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Abstract

This paper provides a positive solution for the (p, g)-Laplace equation in RY with a
nonlinear term depending on the gradient. The solution is constructed as the limit of
positive solutions in bounded domains. Strengthening the growth condition, it is
shown that the solution is also bounded. The positivity of the solution is obtained
through a new comparison principle. Finally, under a stronger growth condition, we
show the existence of a vanishing at infinity solution.
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1 Introduction
In this paper, we study the existence of a (positive) solution for the following quasi-linear
elliptic equation:

) —Apu + M |ulP~2u — pAgu + pho|ul2u = f(x,u, Vi) inRY,
u>0 in RN,

In the left-hand side of the equation in (P), we have the p-Laplacian A, and the g-Laplacian

Ay with1 < g < p < +o0 and the constants ;& > 0, A; > 0,and 1, > 0. The problem covers the

corresponding statement with p-Laplacian in the principal part, for which it is sufficient

to take p = 0. Here —A,, is regarded as the operator — A, : WP (RN) — WL (RN), where

14 L —1, defined by
pr

(-Apu,v) :/ |VulP2VuVvdx forallu,ve Wl’p(RN).
RN

The right-hand side of the equation in (P) is in the form of convection term, meaning a
nonlinearity that depends on the point x in RY, on the solution %, and on its gradient V.
The existence of positive solutions for problems with p-Laplacian and convection term
on a bounded domain has been studied in [1-3]. In the case where the principal part of
the equation is driven by the (p, g)-Laplacian operator with 1 < g < p and by a nonhomoge-
neous operator, the existence of a positive solution of elliptic problems with convex term
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on a bounded domain has been investigated in [4] and [5], respectively. Results of this
type when the principal part of the equation is expressed through a general Leray-Lions
operator can be found in [6]. Essential features of the present work are the dependence on
the gradient Vu, which prevents the use of variational methods, and the unboundedness
of the domain, which produces lack of compactness.
We assume that £ : RN x R x R¥ — R is a continuous function satisfying the growth
condition:
(FO) f(x,0,)=0forallx e RN, e RN;
(F1) there exist constants r1, 7, € (0,p — 1) and continuous nonnegative functions
ag € I (RN) and a; € L'i(RN) (i =1,2), where 1/p + 1/p/ =1 and
Fi=plp—ri—1)=(p/(r; + 1))’ (i =1,2), such that

[f(,6,8)| < ao(x) + ar(x)[t] + ax(x)|&]™ @)

for all (x,£,&) e RN x R x RN,
In this setting, by a solution of problem (P) we mean any function z € W (RN) N
WL4(RN) when p > 0 or u € W(RN) when p = 0 such that u(x) > 0 for a.e. x € RN and

/ (|Vu|1"2 + M|Vu|q_2)Vquo dx + / ()L1|u|p_2 + MA2|u|q‘2)u<p dx
RN RN
= ANf(x, u,Vu)pdx forall p € C°(RV).

In order to show the positivity of a solution, we will need an additional growth condition
when ¢ is small:
(F2) there exist constants §o >0 and rp € (0,p—1)if u =0orrg € (0,4—1) if u >0 and
a continuous positive function by such that

bo(x)t" <f(x,t,&) forall0<t<8y,xecRN,£ RN, (2)

We mention that the fact that condition (F2) is supposed only for ¢ > 0 small is a signif-
icant improvement with respect to all the previous works. A direct consequence is that f
is allowed to change sign.

For example, the following nonlinearity satisfies our assumptions (F0) ~ (F2):

S, 68) = a1 (%)t + ax(x)|£]" sint,

with a; € I (RN) N L (RN) and a, € L2(RN), where 7; = p/(p - r; = 1) (i = 1,2).
Our main result provides the existence of a (positive) solution for problem (P).

Theorem 1 Under assumptions (F0)-(F2), problem (P) admits a (positive) solution u €
WPRN)N WHRN) N CL (RY) if > 0 and u € WP(RN) N CL_(RN) if u = 0.

The proof is based on a priori estimates obtained through hypotheses (F0)-(F2) for ap-
proximate solutions on bounded domains and the use of comparison arguments. In this
respect, we establish several comparison principles that ultimately determine the positiv-
ity of solutions.
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Under a stronger version of the growth condition (F1), we show that any positive solution

disappear at infinity.

Theorem 2 Assume (FO)-(F2). If one of the following conditions holds, then any (positive)
solution u of problem (P) satisfies that u(x) — 0 as |x| — oc:
i) N=<p;
(i) N >pand p? < p* (ifand only ifp < N < p*/(p - 1));
(iii)y N > p*/(p —1), and for the functions a; (i = 0,1,2) in (F1), there exist R, > 0 and y;

such that
P pr’
Yori> —» Voo T~ (3)
P -p (p —r)p* - p)
sup / |ai(x)|" dx < o0 (4)
x0 RN J B(x0,2R+)

fori=0,1,2, where p* := pN/(N — p) if N > p.

