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Abstract
This paper provides a positive solution for the (p,q)-Laplace equation in R

N with a
nonlinear term depending on the gradient. The solution is constructed as the limit of
positive solutions in bounded domains. Strengthening the growth condition, it is
shown that the solution is also bounded. The positivity of the solution is obtained
through a new comparison principle. Finally, under a stronger growth condition, we
show the existence of a vanishing at infinity solution.
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1 Introduction
In this paper, we study the existence of a (positive) solution for the following quasi-linear
elliptic equation:

(P)

{
–Δpu + λ|u|p–u – μΔqu + μλ|u|q–u = f (x, u,∇u) in R

N ,
u >  in R

N .

In the left-hand side of the equation in (P), we have the p-Laplacian Δp and the q-Laplacian
Δq with  < q < p < +∞ and the constants μ ≥ , λ > , and λ > . The problem covers the
corresponding statement with p-Laplacian in the principal part, for which it is sufficient
to take μ = . Here –Δp is regarded as the operator –Δp : W ,p(RN ) → W –,p′ (RN ), where

p + 

p′ = , defined by

〈–Δpu, v〉 =
∫
RN

|∇u|p–∇u∇v dx for all u, v ∈ W ,p(
R

N).
The right-hand side of the equation in (P) is in the form of convection term, meaning a

nonlinearity that depends on the point x in R
N , on the solution u, and on its gradient ∇u.

The existence of positive solutions for problems with p-Laplacian and convection term
on a bounded domain has been studied in [–]. In the case where the principal part of
the equation is driven by the (p, q)-Laplacian operator with  < q < p and by a nonhomoge-
neous operator, the existence of a positive solution of elliptic problems with convex term
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on a bounded domain has been investigated in [] and [], respectively. Results of this
type when the principal part of the equation is expressed through a general Leray-Lions
operator can be found in []. Essential features of the present work are the dependence on
the gradient ∇u, which prevents the use of variational methods, and the unboundedness
of the domain, which produces lack of compactness.

We assume that f : RN × R × R
N → R is a continuous function satisfying the growth

condition:
(F) f (x, , ξ ) ≡  for all x ∈R

N , ξ ∈R
N ;

(F) there exist constants r, r ∈ (, p – ) and continuous nonnegative functions
a ∈ Lp′ (RN ) and ai ∈ Lr̃i (RN ) (i = , ), where /p + /p′ =  and
r̃i = p/(p – ri – ) = (p/(ri + ))′ (i = , ), such that

∣∣f (x, t, ξ )
∣∣≤ a(x) + a(x)|t|r + a(x)|ξ |r ()

for all (x, t, ξ ) ∈R
N ×R×R

N .
In this setting, by a solution of problem (P) we mean any function u ∈ W ,p(RN ) ∩

W ,q(RN ) when μ >  or u ∈ W ,p(RN ) when μ =  such that u(x) >  for a.e. x ∈ R
N and

∫
RN

(|∇u|p– + μ|∇u|q–)∇u∇ϕ dx +
∫
RN

(
λ|u|p– + μλ|u|q–)uϕ dx

=
∫
RN

f (x, u,∇u)ϕ dx for all ϕ ∈ C∞

(
R

N).
In order to show the positivity of a solution, we will need an additional growth condition

when t is small:
(F) there exist constants δ >  and r ∈ (, p – ) if μ =  or r ∈ (, q – ) if μ >  and

a continuous positive function b such that

b(x)tr ≤ f (x, t, ξ ) for all  < t ≤ δ, x ∈R
N , ξ ∈R

N . ()

We mention that the fact that condition (F) is supposed only for t >  small is a signif-
icant improvement with respect to all the previous works. A direct consequence is that f
is allowed to change sign.

For example, the following nonlinearity satisfies our assumptions (F) ∼ (F):

f (x, t, ξ ) = a(x)|t|r + a(x)|ξ |r sin t,

with a ∈ Lp′ (RN ) ∩ Lr̃ (RN ) and a ∈ Lr̃ (RN ), where r̃i = p/(p – ri – ) (i = , ).
Our main result provides the existence of a (positive) solution for problem (P).

Theorem  Under assumptions (F)-(F), problem (P) admits a (positive) solution u ∈
W ,p(RN ) ∩ W ,q(RN ) ∩ C

loc(RN ) if μ >  and u ∈ W ,p(RN ) ∩ C
loc(RN ) if μ = .

The proof is based on a priori estimates obtained through hypotheses (F)-(F) for ap-
proximate solutions on bounded domains and the use of comparison arguments. In this
respect, we establish several comparison principles that ultimately determine the positiv-
ity of solutions.
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Under a stronger version of the growth condition (F), we show that any positive solution
disappear at infinity.

Theorem  Assume (F)-(F). If one of the following conditions holds, then any (positive)
solution u of problem (P) satisfies that u(x) →  as |x| → ∞:

(i) N ≤ p;
(ii) N > p and p < p∗ (if and only if p < N < p/(p – ));

(iii) N ≥ p/(p – ), and for the functions ai (i = , , ) in (F), there exist R∗ >  and γi

such that

γ,γ >
p∗

p∗ – p
, γ >

pp∗

(p – r)(p∗ – p)
, ()

sup
x∈RN

∫
B(x,R∗)

∣∣ai(x)
∣∣γi dx < ∞ ()

for i = , , , where p∗ := pN/(N – p) if N > p.

Since we are looking for positive solutions of problem (P), without any loss of generality,
we will suppose in the sequel that f (x, t, s) ≡  for all t ≤  and (x, s) ∈R

N ×R
N .

The rest of the paper is organized as follows. In Section , we present comparison prin-
ciples related to problem (P). Section  deals with approximate solutions on bounded do-
mains. Section  is devoted to the proof of Theorem . In Section , we give a proof of
Theorem  after we show the boundedness of a solution.

2 Comparison principles
In this section, we assume that D is a bounded domain in R

N . We consider the operator
denoted –Δp from W ,p(D) to W ,p(D)∗ defined by

〈–Δpu, v〉 =
∫

D
|∇u|p–∇u∇v dx for all u, v ∈ W ,p(D).

First we recall the following result.

