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Abstract
In this paper, we study the existence, nonexistence, and multiplicity of solutions to
the following fractional p&q-Laplacian equation:

(–�)spu + a(x)|u|p–2u + (–�)squ + b(x)|u|q–2u +μ(x)|u|r–2u
= λh(x)|u|m–2u, x ∈ R

N , (.)

where λ is a real parameter, (–�)sp and (–�)sq are the fractional p&q-Laplacian
operators with 0 < s < 1 < q < p, r > 1 and sp < N, and the functions a(x),b(x),μ(x), and
h(x) are nonnegative in R

N . Three cases on p,q, r,m are considered: p <m < r < p∗
s ,

max{p, r} <m < p∗
s , and 1 <m < q < r < p∗

s . Using variational methods, we prove the
existence, nonexistence, and multiplicity of solutions to Eq. (0.1) depending on
λ,p,q, r,m and the integrability properties of the ratio hr–p/μm–p. Our results extend
the previous work in Bartolo et al. (J. Math. Anal. Appl. 438:29-41, 2016) and Chaves et
al. (Nonlinear Anal. 114:133-141, 2015) to the fractional p&q-Laplacian equation (0.1).
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1 Introduction and the main result
In this paper, we study the existence, nonexistence, and multiplicity of solutions to the
following fractional p&q-Laplacian equation:

(–�)s
pu + a(x)|u|p–u + (–�)s

qu + b(x)|u|q–u = f (x, u), x ∈R
N , (.)

where (–�)s
p and (–�)s

q are the fractional p&q-Laplacian operators with  < s <  < q <
p, r >  and sp < N . The nonlinearity f (x, u) = λh(x)|u|m–u – μ(x)|u|r–u can be seen
as a competitive interplay of two nonlinearities. The coefficients a(x), b(x),μ(x), h(x)
are assumed to be positive in R

N , and other exact assumptions will be given fur-
ther.

The fractional t-Laplacian operator (–�)s
t with  < s <  < t and st < N is defined along

a function ϕ ∈ C∞
 (RN ) as
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(–�)s
tϕ(x) =  lim

ε→+

∫
RN \Bε(x)

|ϕ(x) – ϕ(y)|t–(ϕ(x) – ϕ(y))
|x – y|N+ts dy, ∀x ∈R

N , (.)

where Bε(x) := {y ∈R
N : |x – y| < ε}; see [–] and the references therein.

When p = q, Eq. (.) is reduced to the fractional p-Laplacian equation

(–�)s
pu + V (x)|u|p–u = f (x, u), x ∈R

N , (.)

and when s = , Eq. (.) is the p&q-Laplacian equation

–�pu + a(x)|u|p–u – �qu + b(x)|u|q–u = f (x, u), x ∈ R
N . (.)

Equation (.) comes from a general reaction-diffusion system

ut = div
(
D(u)∇u

)
+ f (x, u), x ∈R

N , t > , (.)

where D(u) = |∇u|p– + |∇u|q–. This system has a wide range of applications in physics and
related sciences such as biophysics, plasma physics, and chemical reaction design. In such
applications, the function u describes a concentration, and the first term on the right-hand
side of (.) corresponds to the diffusion with a diffusion coefficient D(u), whereas the
second one is the reaction and relates to sources and loss processes. Typically, in chemical
and biological applications, the reaction term f (x, u) is a polynomial of u with variable
coefficients [, ].

The solution of (.) has been studied by many authors; for example, see [, , , –
] and the references therein. In the literature cited, the authors always assume that the
potentials a(x), b(x) satisfy one of the following conditions:

(A) a(x), b(x) ∈ C(RN ) and a(x), b(x) ≥ c in R
N for some constant c > . Furthermore,

for each d > , meas({x ∈ R
N : a(x), b(x) ≤ d}) < ∞.

(A) lim|x|→∞ a(x) = +∞, lim|x|→∞ b(x) = +∞.
(A) a(x), b(x) ≥ c >  in R

N , and a(x)–, b(x)– ∈ L(RN ).

It is well known that one of assumptions (A), (A), and (A) guarantees that the embed-
ding W ,t(RN ) ↪→ Lr(RN ) is compact for each t ≤ r < t∗ = tN

N–t with  < t < N . As far as we
know, there are few papers that deal with a general bounded potential case for problem
(.).

Now let us recall some advances of our problem. Pucci and Rădulescu [] first studied
the nonnegative solutions of the equation

–�pu + |u|p–u + h(x)|u|r–u = λ|u|m–u, x ∈R
N , (.)

where h(x) >  satisfies

∫
RN

[
h(x)

] m
m–r dx = H ∈R

+ = (,∞), (.)

and λ > , and  ≤ p < m < min{r, p∗} with p∗ = pN/(N – p) if N > p and p∗ = ∞ if N ≤ p.
They showed the nonexistence of nontrivial solutions to (.) if λ is small enough and the
existence of at least two nontrivial solutions for (.) if λ is large enough.
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Autuori and Pucci [] generalized (.) to the quasilinear elliptic equation

– div A(x,∇u) + a(x)|u|p–u + h(x)|u|r–u = λω(x)|u|m–u, x ∈R
N , (.)

where A(x,∇u) acts like the p-Laplacian, max{, p} < m < min{r, p∗}, and the coefficients
ω and h are related by the integrability condition

∫
RN

[
ω(x)r

h(x)m

] 
r–m

dx = H ∈R
+. (.)