Since we are looking for positive solutions of problem (P), without any loss of generality,
we will suppose in the sequel that f(x,,s) = 0 for all £ < 0 and (x,5) € R¥ x RV,

The rest of the paper is organized as follows. In Section 2, we present comparison prin-
ciples related to problem (P). Section 3 deals with approximate solutions on bounded do-
mains. Section 4 is devoted to the proof of Theorem 1. In Section 5, we give a proof of

Theorem 2 after we show the boundedness of a solution.
2 Comparison principles

In this section, we assume that D is a bounded domain in RY. We consider the operator
denoted —A, from W'#(D) to W'#(D)* defined by

(—Apu,w:/ |VulP2VuVvdx forallu,v e W' (D).
D

First we recall the following result.

i=1,2, and w1 =Wy on dD. [le/Wz,Wz/Wl S LOQ(D), then

Lemma 1 ([7], Lemma 2.1) Let wy,w, € L*(D) satisfy w; > 0 a.e. on D, w}/q € W (D) for

1/q 1/q W1 — W2 1/q /g W1— W2
0< <_APW1 - //LAqWI ) W> - <_APW2 - /,LAqWZ ) W> (5)
W w;
Lemma 1 leads to a comparison principle for a subsolution and a supersolution of the
problem
—Apu+ M |ulP~2u — pAgu + pho|ul"?u =g(u) inD,
(6)
u=0 on 0D,

where g : R — R is a continuous function.
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We say that u; € W?(D) is a subsolution of problem (6) if #; <0 on 3D and
/(qul P2V Vo + Alua|P 2w + | Vi |72V Vo + kg |u |72 u @ dx
D
< / glu)pdx
D

forall g € Wé‘p (D) with ¢ > 0 in D, provided that the integral [, g(u;)¢ dx exists. We say
that u; € W#(D) is a supersolution of (6) if the reversed inequalities are satisfied with u,
in place of #; for all ¢ € Wé’p(D) with ¢ > 0 in D.

Theorem 3 Let g: R — R be a continuous function such that t'=9g(t) is nonincreasing for
t>0if u>0 and t'Pg(t) is nonincreasing for t > 0 if u = 0. Assume that u, and u, are
a positive subsolution and a positive supersolution of problem (6), respectively. If u,(x) >
uy(x) = 0 for all x € 3D and u; € C*(D) for i = 1,2, then uy > u, in D.

Proof We prove the result only for u > 0 because the case u = 0 is easier. Suppose by
contradiction that the set Dy = {x € D : u;(x) > up(x)} is nonempty. Let U be a connected
component of Dy. Noting that inf5 u, > 0, we see that U C D, uy =uy on dU, and u;luj €
L>®(U) for i,j = 1,2. So, (uf - ug)/uiﬂ, (ul - ug)/u?1 € Wg’p(l,[), and extending by 0 on
D\ U, we can take them as test functions in the above definitions of subsolution and

supersolution for problem (6). It follows that

uf —u; uf - u;
—Apbtl — /LAqul, T — —Apug — ,LLAqu, T
U U,
q q
-1 -1 U, —u
< / (=™ = phoul™ + glw)) ——=2 dx
u ul

qa_ 4
U —uy

- / (—Alu’;”l—ukzug’1+g(uz)) ] dx
u U

o [ ) - [ (S0 08—

gq-1
Uy U,

< 0.

The last inequality is obtained through our assumption that g(£)/¢7! is nonincreasing for
t>0and A > 0.

On the other hand, note that we can apply Lemma 1 with w; = ! (i = 1,2) and U in place
of D. The conclusion provided by (5) in Lemma 1 contradicts the above inequality in the

case where U is nonempty. Therefore, Dy = J, which completes the proof. 0

The next theorem points out that the condition of supersolution in Theorem 3 can be

relaxed to a weaker notion of supersolution directly related to the given subsolution.

Theorem 4 Let g: R — R be continuous function such that t'~9g(t) is nonincreasing for
t>0 if u>0 and t'Pg(t) is nonincreasing for t > 0 if 1 = 0. Assume that u; € C'(D) is a
positive subsolution of problem (6) and that h: D x R x RN — R is continuous function

Page 4 of 20
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such that h(x,t,&) > g(t) forallx e RN, € € RN, and t € (0, |uy || 1o (p)]. If us € CX(D) is a
(positive) solution of

At + M |ulP~2u — A gu + pda|ul2u = h(x,u, Vu) in D,
u>0 inD

such that uy(x) > uy(x) = 0 for all x € 9D, then uy; > w in D.

Proof The conclusion can be achieved following the same argument as in Theorem 3.
Indeed, arguing by contradiction, let us assume that the set Dy := {x € D : u3(x) > uy(x)}
is not empty. Let U be a connected component of Dy. Then u; = uy on dU and g(uy) <

h(x, uz, Vuy) in U. Proceeding as in the proof of Theorem 3, we have

9 .4 9 .4
A Aguy, A" A Agup, 12
—AQpU1 — U qulyT —\—AQpUy — | quz,T <V.
Uy U

This leads to a contradiction by applying Lemma 1. O

In the case where u; and u; satisfy the homogeneous Dirichlet boundary condition we

can state the following:

Theorem 5 Let g: R — R be a continuous function such that t"-9g(t) is nonincreasing
Sor t >0 if u > 0 and t'Pg(t) is nonincreasing for t > 0 if 1 = 0. Assume that u; € Cy(D)
is a positive subsolution of problem (6) and that h: D x R x RN — R is continuous and
such that h(x,t,£) > g(t) forallx e RN, € e RN, and t € (0, ||u1||p)]. If uz € Cy(D) is a
(positive) solution of problem (7) such that uy /uy € L% (D) and uy/uy € L (D), then uy > uy
in D.

Proof Due to the assumptions u;/u; € L°(D) and uy/u; € L*(D), it turns out that (u! —
ud) /™, W - ud) ™ e Wé'p (U) with U introduced in the proof of Theorem 3. Then we

can conclude as in the proof of Theorem 4. d

3 Solution on a bounded domain

In this section, we assume that D is a bounded domain in RN with C? boundary dD. For
r > 1, we denote by | u||;(p) the usual norm on the space L"(D). We endow W/é’p (D) with
the norm ||u||} = ||Vu||f},(D) +M ||u||f},(D), which is equivalent to the usual one.