Lemma  ([], Lemma .) Let w, w ∈ L∞(D) satisfy wi ≥  a.e. on D, w/q
i ∈ W ,p(D) for

i = , , and w = w on ∂D. If w/w, w/w ∈ L∞(D), then

 ≤
〈
–Δpw/q

 – μΔqw/q
 ,

w – w

w(q–)/q


〉
–
〈
–Δpw/q

 – μΔqw/q
 ,

w – w

w(q–)/q


〉
. ()

Lemma  leads to a comparison principle for a subsolution and a supersolution of the
problem

{
–Δpu + λ|u|p–u – μΔqu + μλ|u|q–u = g(u) in D,
u =  on ∂D,

()

where g : R →R is a continuous function.



Faria et al. Boundary Value Problems  (2016) 2016:158 Page 4 of 20

We say that u ∈ W ,p(D) is a subsolution of problem () if u ≤  on ∂D and

∫
D

(|∇u|p–∇u∇ϕ + λ|u|p–uϕ + μ|∇u|q–∇u∇ϕ + μλ|u|q–uϕ dx

≤
∫

D
g(u)ϕ dx

for all ϕ ∈ W ,p
 (D) with ϕ ≥  in D, provided that the integral

∫
D g(u)ϕ dx exists. We say

that u ∈ W ,p(D) is a supersolution of () if the reversed inequalities are satisfied with u

in place of u for all ϕ ∈ W ,p
 (D) with ϕ ≥  in D.

Theorem  Let g : R →R be a continuous function such that t–qg(t) is nonincreasing for
t >  if μ >  and t–pg(t) is nonincreasing for t >  if μ = . Assume that u and u are
a positive subsolution and a positive supersolution of problem (), respectively. If u(x) >
u(x) =  for all x ∈ ∂D and ui ∈ C(D) for i = , , then u ≥ u in D.

Proof We prove the result only for μ >  because the case μ =  is easier. Suppose by
contradiction that the set D = {x ∈ D : u(x) > u(x)} is nonempty. Let U be a connected
component of D. Noting that infD u > , we see that U ⊂ D, u = u on ∂U , and ui/uj ∈
L∞(U) for i, j = , . So, (uq

 – uq
)/uq–

 , (uq
 – uq

)/uq–
 ∈ W ,p

 (U), and extending by  on
D \ U , we can take them as test functions in the above definitions of subsolution and
supersolution for problem (). It follows that

〈
–Δpu – μΔqu,

uq
 – uq



uq–


〉
–
〈
–Δpu – μΔqu,

uq
 – uq



uq–


〉

≤
∫

U

(
–λup–

 – μλuq–
 + g(u)

)uq
 – uq



uq–


dx

–
∫

U

(
–λup–

 – μλuq–
 + g(u)

)uq
 – uq



uq–


dx

= –λ

∫
U

(
up–q

 – up–q

)(

uq
 – uq


)

dx +
∫

U

(
g(u)
uq–


–

g(u)
uq–



)(
uq

 – uq

)

< .

The last inequality is obtained through our assumption that g(t)/tq– is nonincreasing for
t >  and λ > .

On the other hand, note that we can apply Lemma  with wi = uq
i (i = , ) and U in place

of D. The conclusion provided by () in Lemma  contradicts the above inequality in the
case where U is nonempty. Therefore, D = ∅, which completes the proof. �

The next theorem points out that the condition of supersolution in Theorem  can be
relaxed to a weaker notion of supersolution directly related to the given subsolution.

Theorem  Let g : R → R be continuous function such that t–qg(t) is nonincreasing for
t >  if μ >  and t–pg(t) is nonincreasing for t >  if μ = . Assume that u ∈ C(D) is a
positive subsolution of problem () and that h : D × R × R

N → R is continuous function
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such that h(x, t, ξ ) ≥ g(t) for all x ∈ R
N , ξ ∈ R

N , and t ∈ (,‖u‖L∞(D)]. If u ∈ C(D) is a
(positive) solution of

{
–Δpu + λ|u|p–u – μΔqu + μλ|u|q–u = h(x, u,∇u) in D,
u >  in D

()

such that u(x) > u(x) =  for all x ∈ ∂D, then u ≥ u in D.

Proof The conclusion can be achieved following the same argument as in Theorem .
Indeed, arguing by contradiction, let us assume that the set D := {x ∈ D : u(x) > u(x)}
is not empty. Let U be a connected component of D. Then u = u on ∂U and g(u) ≤
h(x, u,∇u) in U . Proceeding as in the proof of Theorem , we have

〈
–Δpu – μΔqu,

uq
 – uq



uq–


〉
–
〈
–Δpu – μΔqu,

uq
 – uq



uq–


〉
< .

This leads to a contradiction by applying Lemma . �

In the case where u and u satisfy the homogeneous Dirichlet boundary condition we
can state the following:

Theorem  Let g : R → R be a continuous function such that t–qg(t) is nonincreasing
for t >  if μ >  and t–pg(t) is nonincreasing for t >  if μ = . Assume that u ∈ C

(D)
is a positive subsolution of problem () and that h : D × R × R

N → R is continuous and
such that h(x, t, ξ ) ≥ g(t) for all x ∈ R

N , ξ ∈ R
N , and t ∈ (,‖u‖L∞(D)]. If u ∈ C

(D) is a
(positive) solution of problem () such that u/u ∈ L∞(D) and u/u ∈ L∞(D), then u ≥ u

in D.

Proof Due to the assumptions u/u ∈ L∞(D) and u/u ∈ L∞(D), it turns out that (uq
 –

uq
)/uq–

 , (uq
 – uq

)/uq–
 ∈ W ,p

 (U) with U introduced in the proof of Theorem . Then we
can conclude as in the proof of Theorem . �

3 Solution on a bounded domain
In this section, we assume that D is a bounded domain in R

N with C boundary ∂D. For
r ≥ , we denote by ‖u‖Lr (D) the usual norm on the space Lr(D). We endow W ,p

 (D) with
the norm ‖u‖p

D = ‖∇u‖p
Lp(D) + λ‖u‖p

Lp(D), which is equivalent to the usual one.
We focus on the existence of a (positive) solution for the problem

(PD)

⎧⎪⎨
⎪⎩

–Δpu + λ|u|p–u – μΔqu + μλ|u|q–u = f (x, u,∇u) in D,
u >  in D,
u(x) =  on ∂D.