By imposing a strong convexity condition of the p-Laplacian type on the potential of A, the
authors extend completely the result of []. Moreover, Autuori and Pucci [] proposed
two open questions: the deletion of the restriction max{, p} < m and the replacement of
(.) by the assumption that ω(ω/h)(m–p)/(r–m) is in LN/p(RN ).

Later, Autuori and Pucci [] studied the existence and multiplicity of solution to the
following elliptic equation involving the fractional Laplacian:

(–�)su + a(x)u + h(x)|u|r–u = λω(x)|u|m–u, x ∈R
N , (.)

where λ > ,  < s < , s < N ,  < m < min{r, ∗
s }, ∗

s = N/(N – s), and (–�)s is the frac-
tional Laplacian operator. The coefficients ω and h are related by condition (.). The au-
thors proved the existence of entire solutions of (.) by using a direct variational method
and the mountain pass theorem.

More recently, Xiang et al. [] investigated the fractional p-Laplacian equation

(–�)s
pu + V (x)|u|p–u + b(x)|u|r–u = λa(x)|u|m–u, x ∈R

N , (.)

where λ > , p < m < min{r, p∗
s }, p∗

s = pN/(N – ps), and a(x) and b(x) are related by the
condition a(a/b)(r–p)/(m–r) ∈ LN/ps(RN ).

Up to now, it is worth noting that there is much attention on equations like (.), (.),
and (.) with  < m < r. From the papers mentioned, it is natural to ask whether the
existence, nonexistence, and multiplicity of solutions to Eq. (.) is admitted if  < r < m <
p∗

s and  < m < r < p∗
s ? Clearly, equations like (.), (.), and (.) are contained in (.).

In this paper, motivated by [, ], we will answer this interesting question, extend
the p&q-Laplacian (.), which has been studied deeply in [, ], to the fractional p&q-
Laplacian equation (.), and investigate the existence, nonexistence, and multiplicity
of solutions depending on λ and according to the integrability properties of the ratio
hr–p/μm–p.

For this purpose, we apply a version of symmetric mountain pass lemma in []. Also, we
adapt some ideas developed by Pucci et al. [] and Xiang et al. []. Note that although the
idea was earlier used for other problems, the adaptation to the procedure to our problem
is not trivial at all since the parameters r, m satisfy  < r < m and we must consider our
problem for a suitable space, and so we need more delicate estimates and new technique.
Our results, which are new even in the canonical case p = q = , generalize the main results
of [, ] in several directions. Furthermore, we weaken the conditions in those papers, and
assumptions (A)-(A) are not necessary for our results.
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In order to state our main theorems, we recall some fractional Sobolev spaces and
norms. The fractional Sobolev space W s,t(RN ) ( < s <  < t) with st < N is defined by

W s,t(
R

N)
=

{
u ∈ Lt(

R
N)

:
|u(x) – u(y)|
|x – y| N

t +s
∈ Lt(

R
N)}

. (.)

This space is endowed with the natural norm

‖u‖W s,t =
(
[u]t

s,t + ‖u‖t
t
)/t , (.)

whereas [u]s,t denotes the Gagliardo seminorm given by

[u]s,t =
(∫ ∫

RN

|u(x) – u(y)|t
|x – y|N+ts dx dy

)/t

. (.)

The spaces Xp and Xq denote the completion of C∞
 (RN ) with respect to the norms

‖u‖Xp =
(
[u]p

s,p + ‖u‖p
p,a

)/p, ‖u‖Xq =
(
[u]q

s,q + ‖u‖q
q,b

)/q, (.)

respectively, in which the functions a(x), b(x) satisfy

(H) a(x), b(x) ∈ C(RN ) and a(x), b(x) ≥ c >  in R
N for some constant c.

In general, let ‖u‖t,ρ = (
∫
RN ρ|u|t dx)/t with t ≥  and ρ = ρ(x) ≥ , �=  a.e. in R

N . In
particular, denote ‖u‖t = (

∫
RN |u|t dx)/t or ‖u‖Lt (	) = (

∫
	

|u|t dx)/t with the domain 	 ⊂
R

N . Let E = Xp ∩ Xq with  < q < p < N . The norm of u ∈ E is defined by

‖u‖E = ‖u‖Xp + ‖u‖Xq . (.)

Lemma . [, ] Let  < s <  < t with st < N . In addition, assume (H). Then, Yt ≡
W s,t(RN ) is a uniformly convex Banach space, and there exists a positive constant S =
S(N , t, s) such that

‖u‖t∗s ≤ S[u]s,t , ∀u ∈ Yt , (.)

and

‖u‖r ≤ Sr‖u‖Yt , ∀u ∈ Yt , (.)

where t = p or q, t∗
s = tN

N–ts is the fractional critical exponent, and Sr is a constant depending
on s, r, t, N . For convenience, we denote St∗s by S. Consequently, the space Yt is continuously
embedded in Lr(RN ) for any r ∈ [t, t∗

s ]. Moreover, the embedding Yt ↪→ Lr(RN ) is locally
compact whenever  < r < t∗

s .