We focus on the existence of a (positive) solution for the problem

—Apu + M |ulP~2u — pAgu + pho|u|®?u = f(x,u, Vi) inD,
(PD) u>0 in D,
ulx)=0 on aD.

Here we impose the following hypotheses: f : D x R x RN — R is a continuous function

satisfying

(FO) f(x,0,€)=0 forallx € D,& € RY;
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(ﬁ) there exist constants r,7, € (0,p — 1) and continuous nonnegative functions a; (i =
0,1,2) on D such that

[f(,£,8)| < ao(x) + ar(x)|t]" + ax(x)|E ] (8)

forall (x,£,&) e D x R x RY;
(F~2) there exist constants §g > 0 and rg € (0,p—1)if u =0 orry € (0,4 —1) if © >0 and a
continuous function bg such that inf.ep bg(x) > 0 and

bo(x)t" <f(x,t,&) forall0<t<8y,xeD,&cRN. 9)

We say that u € Wé’p(D) is a solution of (PD) if u(x) > 0 for a.e. x € D and

f (|Vu|1’_2 + /L|Vu|q_2)VuV<p dx + / ()»1|u|‘”_2 + Mk2|u|q_2)ugo dx
D D
= /f(x, u,Vu)pdx forallp e WS’”(D).
D

The existence of a solution for problem (PD) is stated as follows.

Theorem 6 Under assumptions (157))—(1?2), problem (PD) admits a (positive) solution u €
c (D) such that du/dv < 0 on dD, where v stands for the outer normal to dD.

In the proof of Theorem 6, we utilize the following approximate equation:

—Apu + M |ulP~2u — pAgu + pha|ul?u = f(x,u,Vu) + e inD,
(PD,) u>0 in D,
ulx)=0 on aD,

with € > 0 and a nonnegative function 0 # ¢ € C(D).

Lemma 2 Under (ﬁ))—(fZ),for any € > 0 and a nonnegative function 0 # v € C(D), prob-
lem (PD,) admits a (positive) solution u. € Cy(D) such that du./dv <0 on dD.

Proof We argue as in [5], Proposition 8, and [7]. Fix ¢ > 0 and consider a Schauder basis
{el,...,em,...} of Wé’P(D) (refer to [4, 8] for its existence). For each m € N, we define the m-
dimensional subspace V,, := span{ey, ..., e,,} of W/é’p (D). The map T,,: R" — V,, defined
by (&1, ...,&m) = >y &€ is alinear isomorphism. Let 7% : V%, — (R™)* be the dual map
of T},. Identifying R” and (R")*, we may regard T, as a map from V,}; to R”. Define the
maps A,, and B, from V,, to V! as follows:

(Am(u),v) = / (IVulP™ + | Vul*?)VuVvdx
D

and

(B(10), ) 1= — /

(Mlul ™ + pholul®>)uvdsx + / (f (e, 10, Vut) + ey ) v
D D

forallu,veV,.
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By (F1) and Hélder’s inequality, we have

(A (@) = Byu(u), u)

1 1
> llully —d(lul ) + eIl gy + Nl ) = el Izl o) (10)

for all u € V,,,, where d is a positive constant independent of m and u. Because of r; +1 < p
and r, +1 < p, we easily see that A,, — B,, is coercive on V,,,, whence T o (A,, — B,,) 0 T}y, is
coercive on R™. By a well-known consequence of Brouwer’s fixed point theorem it follows
that there exists y,, € R” such that (T}, o (4,; — B) © T))(ym) = 0, and hence A,,(u,,) —
By () = 0 with w1, = Ty (¥11) € Vi

Writing (10) with u = u,, € Wé’p (D) shows the boundedness of the sequence ||u,,]p.
Thus, along a subsequence, u,, converges to some u, weakly in Wé’p (D) and strongly in
L?(D).

We claim that

Uy —> Uy in Wé’p(D) as m — o0. (11)

Let P,, denote the projection onto V,,, that is, P,,u = ZZI &e; for u = Z?fl &e;. Since u,,,
P,uy € V,, and A,,(4,,) — Byi(u,) = 0 in V', we obtain

(Am(um)r Upm — Pm”())
= <Bm(um), Um _Pmlfl0>

= <Bm(um): Um — Ll()) + (Bm(um)’ Ug _Pmuo)
= f (_)\lmm |p—2um - /'L)\2|um|q_zum +f(x; U, VMm))(um - Pug)dx
D
+ / eV (U, — Pyiitg) dx
D

— 0 asm — oo,

where we use (1?1), the boundedness of ||u,,|lp, U, — uo in LP(2), and P,,ug — ug in
Wé’p (D). This leads to

lim | |Vitl? 2V, V() — o) dx = 0.
m—> 00 D

In view of the (S,)-property of —A,, (see, e.g., [9], Proposition 3.5, or refer to (22) in the
proof of Theorem 1), we obtain (11).
Now let us prove that i is a solution of (PD,). Fix [ € N and ¢ € V. For each m > [,

letting m — oo in (A, (4,), ) = (By(um), ¢) and making use of (11), we have

[ (9P w1Vl ) VoV o [ (il + wialial ™oy
D D

=/I;(f(x,u0,Vuo)+sx//)godx. (12)



Faria et al. Boundary Value Problems (2016) 2016:158 Page 8 of 20

Since [ is arbitrary, equality (12) holds for every ¢ € | J;»; Vi. In fact, the density of
U1 Vi in W/é’p (D) guarantees that (12) holds for every ¢ € Wé’p (D). This means that ug
is a solution of (PD,). Acting with —u; (where u; := max{0, —u,}) and taking into account
that ¥ > 0 and f(x,¢,&) = 0 for £ <0, we see that