Here we impose the following hypotheses: f : D ×R×R
N → R is a continuous function

satisfying

(F̃) f (x, , ξ ) ≡  for all x ∈ D, ξ ∈ R
N ;
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(F̃) there exist constants r, r ∈ (, p – ) and continuous nonnegative functions ai (i =
, , ) on D such that

∣∣f (x, t, ξ )
∣∣≤ a(x) + a(x)|t|r + a(x)|ξ |r ()

for all (x, t, ξ ) ∈ D ×R×R
N ;

(F̃) there exist constants δ >  and r ∈ (, p – ) if μ =  or r ∈ (, q – ) if μ >  and a
continuous function b such that infx∈D b(x) >  and

b(x)tr ≤ f (x, t, ξ ) for all  < t ≤ δ, x ∈ D, ξ ∈R
N . ()

We say that u ∈ W ,p
 (D) is a solution of (PD) if u(x) >  for a.e. x ∈ D and

∫
D

(|∇u|p– + μ|∇u|q–)∇u∇ϕ dx +
∫

D

(
λ|u|p– + μλ|u|q–)uϕ dx

=
∫

D
f (x, u,∇u)ϕ dx for all ϕ ∈ W ,p

 (D).

The existence of a solution for problem (PD) is stated as follows.

Theorem  Under assumptions (F̃)-(F̃), problem (PD) admits a (positive) solution u ∈
C

(D) such that ∂u/∂ν <  on ∂D, where ν stands for the outer normal to ∂D.

In the proof of Theorem , we utilize the following approximate equation:

(PDε)

⎧⎪⎨
⎪⎩

–Δpu + λ|u|p–u – μΔqu + μλ|u|q–u = f (x, u,∇u) + εψ in D,
u >  in D,
u(x) =  on ∂D,

with ε >  and a nonnegative function  �≡ ψ ∈ C(D).

Lemma  Under (F̃)-(F̃), for any ε >  and a nonnegative function  �≡ ψ ∈ C(D), prob-
lem (PDε) admits a (positive) solution uε ∈ C

(D) such that ∂uε/∂ν <  on ∂D.

Proof We argue as in [], Proposition , and []. Fix ε >  and consider a Schauder basis
{e, . . . , em, . . .} of W ,p

 (D) (refer to [, ] for its existence). For each m ∈ N, we define the m-
dimensional subspace Vm := span{e, . . . , em} of W ,p

 (D). The map Tm : Rm → Vm defined
by Tm(ξ, . . . , ξm) =

∑m
i= ξiei is a linear isomorphism. Let T∗

m : V ∗
m → (Rm)∗ be the dual map

of Tm. Identifying R
m and (Rm)∗, we may regard T∗

m as a map from V ∗
m to R

m. Define the
maps Am and Bm from Vm to V ∗

m as follows:

〈
Am(u), v

〉
:=
∫

D

(|∇u|p– + μ|∇u|q–)∇u∇v dx

and

〈
Bm(u), v

〉
:= –

∫
D

(
λ|u|p– + μλ|u|q–)uv dx +

∫
D

(
f (x, u,∇u) + εψ

)
v dx

for all u, v ∈ Vm.
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By (F̃) and Hölder’s inequality, we have

〈
Am(u) – Bm(u), u

〉
≥ ‖u‖p

D – d
(‖u‖L(D) + ‖u‖r+

Lr+(D) + ‖u‖r+
D

)
– ε‖ψ‖L∞(D)‖u‖L(D) ()

for all u ∈ Vm, where d is a positive constant independent of m and u. Because of r +  < p
and r +  < p, we easily see that Am – Bm is coercive on Vm, whence T∗

m ◦ (Am – Bm) ◦ Tm is
coercive on R

m. By a well-known consequence of Brouwer’s fixed point theorem it follows
that there exists ym ∈ R

m such that (T∗
m ◦ (Am – Bm) ◦ Tm)(ym) = , and hence Am(um) –

Bm(um) =  with um = Tm(ym) ∈ Vm.
Writing () with u = um ∈ W ,p

 (D) shows the boundedness of the sequence ‖um‖D.
Thus, along a subsequence, um converges to some u weakly in W ,p

 (D) and strongly in
Lp(D).

We claim that

um → u in W ,p
 (D) as m → ∞. ()

Let Pm denote the projection onto Vm, that is, Pmu =
∑m

i= ξiei for u =
∑∞

i= ξiei. Since um,
Pmu ∈ Vm and Am(um) – Bm(um) =  in V ∗

m, we obtain

〈
Am(um), um – Pmu

〉
=
〈
Bm(um), um – Pmu

〉
=
〈
Bm(um), um – u

〉
+
〈
Bm(um), u – Pmu

〉
=
∫

D

(
–λ|um|p–um – μλ|um|q–um + f (x, um,∇um)

)
(um – Pmu) dx

+
∫

D
εψ(um – Pmu) dx

→  as m → ∞,

where we use (F̃), the boundedness of ‖um‖D, um → u in Lp(�), and Pmu → u in
W ,p

 (D). This leads to

lim
m→∞

∫
D

|∇um|p–∇um∇(um – u) dx = .

In view of the (S+)-property of –Δp (see, e.g., [], Proposition ., or refer to () in the
proof of Theorem ), we obtain ().

Now let us prove that u is a solution of (PDε). Fix l ∈ N and ϕ ∈ Vl . For each m ≥ l,
letting m → ∞ in 〈Am(um),ϕ〉 = 〈Bm(um),ϕ〉 and making use of (), we have

∫
D

(|∇u|p– + μ|∇u|q–)∇u∇ϕ dx +
∫

D

(
λ|u|p– + μλ|u|q–)uϕ dx

=
∫

D

(
f (x, u,∇u) + εψ

)
ϕ dx. ()
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Since l is arbitrary, equality () holds for every ϕ ∈ ⋃l≥ Vl . In fact, the density of⋃
l≥ Vl in W ,p

 (D) guarantees that () holds for every ϕ ∈ W ,p
 (D). This means that u

is a solution of (PDε). Acting with –u–
 (where u–

 := max{, –u}) and taking into account
that ψ ≥  and f (x, t, ξ ) =  for t ≤ , we see that

∥∥u–

∥∥p

D + μ
∥∥∇u–


∥∥q

Lq(D) + μλ
∥∥u–


∥∥q

Lq(D)

=
∫

u<

(
f (x, u,∇u) + εψ

)
u dx = ε

∫
u<

ψu dx ≤ ,

whence u ≥  a.e. in D. Moreover, u �≡  because we assumed that ψ �≡  and ε > .
Next, we observe that hypothesis (F̃) allows us to refer to [], Theorem . (see also []
and []), from which we infer that u ∈ L∞(D). Furthermore, the regularity result up to the
boundary in [], Theorem , and [], p., ensures that u ∈ C,β

 (D) with some β ∈ (, ).
Applying the strong maximum principle in [], Theorem .., and the boundary point
lemma in [], Theorem .. (note that f (x, t, ξ ) ≥  for  ≤ t ≤ δ) entails that u >  in
D and ∂u/∂ν <  on ∂D. Altogether, we have established that the conclusion of lemma is
fulfilled for uε = u. �

We will also need the following result.

