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Abstract
In this paper, we study the blow-up phenomena for a positive solution of a nonlinear
parabolic problem with p-Laplacian operator under a nonlinear boundary condition.
The sufficient conditions which ensure that the blow-up does occur at finite time are
presented by constructing some appropriate auxiliary functions and using first-order
differential inequality technique. Moreover, a lower bound and an upper bound for
the blow-up time are derived when blow-up happens.
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1 Introduction
The mathematical investigation of the blow-up phenomena of a solution to nonlinear
parabolic equations and systems has received a great deal of attention during the last few
decades [–]. The authors in [, ] considered an initial-boundary value problem for
parabolic equations of the form

⎧
⎪⎨

⎪⎩

∂u
∂t = �u + up – |∇u|q in O × (,∞),
u =  on ∂O × (,∞),
u(x, ) = h(x) ≥  in O.

()

Here O is a bounded domain in R
, � is the Laplace operator, ∇ is the gradient opera-

tor, ∂O is the boundary of O. They proved that problem () blows up at finite time T∗ if
 < p ≤  and  < q < p

p+ . Soon et al. in [] gave a lower bound for the blow-up time T∗

under the above condition. Shortly afterwards, the relative result in [] was extended to
the case with nonlinear boundary condition by Liu []. Further, Enache in [] consid-
ered a more complicated case, in which he investigated the following class of quasilinear
initial-boundary value problems:

⎧
⎪⎨

⎪⎩

ut = div(b(u)∇u) + f (u) in O × (,∞),
∂u
∂n + κu =  on ∂O × (,∞),
u(x, ) = h(x) ≥  in O.

()
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Here n is the unit outer normal vector of ∂O, and ∂u
∂n is outward normal derivative of

u on the boundary ∂O which is assumed to be sufficiently smooth. Under the suitable
assumptions on the functions b, f , and h, the author established a sufficient condition to
guarantee the occurrence of the blow-up. Moreover, a lower bound for the blow-up time
was obtained.

However, there are few papers on blow-up phenomena of the problem with a p-
Laplacian operator except [], in which Zhou considered the following:

⎧
⎪⎨

⎪⎩

ut = div(u|∇u|p–∇u) + (γ + )|∇u|p in O × (,∞),
∂u
∂n =  on ∂O × (,∞),
u(x, ) = h(x) ≥  in O.

()

He proved that problem () blows up at finite time T∗ when  < γ < . But he did not give
any bounds to the scale T∗.

In this text, we consider the more complicated case than the ones in ()-(),

(
a(u)

)

t = div
(
b(u)|∇u|p–∇u

)
+ γ b′(u)|∇u|p + f (u) ()

with the following nonlinear boundary condition:

∂u
∂n

+ g(u) =  ()

and the initial condition

u(x, ) = h(x) ≥ . ()

In the process of deriving the lower bound, we make the following assumptions:
(A) The parameters of problem () satisfy  ≤ γ ≤ , p > .
(A) The function g(s) satisfies

g(s) =
n∑

i=

κisσi ,

where κis and σis are nonnegative constants.
Since the initial data h(x) in () is nonnegative, it is easy to see that the solution u to

problem ()-() is nonnegative inO×(,∞) by the parabolic maximum principles [, ].
In Section , we plan to present the sufficient conditions which guarantee the occurrence
of the blow-up. In Section , we will find a lower bound for the blow-up time when blow-
up occurs.

2 The blow-up solution
In this section we mainly seek the sufficient conditions for the blow-up. To this end, we
define some auxiliary functions of the form

G(s) = 
∫ s


yb(y)(p–)p–a′(y) dy,
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A(t) =
∫

O
G

(
u(x, t)

)
dx,

Hi(s) =
∫ s


ypσi–σi b(y)p(p–) dy, i = , , . . . , n, ()

σ = max{σi, i = , , . . . , n}, F(s) =
∫ s


f (s)b(s)(p–)p– ds,

B(t) =
∫

O
F(u) dx –


p

∫

O
b(u)(p–)p[(∇u)]

p
 dx –

n∑

i=

κ
p–
i

∫

∂O
Hi(u) dx,

where u(x, t) is the solution of problem ().
The main result of this section is formulated in the following theorem.

Theorem . Let u(x, t) be the solution of problem ()-(). Assume that

sf (s)b(s)(p–)p– ≥ p( + α)F(s), s > , ()

lim
y→∞ yσp–σ+b(y)p(p–) =  and B() ≥ , ()

where α is a positive constant. Then u(x, t) blows up as some finite time T∗ such that

T∗ ≤ M–A()– 
 (pσ–σ+)(+α),

where M is a positive constant to be determined later.