Clearly, from definitions (.) and (.) and assumption (H), we see that

min{, c}‖u‖Yt ≤ ‖u‖Xt , ∀u ∈ Yt , where t = p, q. (.)
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Let J(u) : E →R be the energy functional associated to Eq. (.) defined by

J(u) =

p
‖u‖p

Xp +

q
‖u‖q

Xq +

r
‖u‖r

r,μ –
λ

m
‖u‖m

m,h, ∀u ∈ E, (.)

where the norms ‖ · ‖Xp and ‖ · ‖Xp are defined by (.).
From the embedding inequalities (.) and assumptions (H)-(H) below, we see that

the functional J is well defined and J ∈ C(E,R) with

J ′(u)ϕ =
∫ ∫

RN

[ |u(x) – u(y)|p–

|x – y|N+ps +
|u(x) – u(y)|q–

|x – y|N+qs

](
u(x) – u(y)

)(
ϕ(x) – ϕ(y)

)
dx dy

+
∫
RN

[
a(x)

∣∣u(x)
∣∣p– + b(x)|u|q– + μ(x)|u|r– – λh(x)|u|m–]

× u(x)ϕ(x) dx, ∀ϕ ∈ E. (.)

A function u ∈ E is said to be a (weak) solution of Eq. (.) if J ′(u)ϕ =  for any ϕ ∈ E.
Throughout this paper, we let  < s <  < q < p with sp < N . Our main results are as

follows.

Theorem . Assume (H) and

(H) p < m < p∗
s ; h(x) is a positive weight satisfying h(x) ∈ Lγ (RN ) with γ = p∗

s
p∗

s –m .
(H) p < m < r < p∗

s ; the functions μ(x) and h(x) are positive and μ(x), h(x) ∈ L
loc(RN ). Fur-

thermore, h(x) and μ(x) are related by the condition

∫
RN

[
h(x)(r–p)/(r–m)

μ(x)(m–p)/(r–m)

]N/ps

dx = H ∈ R
+. (.)

Then there exist constants λ ≥ λ >  such that Eq. (.) has
(i) only the trivial weak solution if λ < λ;

(ii) at least two nontrivial weak solutions if λ ≥ λ.

Theorem . Let max{p, r} < m < p∗
s . Assume that (H) and (H) hold. In addition, suppose

that μ(x) are nonnegative and μ(x) ∈ L
loc(RN ). Then Eq. (.) admits

(i) only the trivial solution if λ ≤ ;
(ii) infinitely many weak solutions un ∈ E such that J(un) → ∞ as n → ∞ if λ > .

Theorem . Let  < s <  < m < q ≤ p < p∗
s and q ≤ r < p∗

s . Assume (H) and

(H) μ(x) ≥  in R
N and μ(x) ∈ Lσ

loc(RN ) with σ = p∗
s

p∗
s –r ;

(H) h(x) ∈ Lδ(RN ) with δ = q
q–m , and there exist d >  and x = (x

 , x
, . . . , x

N ) ∈R
N such

that h(x) >  in Bd (x), where Bd (x) = {x ∈R
N : |x – x| < d}.

Then Eq. (.) with λ >  admits infinitely many solutions un ∈ E with un →  in E.

Remark . From Theorem ., we know that it still remains an open problem to verify
whether λ = λ. In addition, the nonlinear function f (x, u) = λh(x)|u|m–u – μ(x)|u|r–u
with p < m < r fails to satisfy the Ambrosetti-Rabinowitz condition. Furthermore, for s = 
in (.), our results and context are more general than those in [, ].
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The paper is organized as follows: In Section , we give some preliminaries, will set up
the variational framework for problem (.), and prove that the functional associated to
(.) satisfies the (PS)c condition. The proofs of Theorems . and . are given in Section .
Finally, Section  is devoted to the proof of Theorem ..

2 Preliminaries
To prove our main results, we need to establish some lemmas.

Lemma . Let (H) and one of assumptions (H) and (H) hold. Then, if {un} is a bounded
sequence in E, then there exists u ∈ E ∩ Lm(RN , h) such that, up to a subsequence, un → u
strongly in Lm(RN , h) as n → ∞.

Proof We first choose a constant β >  such that ‖un‖E ≤ β for all n ≥ . If (H) is satisfied,
then for any ε > , there exists R >  such that

(∫
Bc

R

∣∣h(x)
∣∣γ dx

)/γ

< –mβ–mε for all R ≥ R. (.)

Then, it follows from the Hölder inequality and Lemma . that, for R ≥ R,

∫
Bc

R

h(x)
∣∣un(x) – u(x)

∣∣m dx ≤ ‖h‖Lγ (Bc
R)‖un – u‖m

Lp∗s (Bc
R)

≤ mβm‖h‖Lγ (Bc
R) < ε. (.)

By Lemma ., up to a subsequence, we obtain un → u strongly in Lm(BR ) and un(x) →
u(x) a.e. in BR as n → ∞. Thus h(x)|un(x) – u(x)|m →  a.e. in BR as n → ∞. Similarly,
for each measurable subset 	 ⊂ BR , we have

∫
	

h(x)
∣∣un(x) – u(x)

∣∣m dx ≤ ‖h‖Lγ (	)‖un – u‖m
Lp∗s (	)

≤ mβm‖h‖Lγ (	). (.)