Lemma  Let  < q < p < +∞, λ > , λ ≥ , and μ ≥ . For any constants b >  and
 < r < p –  with  < r < q –  if μ > , the problem

⎧⎪⎨
⎪⎩

–Δpu + λ|u|p–u – μΔqu + μλ|u|q–u = bur in D,
u >  in D,
u =  on ∂D

()

admits a solution ub ∈ C
(D) satisfying λ‖ub‖p–r–

L∞(D) ≤ b and ∂ub/∂ν <  on ∂D.

Proof We can proceed for the existence of a solution of () along the lines of the proof
of [], Lemma . For readers’ convenience, we outline the proof in the case where μ > .
Given the constants b >  and  < r < q – , we define the functional I : W ,p

 (D) →R by

I(u) =

p

∫
D

(|∇u|p + λ|u|p)dx +
μ

q

∫
D

(|∇u|q + λ|u|q)dx –
b

r + 

∫
D

(
u+)r+ dx

for all u ∈ W ,p
 (D), where u+ = max{, u}. Notice that I is of class C. By using the Sobolev

embedding theorem we have the estimate

I(u) ≥ 
p
‖u‖p

D – c‖u‖r+
D for all u ∈ W ,p

 (D)

with a constant c >  independent of u. Since p > r + , I is bounded from below and
coercive. Having that I is sequentially weakly lower semicontinuous too, there exists ub ∈
W ,p

 (D) such that

I(ub) = inf
u∈W ,p

 (D)
I(u)
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(see, e.g., [], Theorems ., .). In addition, because of r +  < q < p, taking any positive
smooth function v and a sufficiently small t > , we have

I(tv) = tr+
(

tp–r–

p
‖v‖D +

μtq–r–

q
(‖∇v‖q

Lq(D) + λ‖v‖q
Lq(D)

)
–

‖v‖r+
Lr+(D)

r + 

)
< .

This ensures that infu∈W ,p
 (D) I(u) < , and hence ub is a nontrivial critical point of I . By the

regularity theory we infer that ub ∈ C
(D). Taking –u–

b as a test function in the equation
I ′(ub) = , we see that ub ≥ . Then the strong maximum principle enables us to derive
that ub >  in D, so ub is a solution of problem (), and ∂ub/∂ν <  on ∂D.

Taking uα+
b with α >  as a test function in (), by using Hölder’s inequality and that

r +  < p we get

λ‖ub‖p+α

Lp+α (D) ≤ b
∫

D
ur+α+

b dx ≤ b‖ub‖r+α+
Lp+α (D)|D|(p–r–)/(p+α),

where |D| denotes the Lebesgue measure of D, and hence

λ‖ub‖p–r–
Lp+α (D) ≤ b|D|(p–r–)/(p+α).

Letting α → ∞, we conclude that λ‖ub‖p–r–
L∞(D) ≤ b. �

Proof of Theorem  Using the data δ, r, and b in (F̃), we fix a positive constant b such
that

b ≤ min
{

inf
x∈D

b(x),λδ
p–r–

}
. ()

Then, according to Lemma , there exists a (positive) solution ub of

⎧⎪⎨
⎪⎩

–Δpu + λ|u|p–u – μΔqu + μλ|u|q–u = bur in D,
u >  in D,
u =  on ∂D,

satisfying

‖ub‖L∞(D) ≤
(

b
λ

) 
p–r– ≤ δ ()

(note ()). Let uε (ε > ) be a positive solution of problem (PDε) obtained by Lemma . Let
us observe that ub/uε , uε/ub ∈ L∞(D) because ub and uε are positive functions belonging
to C

(D) and satisfying ∂ui/∂ν <  on ∂D (i = b and i = ε). On the basis of (), we are able
to apply Theorem  with u = ub, u = uε , g(t) = btr , and h(x, t, ξ ) = f (x, t, ξ ) + εψ because
for any  < t ≤ ‖ub‖L∞(D), we have that

h(x, t, ξ ) = f (x, t, ξ ) + εψ ≥ f (x, t, ξ ) ≥ btr = g(t)

by () and (F̃). In this way, we see that uε ≥ ub in D for every ε > .
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Using the growth condition () of f , taking uε as a test function in (PDε), we obtain the
inequality

‖uε‖p
D ≤

∫
D

(
auε + aur+

ε + a|∇uε|r uε

)
dx + ε‖ψ‖Lp′ (D)‖uε‖Lp(D)

≤ ‖a‖Lp′ (D)‖uε‖Lp(D) + ‖a‖Lr̃ (D)‖uε‖r+
Lp(D)

+ ‖a‖Lr̃ (D)‖∇uε‖r
Lp(D)‖uε‖Lp(D) + ε‖ψ‖Lp′ (D)‖uε‖Lp(D)

≤ λ
–/p
 ‖a‖Lp′ (D)‖uε‖D + λ

–(r+)/p
 ‖a‖Lr̃ (D)‖uε‖r+

D

+ λ
–/p
 ‖a‖Lr̃ (D)‖uε‖r+

D + λ
–/p
 ε‖ψ‖Lp′ (D)‖uε‖D

for every ε > . This shows the boundedness of {uε}ε∈(,] in W ,p
 (D) because p > r + ,

r +  (note  < ε ≤ ). Thus, we can find a sequence εn → + such that un := uεn is weakly
convergent to some u in W ,p

 (D) and strongly in Lr(D) (for all r ∈ [, p∗)). On the other
hand, taking un – u as a test function, we easily see that

Un :=
∫

D

(|∇un|p– + μ|∇un|q–)∇un∇(un – u) dx

≤ –λ

∫
D

up–
n (un – u) dx – μλ

∫
D

uq–
n (un – u) dx

+
∫

D

(
a + aur

n + a|∇un|r
)
(un – u) dx

+ εn‖ψ‖Lp′ (D)‖un – u‖Lp(D)

≤ λ‖un‖p–
Lp(D)‖un – u‖Lp(D) + μλ‖un‖q–

Lq(D)‖un – u‖Lq(D)

+ ‖a‖Lp′ (D)‖un – u‖Lp(D) + ‖a‖L∞(D)‖un‖r
Lp′r (D)

‖un – u‖Lp(D)

+ ‖a‖Lr̃ (D)‖∇un‖r
Lp(D)‖un – u‖Lp(D) + ε‖ψ‖Lp′ (D)‖un – u‖Lp(D)

→  as n → ∞.