Proof We first compute

A′(t) =
∫

O
G′(u(x, t)

)
ut dx

= 
∫

O
ub(u)(p–)p–[div

(
b(u)|∇u|p–∇u

)
+ γ b′(u)|∇u|p + f (u)

]
dx

= 
∫

O
uf (u)b(u)(p–)p– dx

+
[
γ – 

(
(p – )p – 

)]
∫

O
ub(u)(p–)p–b′(u)

[
(∇u)]

p
 dx

– 
∫

O
b(u)(p–)p[(∇u)]

p
 dx – 

n∑

i=

κ
p–
i

∫

∂O
b(u)(p–)pupσi–σi+ dx.

Noting that b′ ≤  and γ ≤ , we drop the nonnegative terms to obtain

A′(t) ≥ 
∫

O
uf (u)b(u)(p–)p– dx – 

∫

O
b(u)(p–)p[(∇u)]

p
 dx

– 
n∑

i=

κ
p–
i

∫

∂O
b(u)(p–)pupσi–σi+ dx. ()

Next, we prove

(pσi – σi + )H(u) ≥ upσi–σi+b(u)p(p–). ()
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Use the method of integration by parts and consider condition (). Then we obtain

Hi(u) =
∫ u


ypσi–σi b(y)p(p–) dy

= ypσi–σi+b(y)p(p–)
∫ u


– (pσi – σi)

∫ u


ypσi–σi b(y)p(p–) dy

– p(p – )
∫ u


ypb(y)p(p–)–b′(y) dy

≥ upσi–σi+b(u)p(p–) – (pσi – σi)
∫ u


ypσi–σi b(y)p(p–) dy

= upσi–σi+b(u)p(p–) – (pσi – σi)Hi(u).

Thus, we prove (). Further, inserting () and () into () gives

A′(t) ≥ (pσ – σ + )( + α)
∫

O
F(u) dx

– ( + α)
∫

O
b(u)(p–)p[(∇u)]

p
 dx

– (pσ – σ + )( + α)
n∑

i=

κ
p–
i

∫

∂O
Hi(u) dx

≥ (pσ – σ + )( + α)B(t). ()

On the other hand, computing B(t) in () gives

B′(t) =
∫

O
f (u)b(u)(p–)p–ut dx

– (p – )
∫

O
b(u)(p–)p–b′(u)ut

[
(∇u)]

p
 dx

–
∫

O
b(u)(p–)p[(∇u)]

p
 –∇u∇ut dx

–
n∑

i=

κ
p–
i

∫

∂O
H ′

i(u)ut dx

=
∫

O
f (u)b(u)(p–)p–ut dx

– (p – )
∫

O
b(u)(p–)p–b′(u)ut

[
(∇u)]

p
 dx

–
∫

O
b(u)(p–)p[(∇u)]

p
 –∇u∇ut dx

–
n∑

i=

κ
p–
i

∫

∂O
upσi–σi b(u)p(p–)ut dx

=
∫

O
b(u)(p–)p–ut

{
f (u) + b′(u)

(
(∇u))

p


+b(u) · div
[(

(∇u))
p

]}

dx
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≥
∫

O
b(u)(p–)p–ut

{
f (u) + (γ + )b′(u)

(
(∇u))

p


+b(u) · div
[(

(∇u))
p

]}

dx

=
∫

O
b(u)(p–)p–ut

(
a(u)

)

t dx

=
∫

O
b(u)(p–)p–a′(u)(ut) dx.

Since a′ >  and B() ≥ , we see that B(t) is a nondecreasing function satisfying

B(t) ≥ .

Multiplying () by B(t) and using the Hölder inequality, we obtain

 ≤ ( + α)A′(t)B(t)

≤ 
(pσ – σ + )

(
A′(t)

)

=


(pσ – σ + )

(∫

O
ub(u)(p–)p–a′(u)ut dx

)

≤ 
(pσ – σ + )

B′(t)
(∫

O
ub(u)(p–)p–a′(u)u dx

)

. ()

We further prove that

G(u) ≥ ub(u)(p–)p–a′(u). ()

Noting b′ ≤ , a′ > , and a′′ ≤ , and using the method of integration by parts, we derive

G(u) = sb(s)(p–)p–a′(s)
∫ u


–

∫ u


sb(s)(p–)p–a′(s) ds

–
(
(p – )p – 

)
∫ u


sb(s)(p–)p–b′(s)a′(s) ds

–
∫ u


sb(s)(p–)p–a′′(s) ds

≥ ub(u)(p–)p–a′(u) – G(u).