Since h(x) ∈ Lγ (RN ), we obtain that the sequence {h(x)|un(x) – u(x)|m} is uniformly in-
tegrable and bounded in L(BR ). Furthermore, an application of the Vitali convergence
theorem gives

lim
n→∞

∫
BR

h(x)
∣∣un(x) – u(x)

∣∣m dx = . (.)

Then the conclusion that un → u strongly in Lm(RN , h) follows from (.) and (.).
If (H) is satisfied, then for any ε > , there exists R >  such that

‖h‖Lδ (Bc
R) =

(∫
Bc

R

∣∣h(x)
∣∣δ dx

)/δ

< –mβ–mε for all R ≥ R (.)

and
∫

Bc
R

h(x)
∣∣un(x) – u(x)

∣∣m dx ≤ ‖h‖Lδ (Bc
R)‖un – u‖m

Lq(Bc
R) ≤ mβm‖h‖Lδ (Bc

R) < ε. (.)

Similarly, we can derive (.). Then combining (.) with (.), we have un → u in
Lm(RN , h). �
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Lemma . Let (H) and one of assumptions (H) and (H) hold. If {un} is a bounded (PS)c

sequence of the functional J defined by (.), then the functional J satisfies (PS)c condition.

Proof Let {un} be a (PS)c sequence, that is,

J(un) → c and
∥∥J ′(un)

∥∥
E′ →  as n → ∞. (.)

Since the sequence {un} is bounded in E, there exists a subsequence, still denoted by {un},
such that

un ⇀ u weakly in E, un(x) → u(x) a.e. in R
N ,

un → u strongly in Lt
loc

(
R

N)
,

(.)

where t = p or q. We now prove that un → u in E. Let ϕ ∈ E be fixed and denote by Tϕ the
linear functional on E defined by

Tϕ(v) = Aϕ(v) + Bϕ(v), ∀ϕ ∈ E, (.)

where Aϕ(v) and Bϕ(v) are the linear functionals defined by

Aϕ(v) =
∫ ∫

RN

|ϕ(x) – ϕ(y)|p–(ϕ(x) – ϕ(y))
|x – y|N+ps

(
v(x) – v(y)

)
dx dy, ∀ϕ ∈ E,

Bϕ(v) =
∫ ∫

RN

|ϕ(x) – ϕ(y)|q–(ϕ(x) – ϕ(y))
|x – y|N+qs

(
v(x) – v(y)

)
dx dy, ∀ϕ ∈ E,

(.)

respectively. Clearly, by the Hölder inequality, Tϕ is also continuous, and

∣∣Tϕ(v)
∣∣ ≤ ∣∣Aϕ(v)

∣∣ +
∣∣Bϕ(v)

∣∣ ≤ ‖ϕ‖p–
Xp ‖v‖Xp + ‖ϕ‖q–

Xq ‖v‖Xq

≤ (‖ϕ‖p–
E + ‖ϕ‖q–

E
)‖v‖E, ∀v ∈ E. (.)

Furthermore, the fact that un ⇀ u weakly in E implies that limn→∞ Au(un – u) =
limn→∞ Bu(un – u) = , and so

lim
n→∞ Tu(un – u) = . (.)

On the other hand, as n → ∞, we have

on() =
(
J ′(un) – J ′(u)

)
(un – u)

= Tun (un – u) – Tu(un – u) + �n + �n – λPn + Zn, (.)

where

�n =
∫
RN

a(x)
(|un|p–un – |u|p–u

)
(un – u) dx,

�n =
∫
RN

b(x)
(|un|q–un – |u|q–u

)
(un – u) dx, (.)
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Zn =
∫
RN

μ(x)
(|un|r–un – |u|r–u

)
(un – u) dx,

Pn =
∫
RN

h(x)
(|un|m–un – |u|m–u

)
(un – u) dx.

From (.) and Zn ≥ , we obtain, for large n,

Tun (un – u) – Tu(un – u) + �n + �n ≤ λPn + on(). (.)

Note that, by Lemma ., Pn →  as n → ∞.
Let us now recall the well-known vector inequalities: for all ξ ,η ∈ R

N ,

|ξ – η|p ≤ cp
(|ξ |p–ξ – |η|p–η

)
(ξ – η) for p ≥ , and

|ξ – η|p ≤ Cp
[(|ξ |p–ξ – |η|p–η

)
(ξ – η)

]p/(|ξ |p + |η|p)(–p)/ for  < p < ,
(.)

where cp and Cp are positive constants depending only on p. Assume first that p > q ≥ .
Then by (.) we have ‖un – u‖p

p,a ≤ cp�n and

[un – u]p
s,p =

∫ ∫
RN

∣∣un(x) – un(y) – u(x) + u(y)
∣∣p|x – y|–(N+sp) dx dy

≤ cp

∫ ∫
RN

[∣∣un(x) – un(y)
∣∣p–(un(x) – un(y)

)
–

∣∣u(x) – u(y)
∣∣p–

× (
u(x) – u(y)

)](
un(x) – u(x) – un(y) + u(y)

)|x – y|–(N+sp) dx dy

= cp
[
Aun (un – u) – Au(un – u)

]
. (.)