Hence, lim supn→∞ Un ≤ . According to the (S+) property of –Δp, this ensures that un is
strongly convergent to u in W ,p

 (D) (refer to ()). Hence, u is a solution of (PD). Since we
already know that un ≥ ub in D for every n, in the limit, we obtain that u ≥ ub in D. This
completes the proof. �

4 Proof of Theorem 1
In this section, we denote Bn := Bn() the open ball with center at the origin and radius n.
The spaces W ,p(Bn) and W ,q(Bn) are equipped with the norms

‖u‖p
p,n :=

∫
Bn

(|∇u|p + λ|u|p)dx

and

‖u‖q
q,n :=

∫
Bn

(|∇u|q + λ|u|q)dx,

respectively.
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Proof of Theorem  By applying Theorem  with D = Bn (n ∈ N) we obtain a (positive)
solution vn ∈ C

(Bn) of the problem

(Pn)

⎧⎪⎨
⎪⎩

–Δpu + λ|u|p–u – μΔqu + μλ|u|q–u = f (x, u,∇u) in Bn,
u >  in Bn,
u(x) =  on ∂Bn.

We claim that there exists a positive constant C such that

‖vn‖p,n ≤ C for all n ∈ N ()

and

‖vn‖q,n ≤ C for all n ∈N, provided that μ > . ()

Indeed, acting with vn in (Pn) as a test function, through assumption (F) and Hölder’s
and Young’s inequalities we obtain

‖vn‖p
p,n + μ‖vn‖q

q,n =
∫

Bn

f (x, vn,∇vn)vn dx

≤ ‖a‖Lp′ (Bn)‖vn‖Lp(Bn) + ‖a‖Lr̃ (Bn)‖vn‖r+
Lp(Bn)

+ ‖a‖Lr̃ (Bn)‖vn‖Lp(Bn)‖∇vn‖r
Lp(Bn)

≤ λ


‖vn‖p

Lp(Bn) +


‖∇vn‖p

Lp(Bn)

+ C
(‖a‖p′

Lp′ (Bn)
+ ‖a‖r̃

Lr̃ (Bn)
+ ‖a‖r̃

Lr̃ (Bn)

)
,

where C is a positive constant independent of n. It turns out that



‖vn‖p

p,n + μ‖vn‖q
q,n ≤ C

(‖a‖p′
Lp′ (Bn)

+ ‖a‖r̃
Lr̃ (Bn)

+ ‖a‖r̃
Lr̃ (Bn)

)
≤ C

(‖a‖p′
Lp′ (RN )

+ ‖a‖r̃
Lr̃ (RN )

+ ‖a‖r̃
Lr̃ (RN )

)
,

whence () and () follow.
Fix m ∈N. If n ≥ m + , then by () we have

‖vn‖p,m+ ≤ ‖vn‖p,n ≤ C. ()

Therefore, there exists v ∈ W ,p(Bm+) such that

vn ⇀ v in W ,p(Bm+), W ,q(Bm+), ()

vn → v in Lp(Bm+), Lq(Bm+), ()

vn(x) → v(x) for a.e. x ∈ Bm+ ()

as n → ∞.
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Let us show that vn converges to v strongly in W ,p(Bm) and W ,q(Bm). To this end, fix
l ∈ N and choose a smooth function ψl satisfying  ≤ ψl ≤ , ψl(r) =  if r ≤ m, and ψl(r) =
 if r ≥ m + /l. Setting ηl(x) := ψl(|x|), we note that (vn – v)ηl ∈ W ,p

 (Bm+) ⊂ W ,p
 (Bn) for

any n ≥ m + . Denote

Vn =
∫

Bm

(|∇vn|p– + μ|∇vn|q–)∇vn(∇vn – ∇v) dx.

Using (vn – v)ηl as a test function in (Pn) and invoking the growth condition (F), we obtain

Vn =
∫

|x|<m+/l

(
f (x, vn,∇vn) – λvp–

n – μλvq–
n
)
(vn – v)ηl dx

–
∫

m≤|x|<m+/l

(|∇vn|p– + μ|∇vn|q–)∇vn∇(vn – v))ηl dx

–
∫

m≤|x|<m+/l

(|∇vn|p– + μ|∇vn|q–)∇vn∇ηl(vn – v) dx

≤
∫

Bm+

(
a(x) + a(x)vr

n + a(x)|∇vn|r + λvp–
n + μλvq–

n
)|vn – v|dx

+
∫

m≤|x|<m+/l

(|∇vn|p– + μ|∇vn|q–)|∇v|dx

+ dl

∫
m≤|x|<m+/l

(|∇vn|p– + μ|∇vn|q–)|vn – v|dx

≡ I
n + I

n + I
n ,

where dl := sup|x|<m+/l |∇ηl(x)|.
By Hölder’s inequality, () and (), we have

I
n ≤ ‖vn – v‖Lp(Bm+)

{‖a‖Lp′ (Bm+) + ‖a‖Lr̃ (Bm+)‖vn‖r
Lp(Bm+)

+ ‖a‖Lr̃ (Bm+)‖∇vn‖r
Lp(Bm+) + λ‖vn‖p–

Lp(Bm+) + μλ‖vn‖q–
Lp′(q–)(Bm+)

}
≤ C‖vn – v‖Lp(Bm+),

where C is a positive constant independent of vn, n, m, and l. Again by Hölder’s inequality
the following estimates follow:

I
n ≤ ‖∇vn‖p–

Lp(Bm+)

(∫
m≤|x|<m+/l

|∇v|p dx
)/p

+ μ‖∇vn‖q–
Lq(Bm+)

(∫
m≤|x|<m+/l

|∇v|q dx
)/q

,

I
n ≤ dl‖vn – v‖Lp(Bm+)‖∇vn‖p–

Lp(Bm+) + dlμ‖vn – v‖Lq(Bm+)‖∇vn‖q–
Lq(Bm+).