” Uy Hlfj tu ” Vi, “zq(D) + A H Uy ”Zq(D)

= (f(x,uo,Vu0)+8w)u0 dx=c¢ Yugdx <0,

un<0 up<0

whence u#y > 0 a.e. in D. Moreover, uy # 0 because we assumed that ¥ % 0 and ¢ > 0.
Next, we observe that hypothesis (fl) allows us to refer to [10], Theorem 7.1 (see also [11]
and [5]), from which we infer that u € L*°(D). Furthermore, the regularity result up to the
boundary in [12], Theorem 1, and [13], p.320, ensures that i € Cé’ﬁ(ﬁ) with some 8 € (0,1).
Applying the strong maximum principle in [14], Theorem 5.4.1, and the boundary point
lemma in [14], Theorem 5.5.1 (note that f(x,£,&) > 0 for 0 < ¢ < §) entails that > 0 in
D and 9u/dv < 0 on dD. Altogether, we have established that the conclusion of lemma is
fulfilled for u, = u,. a

We will also need the following result.

Lemma 3 Let1<g<p<+00, A} >0, Xy >0, and u > 0. For any constants b > 0 and
O<r<p-1withO<r<gq-1ifu>0,the problem

— At + M |ulP~2u — pAgu + pho|ul?u = bu”  in D,
u>0 inD, (13)
u=0 on oD

admits a solution u, € C(D) satisfying A1||ub||’2;fa) <band duy/dv <0 on dD.

Proof We can proceed for the existence of a solution of (13) along the lines of the proof
of [7], Lemma 3. For readers’ convenience, we outline the proof in the case where u > 0.
Given the constants b > 0 and 0 < r < g — 1, we define the functional I : Wol'p (D) — R by

I(u) = 1/(|Vu|l’+)\l|u|1”)dx+ﬁf(|Vu|q+A2|u|q)dx-L (u+)”1dx
pJp qJp r+1Jp

forall u € Wé’p(D), where u* = max{0, u}. Notice that [ is of class C'. By using the Sobolev
embedding theorem we have the estimate

1
1) > = ||lull?, = cllu)y®  forall u € Wy* (D)
p

with a constant ¢ > 0 independent of u. Since p > r + 1, I is bounded from below and
coercive. Having that [ is sequentially weakly lower semicontinuous too, there exists u; €
W,” (D) such that

I(up)= inf  I(u)
ueWy? (D)
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(see, e.g., [15], Theorems 1.1, 1.2). In addition, because of r + 1 < g < p, taking any positive
smooth function v and a sufficiently small ¢ > 0, we have

tp—r—l tq—r—l
I(tv) = ¢ (— i+ &
p

[R5
e i )] (D)) <0

(V¥ + 22lVlEa) 1

This ensures that inf _ ) I(u) < 0, and hence u; is a nontrivial critical point of I. By the

Wi (D
regularity theory we infgr that u;, € Cy(D). Taking —u; as a test function in the equation
I'(up) = 0, we see that u, > 0. Then the strong maximum principle enables us to derive
that u; > 0 in D, so uy, is a solution of problem (13), and du;/dv <0 on dD.

Taking u$*! with o > 0 as a test function in (13), by using Holder’s inequality and that

r+1<pwe get
)»1”1/!1,”12;?&@) < b/ MZ*”‘H dx < b”l/lb”;;%r(lD)|D|(P—r—1)/(p+ot)’
D

where |D| denotes the Lebesgue measure of D, and hence

—r-1 .
A-l””b”ipra(D) < b|D|(p r=1)/(p+a)

Letting o — 00, we conclude that A ||u| IZ;:(DI) <b. a

Proof of Theorem 6 Using the data &y, ry, and by in (F2), we fix a positive constant b such
that

b< min{ inf bo(x),xlap-’o-l}. (14)
xeD
Then, according to Lemma 3, there exists a (positive) solution u; of

—Apl + AP~y - wAGU + whs|u|?2u=bu® inD,

u>0 in D,
u=0 on dD,
satisfying
1
b\ ot
lupllzoomy < | — < (15)
A

(note (14)). Let u, (¢ > 0) be a positive solution of problem (PD, ) obtained by Lemma 2. Let
us observe that u/u., u./u, € L*°(D) because uj, and u, are positive functions belonging
to C} (D) and satisfying du;/dv < 0 on D (i = b and i = &). On the basis of (15), we are able
to apply Theorem 5 with w3 = uyp, uy = u,, g(t) = bt', and h(x,t,&) = f(x,t,&) + ey because
for any 0 < t < ||up||zoo(p), we have that

h(x’t!é) =f(x’tr‘§) +5W Zf(x,t,g) > bt :g(t)

by (14) and (F~2). In this way, we see that u, > u;, in D for every ¢ > 0.
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Using the growth condition (8) of f, taking u, as a test function in (PD,), we obtain the
inequality

1
llaee |1 < /(doug +au + ay| Ve ue) dx + el o ke 0 )
D

ri+l
= ”ﬂO”Lp’(D)HMEHLp(D) + ”ﬂl”Lﬁ(D)”us”Llp(D)

Nzl 7 oy I Vthe | ooy 1t oy + €11 o oy 28 Nl 22 )

-1/, —(r1+1)/ 1
<M p”ﬂ()”l,n’ D lzeellp + Ay ! p”al”ﬁl D ”ue”ng
(D) (D)

