constant N = N(y,a, €, ko,

lleell 2 ) such that
(k)

ess supfu(x)| <N.
xeQ
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Hence, in order to establish the boundedness of weak solutions to equation (1.1) we only

need to prove that the weak solutions of equation (1.1) satisfy inequality (3.10).
Lemma 3.6 (Boundedness of weak solutions) Let u(x) € HWV%(Q2) be any weak solution

to quasilinear subelliptic equations (1.1). Suppose that the leading coefficients and lower

terms satisfy the structural assumptions H1 and H3. Then u(x) is essentially bounded, and

ll24| 1oo() = ess sup|u(x)| < M,
xeQ

where M = M(Q, i, f1, t2, 1|22, 1€l 2e) > 0.

Proof Notice that the assumptions of H1 and H3 on 4;(x, &), by Young’s inequality, yield
Ay, u)XjuXju > Wl Xul?,

Z a;(x, u)X;u

8
< (1) 1 Xe] + [£x)| | Xuu]) < %|Xu|2 ¥ %W + 10y |£()| 1 X,
i=1

which implies

m

3
D (A )X + i, w) Xou > ZM|XM|2 = Cps pa)|u]” = [ £(x) || Xna]. (3.11)

ij=1
Using the controllable growth of b(x, #, Xu) and Young’s inequality, it follows that

|be, 1, Xuus| < paalaal (1K) + Ju?~ + |g()])

"
= Pl + Clu pa)lul” + ool [g(@)]. (312)

Let us combine (3.11) and (3.12) and take ¢ = (4 — k), with k > 0 determined later as the

test function. By integrating on the distributional function A, we have

\Xul* dx < Clu, pa, 1) | |ul” dax
Ay Ay

+ o /Ak|f(x)||Xu|dx+u2 /Ak ) |gx)| dx

i= C(1, 1, ) Ky + Ky + o K. (3.13)

Now let us estimate Kj, K3, K3, respectively, as follows.

To estimate K5, we have

Ky < |Ap|7 P72 /If(x)l dx / | Xu|? dx
Ay Aj

2
1 -2 ’
5—/ |XM|2dx+C|Ak|”7</ ]f(x)|”dx)p. (3.14)
4pr Ja, A
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To estimate K3, we get

1
« 2
1<35|Ak|1%*5</ Jul? dx) (/ Ig(x)l”’dx)q
Ak Ak
% 1
Q+2 1 q
§C|Ak|zo‘q(/ |Xu|2dx> (/ |g(x)|qu)

*l"‘

2

1 Q2 2 a
< —/ | Xu|? dx + C|Ax| @ 2(/ |g(x)’qu> . (3.15)

4“2 Ag Ay
To estimate K, by the Sobolev inequality in Lemma 2.1 we deduce
51
Ky < ClA(T4 ( / | Xu|? dx) / | Xu|* dx (3.16)
A Ak

with k; = (% - %) + é > 0and % —1>0.Now we put (3.14), (3.15), and (3.16) into (3.13), then

by using Lebesgue’s absolute continuity on the integral domain and choosing a suitable
large k > 0 we derive

-1

| Xu)? dx) <

IR

’

1
C|A|"" —
| Akl < 2

Br

which implies

| Xul* dx < C(u, w1, ) MIAL|,
Ag

where ¢ = min{Z?, €5 — 2} and M = (If@)ll» + lg()lz0)*.
Q+2 2 Q+2 2

Considering p > Q and g > 29 it yields = ’%2. Then we have

Q+p Q q Q C%
.{p—2 Q+2 2} p-2 2
© =min , — = =1-—+¢g,
p Q ¢ p Q
2 2

where g; = o 0. Hence, the boundedness of # on 2 is obtained due to Lemma 3.5.