Thereby, from (), (), and () we derive

lim sup
n→∞

Vn

≤ Cp–
(∫

m≤|x|<m+/l
|∇v|p dx

)/p

+ μCq–
(∫

m≤|x|<m+/l
|∇v|q dx

)/q
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for all l ∈N. Thus, letting l → ∞, we obtain that lim supn→∞ Vn ≤ . As known from (),
vn weakly converges to v in W ,p(Bm) and W ,q(Bm), so we may write

Vn + o() =
∫

Bm

(|∇vn|p–∇vn – |∇v|p–∇v
)
(∇vn – ∇v) dx

+ μ

∫
Bm

(|∇vn|q–∇vn – |∇v|q–∇v
)
(∇vn – ∇v) dx

≥ (‖∇vn‖p–
Lp(Bm) – ‖∇v‖p–

Lp(Bm)
)(‖∇vn‖Lp(Bm) – ‖∇v‖Lp(Bm)

)
+ μ

(‖∇vn‖p–
Lq(Bm) – ‖∇v‖q–

Lq(Bm)
)(‖∇vn‖Lq(Bm) – ‖∇v‖Lq(Bm)

)
≥ . ()

What we have shown entails limn→∞ Vn = , limn→∞ ‖∇vn‖Lp(Bm) = ‖∇v‖Lp(Bm) and
limn→∞ ‖∇vn‖Lq(Bm) = ‖∇v‖Lq(Bm) if μ > . This implies that vn converges to v strongly in
W ,p(Bm) and W ,q(Bm) because the spaces W ,p(Bm) and W ,q(Bm) are uniformly convex.

Recalling that vn >  in Bm, we infer that v is a nonnegative solution of the problem

–Δpv + λ|v|p–v – μΔqv + μλ|v|q–v = f (x, v,∇v) in Bm, v ≥  on ∂Bm.

Now, by a diagonal argument and () there exist a relabeled subsequence of {vn} and a
function v ∈ W ,p(RN ) such that

vn → v in W ,p
loc
(
R

N),
vn(x) → v(x) for a.e x ∈R

N .

These convergence properties ensure that v is a solution of problem (P).
The next step in the proof is to show that v does not vanish in �. To do this, we fix m ∈N

and a positive constant bm satisfying bm ≤ infx∈Bm b(x), where the function b appears in
assumption (F). Moreover, choosing bm even smaller, Lemma  provides a solution um

of the problem

⎧⎪⎨
⎪⎩

–Δpu + λ|u|p–u – μΔqu + μλ|u|q–u = bmur in Bm,
u >  in Bm,
u(x) =  on ∂Bm

such that ‖um‖L∞(Bm) ≤ δ, where δ is given in assumption (F). It follows from hypothesis
(F) that if t ≤ ‖um‖L∞(Bm), then f (x, t, ξ ) ≥ b(x)tr for all x ∈R

N , ξ ∈R
N . We are thus in

a position to apply Theorem  to the functions um and vn with n > m in place of u = um

and u = vn, respectively, which renders vn ≥ um in Bm for every n > m. This enables us to
deduce that v ≥ um in Bm, so v(x) >  for almost every x ∈R

N because m was arbitrary.
Furthermore, since λ >  and vn weakly converges to v in W ,p(RN ) (we can extend

vn(x) =  if |x| ≥ n (so ‖vn‖p,n = ‖∇vn‖Lp(RN ) + λ‖vn‖Lp(RN ))), by means of () and (), we
can check that v ∈ W ,p(RN ) ∩ W ,q(RN ) if μ >  and v ∈ W ,p(RN ) if μ = . According to
the iteration process, it is proved that v is bounded on any bounded sets (see Section .).
Hence, the regularity theory as in [] leads to v ∈ C

loc(RN ). The proof of Theorem  is
complete. �
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5 Proof of Theorem 2
Throughout this section, we fix any (positive) solution v of (P) (belonging to W ,p(RN )).
Define vM := max{v, M} for M > . Here, we choose p∗ satisfying p < p∗ if N ≤ p and set
p∗ = p∗ = Np/(N – p) if N > p. For R′ > R > , we take a smooth function ηR,R′ such that
 ≤ ηR,R′ ≤ , ‖η′

R,R′ ‖∞ ≤ /(R′ – R), ηR,R′ (t) =  if t ≤ R, and ηR,R′ =  if t ≥ R′.

5.1 Boundedness of solutions
Lemma  Let x ∈ R

N , M > , R′ > R > , p̃ > , γi > , and /γi + /γ ′
i =  (i = , ). Denote

η(x) := ηR,R′ (|x – x|). Assume that γ ′
i ≤ p̃ (i = , ) and v ∈ Lp̃(p+α)(B(x, R′)) with α ≥ .

Then:
∫

B(x,R′)
avvα

Mηp dx ≤ ‖a‖Lγ (B(x,R′))‖v‖+α

Lp̃(p+α)(B(x,R′))BR′ , ()

∫
B(x,R′)

avr+vα
Mηp dx ≤ ‖a‖Lγ (B(x,R′))‖v‖r++α

Lp̃(p+α)(B(x,R′))BR′ , ()

where BR′ := ( + |B(, R′)|), and |B(, R′)| denotes the Lebesgue measure of the ball B(, R′).
Moreover, if γ > p/(p – r) and γ := (p–r)γ

(p–r)γ–p ≤ p̃, then

∫
B(x,R′)

a|∇v|r vvα
Mηp dx ≤ 



∫
B(x,R′)

|∇v|pvα
Mηp dx

+ 
r

p–r ‖a‖
p

p–r
Lγ (B(x,R′))‖v‖

p
p–r

+α

Lp̃(p+α)(B(x,R′))BR′ . ()

Proof According to Hölder’s inequality, we easily show our assertions () and (). So,
we prove () only. By Young’s inequality and recalling that r < p –  and ηp ≥ ηp/r , we
have

∫
B(x,R′)

a|∇v|r vvα
Mηp dx ≤ 



∫
B(x,R′)

|∇v|pvα
Mηp dx

+ 
r

p–r

∫
B(x,R′)

a
p

p–r
 v

p
p–r vα

M dx.