Thus, we prove () and substitute it into (). Then we get

( + α)A′(t)B(t) ≤ 
pσ – σ + 

B′(t)
(∫

O
G(u) dx

)

=


pσ – σ + 
B′(t)A(t),

which leads to

d
dt

(
A– 

 (pσ–σ+)(+α)B
) ≥ . ()
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Integrating () from  to t gives

B(t)
B()

≥
(

A(t)
A()

) 
 (pσ–σ+)(+α)

.

This and () imply that

A′(t) ≥ (pσ – σ + )( + α)B()

· A()– 
 (pσ–σ+)(+α)A(t)


 (pσ–σ+)(+α)

or

A′(t)

A(t)

 (pσ–σ+)(+α)

≥ (pσ – σ + )( + α)B()A()– 
 (pσ–σ+)(+α). ()

Use the fact that p > , σ >  and integrate () from  to t. Then we deduce that

A(t)– 
 (pσ–σ+)(+α)

≤ A()– 
 (pσ–σ+)(+α) – Mt, ()

where

M = 
[




(pσ – σ + )( + α) – 
]

(pσ – σ + )

· ( + α)B()A()– 
 (pσ–σ+)(+α).

Inequality () cannot hold for A()– p
 (+α) – Mt ≤ , that is, for

t ≥ M–A()– 
 (pσ–σ+)(+α).

Hence, we conclude that the solution u of problem ()-() blows up at some finite time T∗

with upper bound M–A()– 
 (pσ–σ+)(+α). The proof is complete. �

3 Lower bound for blow-up time
In this section we seek the lower bound for the blow-up time T∗. To this end, we define
an auxiliary function of the form

v(s) =
∫ s



a′(y)
b(y)

dy, ()

E(t) =
∫

O

[
v
(
u(x, t)

)]μp+ dy with μ ≥ . ()

Moreover, we have to point out that () indicates

�v =
a′(u)
b(u)

�u, ()

which is very important to prove the following theorem.
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Theorem . Suppose that O ⊂R
 is a bounded convex domain. Further, assume that the

nonlinear functions a, b, and f satisfy

 < f (s) ≤ δb(s)
(∫ s


v(y) dy

)p–

, s > , ()

where δ is a positive constant independent of a, b, and f . Then the blow-up time T∗ is
bounded below by

T∗ ≥
∫ +∞

E()

dξ

A + Aξ + Aξ

 + Aξ  + Aξ

(μp+)–p
(p–)(μp+)

,

where A, A, A, A, and A are positive constants to be determined later.

Proof We first compute

E′(t) = (μp + )
∫

O
vμp+ a′(u)

b(u)
ut dx

= (μp + )
∫

O
vμp+ 

b(u)
[
div

(
b(u)|∇u|p–∇u

)

+γ b′(u)|∇u|p + f (u)
]

dx

= –κp–(μp + )
∫

∂O
vμp+|u|(p–)σ dx

– (μp + )(μp + )
∫

O
vμp∇v|∇u|p–∇u dx

+ (μp + )( + γ )
∫

O
vμp+ b′(u)

b(u)
|∇u|p dx

+ (μp + )
∫

O
vμp+ f (u)

b(u)
dx

≤ –κp–(μp + )
∫

∂O
vμp+|u|(p–)σ dx

– (μp + )(μp + )
∫

O
vμp∇v|∇u|p–∇u dx

+ (μp + )( + γ )
∫

O
vμp+ b′(u)

b(u)
|∇u|p dx

+ δ(μp + )
∫

O
vμp+p dx. ()

The last inequality holds due to condition (). Further, in view of (), (), and b′ ≤ ,
we drop some non-positive terms in () to get

E′(t) ≤ –(μp + )(μp + )
∫

O

(
b(u)
a′(u)

)p–

vμp|∇v|p dx

+ δ(μp + )
∫

O
vμp+p dx. ()
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Using the fact that b(s) ≥ bm >  and  < a′(s) ≤ a′
M , () becomes

E′(t) ≤ –(μp + )(μp + )(μ + )–p
(

bm

a′M

)p– ∫

O

∣
∣∇vμ+∣∣p dx

+ δ(μp + )
∫

O
vμp+p dx. ()