-1/p ro+1 -1/p
+ Ay Cllaall gy oy el + Ay el 1l ) el

for every ¢ > 0. This shows the boundedness of {u;}.c(, in WS”’(D) because p > ry +1,
ry +1 (note 0 < ¢ <1). Thus, we can find a sequence ¢, — 0* such that u, := u,, is weakly
convergent to some « in Wé’p (D) and strongly in L"(D) (for all r € [1,p*)). On the other
hand, taking u, — u as a test function, we easily see that

u, := /(WWVH + Vi) Vi, V(i — 1) dix
D
< —AI/ uﬁ’l(un —u)dx - //L)Q/ ul™ (u, — u)dx
D D

+ / (ao + ard)} + a|Vi,|™) (y — u) dx
D

+ Sn”W”Lp’(D)Hun — ullzr(p)

-1 -1
=< )\1||Mn|€p(D)”un - u”LP(D) + H«)\Znunnzq(mnun - u”Lq(D)

n

+ ”aO”l}?’(D)”un —ullrp) + ||6ll||L°°(D)”I"n”U,/,1

(D)”un = ullLr(p)
+ ”‘ZleL?z(D)”VMn”ZZp(D)||Mn - MHU’(D) + 8||¢||Lp’(D)”un - M”U’(D)

— 0 asn— 0.
Hence, limsup,,_, ., U, < 0. According to the (S,) property of —A,, this ensures that u, is
strongly convergent to u in Wé’p (D) (refer to (22)). Hence, u is a solution of (PD). Since we

already know that u,, > u;, in D for every n, in the limit, we obtain that # > u;, in D. This
completes the proof. O

4 Proof of Theorem 1
In this section, we denote B, := B,,(0) the open ball with center at the origin and radius 7.
The spaces W?(B,) and W4(B,,) are equipped with the norms

llatll?, ::/ (IVu|p+A1|u|p) dx
By

and

kg = [ (9t + Aalul?)

n

respectively.
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Proof of Theorem 1 By applying Theorem 6 with D = B, (n € N) we obtain a (positive)
solution v, € C}(B,,) of the problem

—Apu+ M |ulP2u — A gu + pro|ul2u = f (x,u, Vi) in By,
(P,) u>0 in B,
ulx)=0 on dB,,.
We claim that there exists a positive constant C such that
Vallpy <C forallme N (16)
and

IVallgn < C  forall m € N, provided that 44 > 0. 17)

Indeed, acting with v, in (P,) as a test function, through assumption (F1) and Holder’s

and Young’s inequalities we obtain

g vl = [ T,
By

r+l

< Ntoll g IVl o) + Nt g IV 350
+ ”‘lZHL?z(Bn)”Vn”l}’(Bn)”VVn”LZp(B )
L r 1 r
== ”vn”LP(B,,) + 5 ||VVn||Lp(Bn)
P 71 72
+ Cllaolly + Il + el )

where C is a positive constant independent of #. It turns out that

1 /
4
5|IVnII§,n+MIIVn||Z,nEC(IIﬂollu, +la 1”m ytla zIIL,2 ))

= Cllaoll ey * I0117%, oy + 0202, )
whence (16) and (17) follow.
Fix m € N.If n > m + 1, then by (16) we have
”Vn||p,m+1 =< ”Vn”p,n =< C. (18)
Therefore, there exists v € W' (B,,,1) such that
Vp =V in Wl,p(BWHl): leq(BWH-l)! (19)
Vp =V in Lp(BmH)qu(BWHl)v (20)
Vu(x) = v(x) fora.e.x € B, (21)

as 7 — OQ.
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Let us show that v, converges to v strongly in W?(B,,) and W4(B,,). To this end, fix
[ € Nand choose a smooth function y; satisfying 0 < v; <1, ¥(r) = 1if r < m, and (r) =
0 if r > m + 1/1. Setting n;(x) := ¥;(|x|), we note that (v,, —v)n; € Wé'p(BmH) C Wé’p(B,,) for
any n > m + 1. Denote

V, = / (IVVal?™> + IV, T2) Vv, (Vv — Vv) d.
B
Using (v,, —v)n; as a test function in (P,) and invoking the growth condition (F1), we obtain
V, = / (F @ vy Vv) = MV = V™) (v, — vy dx
|x|<m+1/1
- / (IVVal?™ + 1| Vv 72 Vv, V (v, — v)) s dix
m<|x|<m+1/l
- / (IVval? + 1l Vvl T2) Vv, Vv, - v) dx
m=|x|<m+1/l
< / (ao(x) +a (X} + az (%) Vv, + Alvﬁ_l + ukzvz_l)h/n —v|dx
B+l
+ / (|VV,,|1”1 + ule,,|q’1)|Vv| dx
m<|x|<m+1/]
+ d,/ (IVValP™ + VYT v, — v]da
m<|x|<m+1/l
_ 2 .13
=0+ +1,

where d; := SUP |y <ms1l [Vn(x)].
By Holder’s inequality, (16) and (17), we have
1 r
In <|vi- V||Lp(Bm+l){||a0||[}7/(3m+1) + ”al||L71(Bm+1)”V"”U’(Bm+1)

T p-1 q-1
a2l g, IVl + 211Vl oy + 2 lVall St

(Bm+1)}

+1)

< Gillve = Ve @,.1)s

where C; is a positive constant independent of v,,, 1, m, and [. Again by Holder’s inequality
the following estimates follow:

1/p
2 p-1 4
P< ||vVn||mBm+l)( / v dx)
m=<|x|<m+1/l

1/q
q-1
* M” VV” ”Lq(BmH) (w/;jn<|x|<m+1/l |VV|q dx) ’
q-1

-1
12 <dlv,— VIILP(Bm+1) ”anniﬂ(gmﬂ) +diplv, — V||L‘1(Bm+1) ”vvn”Lq(Bm“)‘

Thereby, from (16), (17), and (20) we derive

limsup V,,

n—00

1/p 1/q
<crt </ [Vv|? dx) +ucit (/ V| dx)
m=|x|<m+1/l m<|x|<m+1/l
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for all / € N. Thus, letting / — oo, we obtain that limsup,,_, ., V,, < 0. As known from (19),
v, weakly converges to v in W?(B,,) and W4(B,,), so we may write

V,+o0(l) = / (|an|1’_2Vv,, - |VV|p_2VV)(VVV, —Vv)dx
Bm
+ M/ (IVVul T2 Vv, — VY12 V) (Vy, — Vv) dx
B

-1 -1
> (IIVVnHIZp(Bm) - ||VV||}Zp(Bm))(||VVn||Lﬂ(Bm) —IVVlie@,m)
-1 1
+ M(||VVn||IZq(Bm) - ”VV”ZLI(BM))(”VVnHL’I(Bm) —IVVIiLa@,m)

> 0. (22)

What we have shown entails lim,_ oV, = 0, lim,—. [|VVullr,) = IVVIrs,) and

lim,—, o | VVullza8,,) = | VVILas,,) if # > 0. This implies that v, converges to v strongly in

Wt?(B,,) and W4(B,,) because the spaces W*(B,,) and W 4(B,,) are uniformly convex.
Recalling that v, > 0 in B,,, we infer that v is a nonnegative solution of the problem

—Av+ MviPtv— nwAY+ wha|v|%2v = f(x,v,Vv) inB,,v>0on dB,,.

Now, by a diagonal argument and (21) there exist a relabeled subsequence of {v,} and a
function v € W?(RN) such that

v,— v in L\”/IEIC’(RN),

Vu(x) > v(x) fora.exeRN,

These convergence properties ensure that v is a solution of problem (P).

The next step in the proofis to show that v does not vanish in 2. To do this, we fix m € N
and a positive constant b,, satisfying b,, < inf,p,, bo(x), where the function b, appears in
assumption (F2). Moreover, choosing b,, even smaller, Lemma 3 provides a solution ,,
of the problem

—Apt + M|ulP~2u — pAgu + pha|u|?u = bu™  in B,
u>0 in B,
ulx)=0 on 9B,

such that ||z, || .oo(8,,) < 80, where &, is given in assumption (F2). It follows from hypothesis
(F2) that if £ < ||t || 100(5,,), then f(x, 2, &) > bo(x)t™ for allx € RN, & € RN . We are thus in
a position to apply Theorem 4 to the functions u,, and v,, with n > m in place of 1 = u,,
and u; = v, respectively, which renders v, > u,, in B,, for every n > m. This enables us to
deduce that v > u,, in B,,, so v(x) > 0 for almost every x € RN because m was arbitrary.
Furthermore, since A; > 0 and v,, weakly converges to v in W?(RN) (we can extend
Va(®) = 0f [x] = 7 (50 Vllpus = VW ll oy + A1Vl o)), by means of (16) and (17), we
can check that v € W?(RN) N WH(RN) if i > 0 and v € WYP(RN) if 4 = 0. According to
the iteration process, it is proved that v is bounded on any bounded sets (see Section 5.1).
Hence, the regularity theory as in [7] leads to v € CIIOC(RN ). The proof of Theorem 1 is
complete. g
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5 Proof of Theorem 2

Throughout this section, we fix any (positive) solution v of (P) (belonging to W?(RN)).
Define v, := max{v, M} for M > 0. Here, we choose p* satisfying p? < p* if N < p and set
P =p*=Np/(N -p)if N > p. For R > R > 0, we take a smooth function ngg such that
0 <nrr <1, Inpplloc <2/(R = R), nrr(t) =1if t <R, and npr =0 if £ > R

5.1 Boundedness of solutions
Lemma4 Letxo € RN, M>0,R >R>0,p>1,y,>1,and1/y; +1/y/ =1 (i = 0,1). Denote
n(x) := nre (% — x0l). Assume that y/ <p (i=0,1) and v € PP+ (B(x0,R')) with a > 0.

Then:
f agwim? dx < l|aoll o Bo.r) VIS [Pz oy PR (23)
(wo,R") ,
av" WP dx < llan | s ) VIS B, (24)
/B(xo R) Blxo, LP+e) (B(xo,R'))

where By := (1 +|B(0,R')|), and |B(0, R')| denotes the Lebesgue measure of the ball B(0,R').

Moreover, if vy > p/(p — r3) and y3 := % <p, then

1
/ a|Vv|?2vvymf dx < — / [VvPv§m? dx
(x0.R') 4

B(xg,R')
+ 47 |a | 17800 W1 o se0 g 1y B (25)

Proof According to Holder’s inequality, we easily show our assertions (23) and (24). So,
we prove (25) only. By Young’s inequality and recalling that r, < p —1 and n” > nl"z/ 2, we
have

1
/ a | V|2 mf dx < — / |VvIPvym? dx
Bxo,R) 4 JBo.R)
a2
+4r72 a2 7y vy dx.
(%0,R")

Moreover, because of y, > p/(p—r2), p > p/(p—r3), and p > y3, applying Holder’s inequality,
we obtain

= 7 g e
] 2 2
/ a; *vrm = vidx < a2l (g 0.k plvil 2
(x0,R')

L35 ) (g0 )

_p
< N2 2 g oy IV i W eory(LF 1BOR)]).