Moreover, because of γ > p/(p–r), p > p/(p–r), and p̃ ≥ γ, applying Hölder’s inequality,
we obtain

∫
B(x,R′)

a
p

p–r
 v

p
p–r vα

M dx ≤ ‖a‖
p

p–r
Lγ (B(x,R′))‖v‖

p
p–r

+α

Lγ( p
p–r +α)(B(x,R′))

≤ ‖a‖
p

p–r
Lγ (B(x,R′))‖v‖

p
p–r

+α

Lp̃(p+α)(B(x,R′))
(
 +

∣∣B(, R′)∣∣).
Hence, () follows. �

Lemma  Let x ∈ R
N , R′ > R > , p̃ > , γi > , and /γi + /γ ′

i =  (i = , ). Assume that
γ ′

i ≤ p̃ (i = , ), γ > p/(p – r), and γ := (p–r)γ
(p–r)γ–p ≤ p̃. If v ∈ Lp̃(p+α)(B(x, R′)) with α ≥ ,

then

‖v‖p+α

L
p∗
p (p+α)(B(x,R))

≤ p(p + α)pCp
∗BR′ (CR′ + DR,R′ ) max

{
,‖v‖Lp̃(p+α)(B(x,R′))

}p+α ()
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with

BR′ :=
(
 +

∣∣B(, R′)∣∣),
CR′ :=

{‖a‖Lγ (B(x,R′)) + ‖a‖Lγ (B(x,R′)) + 
r

p–r ‖a‖
p

p–r
Lγ (B(x,R′))

}
,

DR,R′ :=
{

p–pp + p–

(R′ – R)p +
μq–pq

(R′ – R)q

}
,

where C∗ is the positive constant from embedding from W ,p(RN ) to Lp∗ (RN ).

Proof Taking vvα
Mηp ∈ W ,p

 (B(x, R′)) (for M > ) as a test function, where η(x) = ηR,R′ (|x –
x|), by Lemma  and (F) we obtain

‖a‖Lγ (B(x,R′))‖v‖+α

Lp̃(p+α)(B(x,R′))BR′

+ ‖a‖Lγ (B(x,R′))‖v‖r++α

Lp̃(p+α)(B(x,R′))BR′

+ 
r

p–r ‖a‖Lγ (B(x,R′))‖v‖
p

p–r
+α

Lp̃(p+α)(B(x,R′))BR′ +



∫
B(x,R′)

|∇v|pvα
Mηp dx

≥
∫

B(x,R′)
|∇v|pvα

Mηp dx + λ

∫
B(x,R′)

vp+α

M ηp dx –
p

R′ – R

∫
B(x,R′)

|∇v|p–vα
Mvηp– dx

+ μ

{∫
B(x,R′)

|∇v|qvα
Mηp dx –

p
R′ – R

∫
B(x,R′)

|∇v|q–vα
Mvηp– dx

}
, ()

where we use |∇η| ≤ /(R′ – R). According to Young’s and Hölder’s inequalities, for j = p, q,
we see that

p
R′ – R

∫
B(x,R′)

|∇v|j–vα
Mvηp– dx

≤ 


∫
B(x,R′)

|∇v|jvα
Mηp dx +

jpjj–

(R′ – R)j

∫
B(x,R′)

vj+αηp–j dx

≤ 


∫
B(x,R′)

|∇v|jvα
Mηp dx +

j–pj

(R′ – R)j ‖v‖j+α

Lp̃(p+α)(B(x,R′))BR′ . ()

Consequently, because of μ ≥  and p + α > r +  + α, p/(p – r) + α, it follows from ()
and () that

BR′
(

CR′ +
p–pp

(R′ – R)p +
μq–pq

(R′ – R)q

)
max

{
,‖v‖Lp̃(p+α)(B(x,R′))

}p+α

≥ 


∫
B(x,R′)

|∇v|pvα
Mηp dx + λ

∫
B(x,R′)

vp+α

M ηp dx. ()

Moreover, by using

∥∥∇(v+α/p
M η

)∥∥p
Lp(RN )

≤ p–{∥∥η∇(v+α/p
M

)∥∥p
Lp(RN ) +

∥∥v+α/p
M ∇η

∥∥p
Lp(RN )

}
≤ p–

(
 +

α

p

)p ∫
B(x,R′)

|∇v|pvα
Mηp dx +

p–

(R′ – R)p

∫
B(x,R′)

vp+α

M dx
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and Hölder’s inequality, due to the embedding from W ,p(RN ) to Lp∗ (RN ), we have




∫
B(x,R′)

|∇v|pvα
Mηp dx + λ

∫
B(x,R′)

vp+α

M ηp dx

≥ –ppp(p + α)–p{∥∥∇(v+α/p
M η

)∥∥p
Lp(RN ) + λ

∥∥v+α/p
M η

∥∥p
Lp(RN )

}
–

p–pp

(p + α)p(R′ – R)p

∫
B(x,R′)

vp+α

M dx

≥ –ppp(p + α)–p∥∥v+α/p
M η

∥∥p
W ,p(RN )

–
p–

(R′ – R)p ‖v‖p+α

Lp̃(p+α)(B(x,R′))
(
 +

∣∣B(, R′)∣∣)

≥ –ppp(p + α)–pC–p
∗
∥∥v+α/p

M η
∥∥p

Lp∗ (RN ) –
p–

(R′ – R)p ‖v‖p+α

Lp̃(p+α)(B(x,R′))BR′

≥ –ppp(p + α)–pC–p
∗ ‖vM‖p+α

Lp∗(p+α)/p(B(x,R))

–
p–

(R′ – R)p ‖v‖p+α

Lp̃(p+α)(B(x,R′))BR′ . ()

Therefore, () and () lead to

–ppp(p + α)–pC–p
∗ ‖vM‖p+α

Lp∗(p+α)/p(B(x,R))

≤ BR′ (CR′ + DR,R′ ) max
{

,‖v‖Lp̃(p+α)(B(x,R′))
}p+α . ()

Applying Fatou’s lemma and letting M → ∞ in (), our conclusion follows. �

Proposition  Under the assumptions in Theorem , we have that v ∈ L∞(RN ).