Next, we seek to bound δ(μp + )
∫

O vμp+p dx in terms of E(t) and
∫

O |∇vμ+|p dx. By means
of the Hölder and Young inequalities, we have

∫

O
vμp+p dx ≤ |O| 

μp+p+

(∫

O
vμp+p+ dx

) μp+p
μp+p+

≤ 
μp + p + 

|O| +
μp + p

μp + p + 

∫

O
vμp+p+ dx

≤ 
μp + p + 

|O| +
μp + p

μp + p + 

·
(∫

O
v


 (μp+) dx

) p
μp+

(∫

O
vμp+ dx

)μp+–p
μp+

≤ 
μp + p + 

|O| +
μp + p

μp + p + 
p

μp + 

∫

O
v


 (μp+) dx

+
μp + p

μp + p + 
μp +  – p

μp + 

∫

O
vμp+ dx. ()

Using the integral inequality derived in [] (see (.)), namely

∫

O
u


 (μp+) dx ≤  



ρ



E(t)

 +

√


 


(
ρ

ρ
+ 

) 

[

E(t)

χ +



χ

∫

O

∣
∣∇u


 (μp+)∣∣


dx

]

,

() becomes

∫

O
vμp+p dx ≤ 

μp + p + 
|O| +

μp + p
μp + p + 

p
μp + 

 


ρ



E(t)



+
μp + p

μp + p + 
p

μp + 

√


 


(
ρ

ρ
+ 

) 


·
[

E(t)

χ +



χ

∫

O

∣
∣∇u


 (μp+)∣∣


dx

]

+
μp + p

μp + p + 
μp +  – p

μp + 

∫

O
vμp+ dx. ()

For simplicity, let w = v+ns. Again by using the Hölder and Young inequalities, we obtain

∫

O

∣
∣∇v


 (μp+)∣∣


dx

≤ (μp + )

(μ + )

(∫

O
|∇w|p dx

) 
p
(∫

O
w

p(μp+)
(p–)(μ+) – p

p– dx
) p–

p
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≤ (μp + )

p(μ + )

∫

O
|∇w|p dx

+
p – 

p
(μp + )

(μ + )

∫

O
w

p(μp+)
(p–)(μ+) – p

p– dx

≤ (μp + )

p(μ + )

∫

O

∣
∣∇v+μ

∣
∣p dx

+
p – 

p
|O|– (μp+)–p

(p–)(μp+)
(μp + )

(μ + ) E(t)
(μp+)–p

(p–)(μp+) ,

combining which with () yields

δ(μp + )
∫

O
uμp+p dx

≤ A + AE(t) + AE(t)

 + AE(t)

+ AE(t)
(μp+)–p

(p–)(μp+) + χA

∫

O

∣
∣∇v+μ

∣
∣p dx, ()

where χ is a positive constant to be determined later,

A =
δ(μp + )
μp + p + 

|O|, A = δ(μp + )
μp + p

μp + p + 
μp +  – p

μp + 
,

A =
 



ρ


δ(μp + )

μp + p
μp + p + 

p
μp + 

,

A =
δ(μp + )

χ


μp + p
μp + p + 

p
μp + 

√


 


(
ρ

ρ
+ 

) 


,

A =



√


 


(
ρ

ρ
+ 

) 

δ(μp + )

μp + p
μp + p + 

· p
μp + 

p – 
p

|O|– (μp+)–p
(p–)(μp+)

(μp + )

(μ + ) χ ,

A =



√


 


(
ρ

ρ
+ 

) 

δ(μp + )

μp + p
μp + p + 

p
μp + 

(μp + )

p(μ + ) .

Finally, inserting () into (), we obtain

E′(t) ≤ –(μp + )(μp + )(μ + )–p bm

a′M

∫

O

∣
∣∇vμ+∣∣p dy

+ A + AE(t) + AE(t)

 + AE(t)

+ AE(t)
(μp+)–p

(p–)(μp+) + χA

∫

O

∣
∣∇v+μ

∣
∣p dx. ()

To make use of (), we choose

χ = A–
 (μp + )(μp + )(μ + )–p

(
bm

a′M

)p–
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to arrive at

d
dt

E(t) ≤ A + AE(t) + AE(t)

 + AE(t) + AE(t)

(μp+)–p
(p–)(μp+) . ()

An integration of the differential inequality () from  to t implies that

∫ E(t)

E()

dξ

A + Aξ + Aξ

 + Aξ  + Aξ

(μp+)–p
(p–)(μp+)

≤ t

from which we derive a lower bound for T∗, that is,

T∗ ≥
∫ +∞

E()

dξ

A + Aξ + Aξ

 + Aξ  + Aξ

(μp+)–p
(p–)(μp+)

.

Thus, the proof is complete. �

Remark . Theorem . remains valid if we assume that g is a positive Lp(R+) function
replacing the one in Assumption (A).
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