Hence, (25) follows. O

Lemma5 Letxg € RN, R >R>0,p>1, ;> 1, and 1/y; + 1/y} =1 (i = 0,1). Assume that

v/ <P (i=0,0), 2> pl(p—r2), and ys := g5 < b If v € LPP)(B(xo, R) with & > 0,
then

VI ) <22(p + @)’ CBp (Cp + D) max{L, Vil oo sy | (26)

L'P 7" (B(xg,R))
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with

Br :=(1+|B(0,R)

),

R =
Cr = {laollro@eory + a1l @aory + 477 a2l a2y |

23p—2pp + 2p—1 M23q—2pq }

Dpr := { ® Ry + ® _R)i

where C, is the positive constant from embedding from WP (RN) to LP" (RN).

Proof Taking v n” € Wé’p(B(xo,R/)) (for M > 0) as a test function, where n(x) = ng g (Jx —
%o[), by Lemma 4 and (F1) we obtain

1
”ﬂ() ”LVO (B(x0,R")) ” V”l}’g’“")(B(xo,R/))BR/

+1+
+ llalln oo ) V1 pre g g 21y BR

. L+ 1
AP oo W B+ [ 19
%0

2
2/ [VvIPvim? dx+)\1/ i nf dx — - {d / |y P dx
Blxo.R') Blxo.R) R’ =R Jpo.r)

2
+ ,u{/ |Vv|Tvim? dx — — d | V|2t vmP ! dx}, (27)
Blxo.R') R =R Jp(xo,R)

where we use | V1| < 2/(R'—R). According to Young’s and Holder’s inequalities, forj = p, q,
we see that

2p
R -R

1 , Yp 41 ‘ ‘
< —/ IVvPvym? dx + {9]4./ VP dx
) R —R)’ Blxo.R')

= 1/ VvV d 2 vl Br (28)
— vIv X+ ——m/— .
4 B(xo,R') M R - )/ LP2H) (Bxo,R') K

/ |Vv|"_1vg,[vn”’1 dx
B(xg,R')

Consequently, because of u > 0 and p+a >r + 1 + o, p/(p — r3) + «, it follows from (27)
and (28) that

pta

23p—2pp M23q—2pq
i (CR/ T®R-Rp " ® Ry ) max{L ¥lztoa e}

1
> = / | VPV m? dx + My / Vi P dx. (29)
2 JBxo.R) Bxo,R')

Moreover, by using

” V(Vzl\jla/p’?) ||1L7P(RN

= 2p—l{ ”’N(Vzl\}a/p) lep( ”V1+a/an ”LP(RN }

» 92p-1
§2p1(1+ Z) / |Vv|”v‘1"wnpdx+/7/ Vi dx
?) JBaor) (R =R Jpu,)
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and Holder’s inequality, due to the embedding from W7 (RN) to L7 (RN), we have

1
= / [VvIPvem dx + A1/ Vi nP dx
B(xo,R")

2 B(xo.R')

=279 (o + ) P{ [V (it 1) [y + 21 [var ey )

2° 1P f
SR d— VI dx
(p+a)P(R —RP Jpuory ™

> 27 (p+ ) Vi

Wl,p(RN)
o1
“®rp"” Ve ey (L [BOR)])
>2PpP(p +a)PC. p”Vlm/Pn“’;*(RN) ( oy ||v|’L’;;m) (xo,R/))BR’

> 2P (p+ O{)’l’C;p||VM||1;—f(p+a)/p(B(x0’R))

2rt pto
- (R, _R)p ”V”L}} M‘)(B(x(),R/))

Bg. (30)
Therefore, (29) and (30) lead to
-P P CP pra
2 pp(p +a) C lvall [P E+Ip(B(xg,R))
< Bp/(Cp + Dr) max{L, VIl s pag 2y | - (31)
Applying Fatou’s lemma and letting M — oo in (31), our conclusion follows. O

Proposition 1 Under the assumptions in Theorem 2, we have that v e L (RN).

Proof First, in the case of N > p, we note that

/p* k .
v <— <= ¥> (j=0,1),

p

p p-r)y, p rr’
Vo > and pi=——————<— &= > ————
pen YT -rn-pp T -n)Er-p)

In the cases of (i) and (ii) (case p < p*/p), we take yy = p' and y; = 7; (j = 1,2). Then, we have
Yo=p: V=11 =pln+1)<p,ya=ry=pllp—rn—-1)>pl/(p-ry),and y3 = (p - r)"a/((p -
r9)Fy — p) =p — 1y < p. Choose p such that

(max{yg, ¥, vs} =) :p<< p_) in the cases of (i) and (ii),
p

*
max{yg, v, v} <P < ?_ in the case of (iii).
p

Let R, be the positive constant satisfying (4) in the case of (iii) and any positive constant
in the cases of (i) and (ii). Put

_ Jlaill g if (i) and (i),
Sup,ern @il viB2r,)  if (iii)
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for i = 0,1,2. Define the sequences {,}, {R,}, and {R,} by

—x —k

oo :=pT—P>0, 177(17+05n+1)=p_(19+0‘n)’
P p

R,:=(1+2")R,,  R,:=R,

n+l*

Recall that v € W?(RN), and using the embedding of W?(RN) to L7 (RN), we see that
v € [P (RN) = [P@+*0)(RN),

Fix any xo € RN. Then Lemma 5 guarantees that if v € L?¥+*)(B(xo, R.,)), then v €
L7 %) (B(xo, R,,)) = LP?*n+1) (B(xo, R,,)). Noting that

By, < (1+|B(0,2R,)|) =: By,

S
CR;,, <A +A1+4P_V2A5 2 4l= Co,

@ +pp)2p(n+3) quzq(nﬁ)
+

=D, < C'2¢"*d
R Rl "