Similarly, we have ‖un – u‖q
q,b ≤ cq�n and

[un – u]q
s,q =

∫ ∫
RN

∣∣un(x) – un(y) – u(x) + u(y)
∣∣q|x – y|–(N+sq) dx dy

≤ cq

∫ ∫
RN

[∣∣un(x) – un(y)
∣∣q–(un(x) – un(y)

)
–

∣∣u(x) – u(y)
∣∣q–

× (
u(x) – u(y)

)](
un(x) – u(x) – un(y) + u(y)

)|x – y|–(N+sq) dx dy

= cq
[
Bun (un – u) – Bu(un – u)

]
. (.)

Let C = min{c–
p , c–

q }. By (.) and (.) we see that

Tun (un – u) – Tu(un – u) = Aun (un – u) – Au(un – u) + Bun (un – u) – Bu(un – u)

≥ C
(
[un – u]p

s,p + [un – u]q
s,q

)
. (.)

Then the application of (.) yields

C
(‖un – u‖p

Xp + ‖un – u‖q
Xq

) ≤ λPn + on() →  as n → ∞. (.)

In conclusion, un → u in E as n → ∞.
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Finally, it remains to consider the case  < p < . By (.) there exists β >  such that
‖un‖E ≤ β for all n ≥ . Now from (.) and the Hölder inequality it follows that

[un – u]p
s,p ≤ Cp

[
Aun (un – u) – Au(un – u)

]p/([un]p
s,p + [u]p

s,p
)(–p)/

≤ Cp
[
Aun (un – u) – Au(un – u)

]p/([un]p(–p)/
s,p + [u]p(–p)/

s,p
)

≤ Dp
[
Aun (un – u) – Au(un – u)

]p/ (.)

and

‖un – u‖p
p,a ≤ Dp�

p/
n , (.)

where we have applied the inequality

(x + y)(–p)/ ≤ x(–p)/ + y(–p)/ for all x, y ≥  and  < p < , (.)

and Dp = Cpβ
p(–p)/. Similarly, for  < q < , we have

[un – u]q
s,q ≤ Dq

[
Bun (un – u) – Bu(un – u)

]q/, ‖un – u‖q
q,b ≤ Dq�

q/
n (.)

with Dq = Cqβ
q(–q)/. Then, by (.), (.), and (.) we get

Tun (un – u) – Tu(un – u) + �n + �n

≥ C
(
[un – u]

s,q + [un – u]
s,p + ‖un – u‖

p,a + ‖un – u‖
q,b

)
(.)

with some C > . Then (.) and (.) imply that un → u in E as n → ∞. Therefore,
J satisfies the (PS)c condition, and we complete the proof of Lemma .. �

Lemma . Under the assumptions of Theorem ., suppose that u ∈ E is a nontrivial weak
solution of (.). Then there exists λ >  such that λ ≥ λ.

Proof Since u ∈ E is a nontrivial weak solution of (.), we have J ′(u)ϕ =  for all ϕ ∈ E. In
particular, choosing ϕ = u, we have

‖u‖p
Xp + ‖u‖q

Xq + ‖u‖r
r,μ = λ‖u‖m

m,h. (.)

By the Young inequality with ε >  we see that

cd ≤ εθ–cp + τ–ε/(–θ )dτ , τ– + θ– = , θ > . (.)

Taking  < α < β , c = k > , d = tα , τ = β

α
, ε = (kβ/α)–α/(β–α), k > , it follows from (.)

that

ktα – ktβ ≤ kk(k/k)α/(β–α), ∀t ≥ , (.)
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with k = ( – α/β)(β/α)–α/(β–α) < . Furthermore, let k = λh(x), k = 
μ(x), α = m – p, and

β = r – p. Then from (.) we obtain

λh(x)|u|m–p –


μ(x)|u|r–p ≤ cλ

r–p
r–m g(x), ∀(x, u) ∈R

N ×R, (.)

where c = (m–p)/(r–m) and g(x) = [h(x)r–p/μ(x)m–p] 
r–m . By (H) we know g(x) ∈ L

N
sp (RN ).

So, the application of (.) and (.) yields

λ

∫
RN

h(x)|u|m dx –



∫
RN

μ(x)|u|r dx ≤ cλ
r–p
r–m

∫
RN

g(x)|u|p dx

≤ cGSp
λ

r–p
r–m [u]p

s,p (.)

with G = ‖g‖
L

N
sp (RN )

. Then, from (.) and (.) we see that

[u]p
s,p ≤ cGSp

λ
r–p
r–m [u]p

s,p. (.)

This implies that λ ≥ λ ≡ (c–
 S–p

 G–)(r–m)/(r–p) and completes the proof of Lemma ..
�

Lemma . Under the assumptions of Theorem ., the functional J is coercive in E.