This lemma is proved. g

Proof of Theorem 1.4 Let us prove it in two steps by semilinear setting and quasilinear
setting.
Step 1. First let us consider the following semilinear subelliptic equations:

- X:X;k (A,','(x)Xju + a;(x, u)) =b(x,u,Xu), aexcg, (3.17)
i

where b(x, u, Xu) is under the controllable growth. Our idea is to use the bootstrap argu-
ment to improve the integrable index of X-gradient of weak solutions. It is easily seen that
SUp,.cq |#| < M due to Lemma 3.6. Considering b(x, u, Xu) satisfies the controllable growth
H3, we derive

lai(x, w)| < (M3 +fi(x) € LP(R),

3.18
1b(x, 1, Xut)| < pa (X7 + MY + g(x)). (3.18)
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Setting x =2(1 - 1) by Lemma 2.3 it follows that there exists an integrable index pg > 2
such that Xu € L% 0

1or(§2), which implies
b(x,u,Xu) € LII;C(Q) q = min{%,q}.
Thanks to Lemma 3.3, it yields

Xuelh (Q’), = min{p, 4 }, forany Q' ccC Q. (3.19)

(i) Ifg < @ ,then ¢; = q and r; = = min{p, g*}. Thus, Theorem 1.4 is proved.
(i) If g > 22, then ¢; = 22, and

_ ) Qx-po’ X
q; = (3.20)
ai>q, B =Q

Qpo po Q,

If now £ > Q, then r; = min{p, g*}, Thus, Theorem 1.4 holds again.
If 1nstead p—° < Q, then ¢f = Qgpopo < g%, so r = min{p, Qp Qo } For the case of p <
QSPOPO, we can also obtain Theorem 1.4. For the other case w1th p> Q%i Opo

Qro
Xuel o (), namely, [Xu|* € L. %79 (Q'). Again using the controllable growth (3.18),

loc loc

, we have

we have

b(x, u,Xu) € LIOC(Q) qs = min{&,q} >q1.
(Qx —po)x

Thus, by Lemma 3.3 it follows that
XueL? (2), ry = min{p, qﬁ} > 7.

Iterating the above procedure we can arrive at Xu € L"(2') with r = min{p, g*} after finite
steps. This is because the integral index of Xu is improved by a fixed step length x. This
completes Step 1.

Step 2. We now consider quasilinear subelliptic equation (1.1) under the controllable
growth H3. For any xo € €, let Bg = Br(xp) C 2 be a ball centered at xy with radii R in .

We set up = fBR udx, then equation (1.1) can be rewritten as
=X Ay, uR) Xju) = X (ai(x, u) — (A iag) + Ay, 1)) Xjue) + b(x, u, Xu),  x € Bp.
By Lemma 3.6 it implies that sup, ., |#| < M. Combining the controllable growth (3.18)

and the L”-estimates of semilinear subelliptic equations in the step 1 above, we conclude

that for » = min{p, g*} we have

Xl ) < C (i, ) = (Ao i) = Ay o)) Xt |
+ || b(x, u, Xu) ||Lq(BR) + el 2 ag)

= C(IE@) | oy + Ne@ sy + I14l2050)
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+ C sup |Ay(, iig) — Ayj(x, ) || Xul| 1 (8g)

x€BR
= C([ D gy * 8@ | 1oy + 28l 23) + Ceo(12a = it 1 Xt 27 s
= C(”f(x)”w(m + ||g(x) ”Lq(g) + ||”||L2(Q)) + 0| Xu| 1 (BR)»
where we used the uniform continuity H2 on A;(x, ) with respect to u in the second last

step. If we choose a suitable small R > 0 such that the continuity modulus o(-) satisfying
Co(|lu — ug|) <9 <1, then by employing a standard iteration argument we get

”X””U(B§> = C(”f(x)HLP(Q) + g ”Lq(m + llull2ey)- (3.21)

In fact, let us denote

1 1 &1
k
rOZER, re=1| -+ E R, BY=B,, k=12,...,

and set

A= 1 Xullyrgoy  B= (€@ | g + 180 | aq + 1#020)-
Then

Ap <6Ar, +CB.

Now, multiplying both sides by 6% with 6 € (0,1), and summing up with respect to &, it
follows that

> 0FAc=) 0% A+ okCB.
k=0 k=1 k=0
Since 0 < 1, the summation Y o, 6 is finite. Therefore,

Ao <CB,

which implies (3.21). Theorem 1.4 is completely proved. O
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