Dp, r, <
for any n > 0 with sufficiently large C’ independent of # and setting
b, = max{l, ||V||Lp(p+a,,)(3(x0,ze;1)) },
by Lemma 5 we obtain
1 _p_ 1
bn+1 S CPW” (P + an)PWn (CO + Dn)pm” bn (32)

for every n > 0 with C:= 2?(C, + 1)By. Put P := pp/p* < 1. Then, because of p + 41 =
(p + )P, apiy > /P > ag(1/P)™ — o0 as m — 0o0. Moreover, we see that

X

p+oy p+ozo

o0 , 1
ZOP “praga-p)

o0 [o¢]
L p 7 —1
Sy:=In + o) Pron = P'(In(p + ap) + nIlnP™) < 00,
2= T menZ:Oj (Inp + e )
and

o0 1 o0 7
S3:=1In| |(Co + D,)Pron = In(Cy + Dy,)

g ;p+ao

<Z

p(n+3)In(Co + C')2 < 0.
P+0l0

As a result, by iteration in (32) and the equality p(p + o) = p* we obtain

S1 552 55
11,5 ) (Blxo.R,) < by = Cee” max{L, VIl 5+ (50 2, |

for every n > 1. Letting n — 00, this ensures that

IVl (Bxg,r0)) < C*e™e™ max{L, 1Vl 5 iug 22 ) (33)
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Recalling that v € W'?(RV) and using the embedding of W?(RN) to L7* (RN), (33) yields
that

V]l oo g 2y < CHe™ €% max{L, V]| 5+ @, }

< 515253 max{l, Cillvllwrp @y },

whence v is bounded in RN because xy € RV is arbitrary and the constant C51e’52¢% is
independent of x,. g

5.2 Proof of Theorem 2

Proof of Theorem 2 Since v is bounded in RN by Proposition 1, we put My := V[l oo Ny -
Then, as in Lemma 4, we see that

[ aovtr ds < oo mn Mo ¥ g B (34)
B(xo,R') ’

aV W de < o e ME T IV B (35)
/B(xo R Blxo LP@+) (B(xq,R"))

/ a| V|2 v m? dx
B(xo,R')

1
<= VPV P dx + 477 |a ’”2 wire & ~Br, (36
=g e 021 s M8 WV (36)
and

J+a .
” ||Lp(p+a)(3 (%0, R')) M ||V||Lp(p+a (B(xg,R')) (] :P»Q)' (37)

Fix any xy € RV, It follows from the argument as in the proof of Lemma 5 with (34), (35),
(36), and (37) that

||V||p+a <2(p+a)fClBr(Cr + Dpp))(Mo + 1P |lv||?

5 38)
) Lp(pﬂx)(B R )’ (
L7 B, Fok)

provided that v € LZ#*%)(B(x,,R’)). Choose y; (i = 0,1,2) and p and define the sequences
{ay), {R)}, and {R,} as in the proof of Proposition 1. Set
= IV e

Then, by the same argument as in the proof of Proposition 1 with (38) we obtain

pray-]

Vi " < Cp+0a,1)P(Co+Dy1) Vi (39)

with C := 22CYBy(My + 1). Recall that

p
p+0[0

oy, +p:P’1(p+ozn,1) and =P.
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Define
n+l Pk n+l L
o _ k)~ o
Qn._g(ul_l)k)_g(l-zﬁ) and W, :=(Co + Dy).

Then, inequality (39) leads to

v, <" (InV,.1 +InC(p + aty1)’ + In W, q)
Pty

=p! (1 — P”*l) (ln Vo1 +pInCP" 1 (p + o) + In W,,_l)

<P'(1-P"")InV,q +pP ' In(C+ )P (p + ag) + P In W4

<P (1_[(1 - P"+l)) InVo+p Y PHIn(C+ P (p + o)

k=1 k=1

+ Z P*In Wik
k=1

n n
=P"Q'InVp +p ZP”‘ In(C + )P "K(p + ap) + ZP_k In W)«
k=1 k=1

for every n because of In(C + 1)P™*1(p + ap) > 0 and In W,, > 0 for all n. Therefore, we have

In ||V||L5(p+an)(3(x0,R;1))
B InV, B P'InV,
B oy, _p+a0 —pP"
Q;'InV, P In(C+ )P p+ag) Y Plin W
+ + .
T p+og—pP" p+ay—pP" p+oy—pP”

(40)

Here, taking a sufficiently large positive constant C’ independent of #, we see that

n-1 o0
Y PIn(C+1)P(p+ag) <C' Y Pl+1)=:S <00
1=0 =0
and
n-1 n-1 o0
Zp’an, < C/ZP’(H 3) < C/ZP’(H 3) =: Sy < 00.
=0 1=0 =0

Next, we shall show that {Q, } is a convergent sequence. It is easy see that {Q, } is increasing.
Moreover, setting dj := In(1 + %), we see that
da . In@-PYy o 1-PF

lim = lim = ——_p=p<1
kLoo dk kl»oc ln(l—Pk) kLool—PkJrl <

by L'Hospital’s rule. This implies that

n+l Pk

o0
Pk
InQ, = Zln<1+ 1_pk> 521n(1+ 1_pk) < 0.
k=2 k=1
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Therefore, {Q,} is bounded from above, whence {Q,} converges, and

1
1-p2

1< = Q1= Q= lim Q, <co.

Consequently, letting n — 0o in (40), we have

%
(p+a0)Qoo

1 .
IVl @R < PSIS)P7O IV G < -

This yields our conclusion since [|[v]| 3+ ®( y = 0aslxo| > 00, a0 >0, and the constant

%0,2Ry

pS1S; is independent of xy. O
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