Proof Letting k = λ
m h(x), k = 

r μ(x), α = m – p,β = r – p, and t = |u(x)| in (.), we
conclude that

f (x, u) :=
λ

m
h(x)|u|m –


r

μ(x)|u|r ≤ cg(x)|u|p, ∀(x, u) ∈R
N ×R, (.)

where c = (r)
m–p
r–m m

p–r
r–m λ

r–p
r–m and g(x) = [h(x)r–p/μ(x)m–p] 

r–m . Since g(x) ∈ L
N
ps (RN ), for any

small ε > , there exists R >  such that

c

(∫
Bc

R

∣∣g(x)
∣∣N/ps dx

)ps/N

≤ ε (.)

and

c

∫
Bc

R

∣∣g(x)
∣∣|u|p dx ≤ c

(∫
Bc

R

∣∣g(x)
∣∣N/ps dx

)ps/N

‖u‖p
Lp∗s (RN )

≤ εSp
[u]p

s,p, (.)

where S is the embedding constant in (.). So, it follows from (.)-(.) that

J(u) =

p
‖u‖p

Xp +

q
‖u‖q

Xq +

r
‖u‖r

r,μ –
λ

m
‖u‖m

m,h

≥ 
p
‖u‖p

Xp +

q
‖u‖q

Xq –
∫

BR

f (x, u) dx – c

∫
Bc

R

g|u|p dx. (.)

For fixed R >  and for any τ >  and ω > , we decompose BR = X ∪ Y ∪ Z as follows:

X =
{

x ∈ BR :  ≤ h(x) < ω and μ(x) > τ
}

, Z =
{

x ∈ BR : h(x) ≥ ω
}

,

Y =
{

x ∈ BR :  ≤ h(x) < ω and  ≤ μ(x) < τ
}

.
(.)
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Obviously, the sets X, Y , and Z are Lebesgue measurable. Note that the assumption
h(x),μ(x) ∈ L

loc(RN ) implies that meas(Y ) →  as τ →  and meas(Z) →  as ω → ∞.
On the other hand, letting k = λ

m h(x), k = 
r μ(x), t = |u(x)|,α = m, and β = r in (.),

we derive

f (x, u) :=
λ

m
h(x)|u|m –


r

μ(x)|u|r ≤ cg(x) (.)

with c = (r)m/r(λ/m)+m/r , g(x) = [h(x)/μ(x)]m/r . Then,

∫
X

f (x, u) dx ≤ c

∫
X

g(x) dx ≤ C, (.)

where C = C(ω, τ , R) >  is a constant. Furthermore, it follows from (.) and (.) that

∫
Y∪Z

f (x, u) dx ≤ c

∫
Y∪Z

g(x)|u|p dx ≤ c

(∫
Y∪Z

|g|N/ps dx
)ps/N

‖u‖p
Lp∗s (BR )

. (.)

For any ε > , we can choose large ω >  and small τ >  such that meas(Y ∪ Z) is so
small that

c

(∫
Y∪Z

|g|N/ps dx
)ps/N

≤ ε. (.)

From (.) and (.)-(.) we obtain

∫
BR

f (x, u) dx ≤ C + ε‖u‖p
Lp∗s (BR )

≤ C + εSp
[u]p

s,p. (.)

Thus, combining (.) and (.) with (.) yields

J(u) ≥ 
p
‖u‖p

Xp +

q
‖u‖q

Xq – εSp
[u]p

s,p – C ≥ 
p

‖u‖p
Xp +


q
‖u‖q

Xq – C, (.)

where  < εSp
 ≤ /p. Hence, J is coercive in E. �

Lemma . Under the assumptions of Theorem ., there exists u ∈ E such that d = J(u) =
infv∈E J(v) and u is a weak solution of (.).

Proof By Lemma . we see that d > –∞. Let {un} be a minimizing sequence for d in E,
which is bounded in E by Lemma .. Without loss of generality, we may assume that {un}
is nonnegative, converges to weakly to some u in E, and un(x) → u(x) a.e. in R

N . Moreover,
by the weak lower semicontinuity of the norms we have


p
‖u‖p

Xp +

q
‖u‖q

Xq +

r
‖u‖r

r,μ ≤ lim inf
n→∞

[

p
‖un‖p

Xp +

q
‖un‖q

Xq +

r
‖un‖r

r,μ

]
. (.)

Then from Lemma . and (.) it follows

J(u) ≤ lim inf
n→∞ J(un) = d. (.)
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On the other hand, since u ∈ E, we have that J(u) ≥ d, which shows that J(u) = d. There-
fore, u is a global minimum for J , and hence it is a critical point, namely a weak solution
of (.). �

Lemma . Under the assumptions of Theorem ., there exists λ >  such that for all
λ > λ, Eq. (.) admits a global nontrivial minimum u ∈ E of J with J(u) < .

Proof Clearly, J() = . Consider the constrained minimization problem

λ = inf

{

p
‖u‖p

Xp +

q
‖u‖q

Xq +

r
‖u‖r

r,μ : u ∈ E and ‖u‖m
m,h = m

}
. (.)

Let un be a minimizing sequence of (.), which is clearly bounded in E, so that we can
assume, without loss of generality, that it converges weakly to some u ∈ E with ‖u‖m

m,h =
m and

λ =

p
‖u‖p

Xp +

q
‖u‖q

Xq +

r
‖u‖r

r,μ > . (.)

Thus, J(u) = λ – λ <  for any λ > λ, and

d = J(u) = inf
u∈E

J(u) <  for all λ > λ. (.)

This completes the proof. �

Next, we show that if λ > λ, then problem (.) admits a second nontrivial weak solution
e �= u by the mountain pass theorem.

Lemma . Suppose that assumptions (H)-(H) are satisfied. Then, for all e ∈ E and λ >
, there exist α >  and ρ ∈ (,‖e‖E) such that J(u) ≥ α for all u ∈ E with ‖u‖E = ρ .

Proof Let u ∈ E. From (H), (.), and (.) with t = p we obtain

∫
RN

h(x)|u|m dx ≤ ‖h‖γ ‖u‖m
p∗

s
≤ Sm

 ‖h‖γ ‖u‖m
E . (.)

Then,

J(u) ≥ p–‖u‖p
Xp + q–‖u‖q

Xq – λSm
 H‖u‖m

E ≥ p–‖u‖p
E – λSm

 H‖u‖m
E , (.)

where H = ‖h‖γ ,‖u‖E = ρ , and

 < ρ < min
{

,‖e‖E ,
(
λpSm

 H
) 

p–m
}

, (.)

so that

J(u) ≥ ρp(p– – λSm
 Hρm–p) ≡ α > . (.)

Thus, we finish the proof of Lemma .. �
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Lemma . Under the assumptions of Theorem . and λ > λ, Eq. (.) admits a nontrivial
weak solution u ∈ E such that J(u) > .

Proof By Lemma ., for all λ > λ, there exists a nontrivial weak solution u ∈ E with
J(u) < . Taking e = u in Lemma ., we get that J satisfies the geometrical structure of
Theorem A. of []. Thus, for all λ > λ there exists a sequence {un} ⊂ E such that

J(un) → c >  and
∥∥J ′(un)

∥∥
E′ →  as n → ∞, (.)

where

c = inf
γ∈�

max
≤t≤

J
(
γ (t)

)
with � =

{
γ ∈ C

(
[, ]; E

)
: γ () = ,γ () = u

}
. (.)

Since J is coercive in E, the sequence {un} is bounded in E. By Lemma . there exists a
subsequence, still denoted by {un}, such that un → u in E as n → ∞. Therefore, J(u) =
limn→∞ J(un) = c > , and J ′(u)ϕ = limn→∞ J ′(un)ϕ =  for all ϕ ∈ E. So, u is a weak solution
of (.) with J(u) > . �

Proof of Theorem . The application of Lemma . shows that problem (.) has only a
trivial solution if λ < λ. By Lemmas . and . it follows that, for all λ > λ, problem (.)
admits at least two nontrivial weak solutions in E, one with negative energy and the other
with positive energy. This completes the proof of Theorem .. �

Proof of Theorem . We first prove, under the assumptions in Theorem ., that any (PS)c

sequence {un} is bounded in E. Let the sequence {un} satisfy (.). Then, for large n, we
have

c +  + ‖un‖E ≥ J(un) –

m

J ′(un)un

=
(


p

–

m

)
‖un‖p

Xp +
(


q

–

m

)
‖un‖q

Xq +
(


r

–

m

)
‖un‖r

r,μ. (.)

Since m > max{p, r}, it follows from (.) that {‖un‖E} is bounded. Furthermore, by
Lemma . there exists a subsequence of {un}, still denoted by {un}, and u ∈ E such that
un → u in E and J satisfies the (PS)c condition.

From (.) it follows that if u ∈ E is a nontrivial solution, then λ > . This proves part (i).
In the following, we prove part (ii). We now verify the conditions in Theorem . in [].
Clearly, the functional J defined by (.) is even, and J() = . By Lemma . there exist
α,ρ >  such that J(u) ≥ α for all u ∈ E with ‖u‖E = ρ .

On the other hand, for any finite-dimensional subspace E ⊂ E, it is well known that any
norms in E are equivalent. So, there exist d, d >  such that

d‖u‖E ≤ ‖u‖r,μ ≤ d‖u‖E , d‖u‖E ≤ ‖u‖m,h ≤ d‖u‖E , ∀u ∈ E. (.)

Then, from (.) we have

J(u) ≤ 
q
(‖u‖p

E + ‖u‖q
E
)

+

r

dr
‖u‖r

E –
λ

m
dm

 ‖u‖m
E , ∀u ∈ E. (.)
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Since λ >  and m > max{p, r}, there exists R = R(E) > ρ such that J(u) <  for u ∈ E

and ‖u‖E ≥ R. Therefore, all conditions are verified. Then an application of Theorem .
in [] shows that Eq. (.) admits infinitely many solutions un ∈ E with J(un) → ∞ as
n → ∞. This completes the proof of Theorem .. �

3 Proof of Theorem 1.4
In this section, we give a proof of Theorem .. The main tool for this purpose is the
following symmetric mountain pass lemma. First, we introduce the concept of genus.

Definition . [] Let E be a Banach space, and A a subset of E. The set A is said to be
symmetric if u ∈ E implies –u ∈ E. For a closed symmetric set A that does not contain
the origin, we define the genus γ (A) of A as the smallest integer k such that there exists
an odd continuous mapping from A to R

k \ {}. If such k does not exist, then we define
γ (A) = ∞. We set γ (∅) = . Let �k denote the family of closed symmetric subsets A of E
such that  /∈ A and γ (A) ≥ k.

Lemma . [] (Symmetric mountain pass lemma) Let E be an infinite-dimensional Ba-
nach space and J ∈ C(E,R) such that:

(I) J is even and bounded from below, J() = , and J verifies the (PS)c condition.
(II) for each k ∈ N, there exists Ak ∈ �k such that supu∈Ak

J(u) < .
Then one of the following two results holds:
() there exists a sequence {uk} such that J ′(uk) = , J(uk) < , and {uk} converges to zero.
() there exist two sequences {uk} and {vk} such that

J ′(uk) = , J(uk) = , uk �= , limk→∞ uk = , J ′(vk) = , J(vk) < , limk→∞ J(vk) = , and
{vk} converges to a nonzero limit.

We now establish the following:

Lemma . Let the assumptions in Theorem . be satisfied. Then, for each k ∈ N, there
exists Ak ∈ �k such that

sup
u∈Ak

J(u) < . (.)

Proof We use the following geometric construction introduced by Kajikiya []. Let d

and x = (x
 , x

, . . . , x
N ) be fixed by assumption (H) and consider the cube

D(d) =
{

(x, x, . . . , xN ) ∈R
N :

∣∣xi – x
i
∣∣ < d,  ≤ i ≤ N

}
. (.)

We choose small d >  such that the cube D(d) ⊂ 	 := Bd (x). Note that h(x) >  in D(d).
Fix k ∈ N arbitrarily. Let n ∈ N be the smallest integer such that nN ≥ k. We divide D(d)
equally into nN small cubes, denoted Di,  ≤ i ≤ nN , by planes parallel to each face of D(d).
The edge of Di has the length of z = d

n . We construct new cubes Ei in Di such that Ei has
the same center as that of Di. The faces of Ei and Di are parallel, and the edge of Ei has the
length d

n . Then, let the functions ψi(x) ∈ C(RN ),  ≤ i ≤ k, be such that

supp(ψi) ⊂ Di, supp(ψi) ∩ supp(ψj) = ∅ (i �= j),

ψi(x) = , x ∈ Ei,  ≤ ψi(x) ≤ , x ∈R
N .

(.)
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Denote

Vk =
{

(t, t, . . . , tk) ∈R
k : max

≤i≤k
|ti| = 

}
(.)

and

Wk =

{ k∑
i=

tiψi(x) : (t, t, . . . , tk) ∈ Vk

}
⊂ E. (.)

Clearly, Vk is the surface of k-dimensional, cube and Wk is a closed symmetric set in
E such that  /∈ Wk . It is easy to see that Vk is homeomorphic to the sphere Sk– by an
odd mapping (take, e.g., the radial projection Vk → Sk–). Hence, γ (Vk) = k. Moreover,
γ (Wk) = γ (Vk) = k because the mapping (t, t, . . . , tk) �−→ ∑k

i= tiψi(x) is homeomorphic
and odd. On the other hand, since Wk is bounded in E, there is a constant αk >  such that

‖u‖E ≤ αk , ∀u ∈ Wk . (.)

Let z >  and u =
∑k

i= tiψi(x) ∈ Wk . Then,

J(zu) =
zp

p
‖u‖p

Xp +
zq

q
‖u‖q

Xq +
zr

r
‖u‖r

r,μ –

m

∫
RN

h|zu|m dx

≤ zp

p
α

p
k +

zq

q
α

q
k +

zr

r
αr

kSr
r‖μ‖Lσ (	) –


m

k∑
i=

∫
Di

h|ztiψi|m dx, (.)

where Sr is the embedding constant in (.), and σ = p∗
s /(p∗

s – r). By (.) there exists an
integer j ∈ [, k] such that |tj| =  and |ti| ≤  for i �= j. Hence,

k∑
i=

∫
Di

h|ztiψi|m dx =
∑
i�=j

∫
Di

h|ztiψi|m dx +
∫

Dj\Ej

h|ztjψj|m dx +
∫

Ej

h|ztjψj|m dx. (.)

Since ψj(x) =  for x ∈ Ej and |tj| = , we have

∫
Ej

h|ztjψj|m dx = |z|m
∫

Ej

h dx. (.)

On the over hand, since D(d) ⊂ 	, by (H) we obtain

∑
i�=j

∫
Di

h|ztiψi|m dx +
∫

Dj\Ej

h|ztjψj|m dx ≥ . (.)

Then, it follows from (.)-(.) that

J(zu)
zq ≤ zp–q

p
α

p
k +


q
α

q
k +

zr–q

r
αr

kSr
r‖μ‖Lσ (	) –


m

zm–q inf
≤i≤k

(∫
Ei

h dx
)

. (.)

Since h(x) >  in Ei and m ∈ (, q), we have

lim
z→+

sup
u∈Wk

J(zu)
zq = –∞. (.)
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We fix z >  small such that

sup
{

J(u) : u ∈ Ak
}

< , where Ak = zWk ∈ �k , (.)

which completes the proof of (.) and thus of Lemma .. �

Proof of Theorem . Evidently, J() = , and J is an even functional. Then, by Lemma .,
J satisfies the (PS)c condition. Furthermore, by Lemma . conditions (I) and (II) in
Lemma . are satisfied. Thus, by Lemma . problem (.) admits infinitely many solu-
tions un ∈ E with un →  in E. Thus, the proof of Theorem . is finished. �
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