Proof First, in the case of N > p, we note that

γ ′
j <

p∗

p
⇐⇒ γj >

p∗

p∗ – p
(j = , ),

γ >
p

p – r
and γ :=

(p – r)γ

(p – r)γ – p
<

p∗

p
⇐⇒ γ >

pp∗

(p – r)(p∗ – p)
.

In the cases of (i) and (ii) (case p < p∗/p), we take γ = p′ and γj = r̃j (j = , ). Then, we have
γ ′

 = p, γ ′
 = r̃′

 = p/(r + ) ≤ p, γ = r̃ = p/(p – r – ) > p/(p – r), and γ = (p – r)r̃/((p –
r)r̃ – p) = p – r ≤ p. Choose p̃ such that

(
max

{
γ ′

,γ ′
 ,γ

}
=
)
p̃ = p

(
<

p∗

p

)
in the cases of (i) and (ii),

max
{
γ ′

,γ ′
 ,γ

}≤ p̃ <
p∗

p
in the case of (iii).

Let R∗ be the positive constant satisfying () in the case of (iii) and any positive constant
in the cases of (i) and (ii). Put

Ai :=

{
‖ai‖Lγi (RN ) if (i) and (ii),
supx∈RN ‖ai‖Lγi (B(x,R∗)) if (iii)
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for i = , , . Define the sequences {αn}, {R′
n}, and {Rn} by

α :=
p∗

p̃
– p > , p̃(p + αn+) =

p∗

p
(p + αn),

R′
n :=

(
 + –n)R∗, Rn := R′

n+.

Recall that v ∈ W ,p(RN ), and using the embedding of W ,p(RN ) to Lp∗ (RN ), we see that
v ∈ Lp∗ (RN ) = Lp̃(p+α)(RN ).

Fix any x ∈ R
N . Then Lemma  guarantees that if v ∈ Lp̃(p+αn)(B(x, R′

n)), then v ∈
L

p∗
p (p+αn)(B(x, Rn)) = Lp̃(p+αn+)(B(x, R′

n+)). Noting that

BR′
n ≤ (

 +
∣∣B(, R∗)

∣∣) =: B,

CR′
n ≤ A + A + 

r
p–r A

p
p–r
 +  =: C,

DRn ,R′
n ≤ ( + pp)p(n+)

Rp
∗

+
μqqq(n+)

Rq
∗

=: Dn ≤ C′p(n+)

for any n ≥  with sufficiently large C′ independent of n and setting

bn := max
{

,‖v‖Lp̃(p+αn)(B(x,R′n))
}

,

by Lemma  we obtain

bn+ ≤ C


p+αn (p + αn)
p

p+αn (C + Dn)


p+αn bn ()

for every n ≥  with C := p(C∗ + )pB. Put P := p̃p/p∗ < . Then, because of p + αn+ =
(p + αn)/P, αn+ > αn/P > α(/P)n+ → ∞ as n → ∞. Moreover, we see that

S :=
∞∑

n=


p + αn

=


p + α

∞∑
n=

Pn =


(p + α)( – P)
< ∞,

S := ln
∞∏

n=

(p + αn)
p

p+αn =
p

p + α

∞∑
n=

Pn(ln(p + α) + n ln P–) < ∞,

and

S := ln
∞∏

n=

(C + Dn)


p+αn =
∞∑

n=

Pn

p + α
ln(C + Dn)

≤
∞∑

n=

Pn

p + α
p(n + ) ln

(
C + C′) < ∞.

As a result, by iteration in () and the equality p̃(p + α) = p∗ we obtain

‖v‖
L

p∗
p (p+αn)(B(x,R∗))

≤ bn ≤ CS eS eS max
{

,‖v‖Lp∗ (B(x,R∗))
}

for every n ≥ . Letting n → ∞, this ensures that

‖v‖L∞(B(x,R∗)) ≤ CS eS eS max
{

,‖v‖Lp∗ (B(x,R∗))
}

. ()
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Recalling that v ∈ W ,p(RN ) and using the embedding of W ,p(RN ) to Lp∗ (RN ), () yields
that

‖v‖L∞(B(x,R∗)) ≤ CS eS eS max
{

,‖v‖Lp∗ (RN )
}

≤ CS eS eS max
{

, C∗‖v‖W ,p(RN )
}

,

whence v is bounded in R
N because x ∈ R

N is arbitrary and the constant CS epS eS is
independent of x. �

5.2 Proof of Theorem 2

Proof of Theorem  Since v is bounded in R
N by Proposition , we put M := ‖v‖L∞(RN ).

Then, as in Lemma , we see that

∫
B(x,R′)

avvα
Mηp dx ≤ ‖a‖Lγ (B(x,R′))M‖v‖α

Lp̃(p+α)(B(x,R′))BR′ , ()

∫
B(x,R′)

avr+vα
Mηp dx ≤ ‖a‖Lγ (B(x,R′))M+r

 ‖v‖α

Lp̃(p+α)(B(x,R′))BR′ , ()

∫
B(x,R′)

a|∇v|r vvα
Mηp dx

≤ 


∫
B(x,R′)

|∇v|pvα
Mηp dx + 

r
p–r ‖a‖

p
p–r
Lγ (B(x,R′))M

p
p–r
 ‖v‖α

Lp̃(p+α)(B(x,R′))BR′ , ()

and

‖v‖j+α

Lp̃(p+α)(B(x,R′)) ≤ Mj
‖v‖α

Lp̃(p+α)(B(x,R′)) (j = p, q). ()

Fix any x ∈R
N . It follows from the argument as in the proof of Lemma  with (), (),

(), and () that

‖v‖p+α

L
p∗
p (p+α)(B(x,R))

≤ p(p + α)pCp
∗BR′ (CR′ + DR,R′ )(M + )p‖v‖α

Lp̃(p+α)(B(x,R′)), ()

provided that v ∈ Lp̃(p+α)(B(x, R′)). Choose γi (i = , , ) and p̃ and define the sequences
{αn}, {R′

n}, and {Rn} as in the proof of Proposition . Set

Vn := ‖v‖αn
Lp̃(p+αn)(B(x,R′

n)).

Then, by the same argument as in the proof of Proposition  with () we obtain

V
p+αn–

αn
n ≤ C(p + αn–)p(C + Dn–)Vn– ()

with C := pCp
∗B(M + )p. Recall that

αn + p = P–(p + αn–) and
p

p + α
= P.
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Define

Qn :=
n+∏
k=

(
 +

Pk

 – Pk

)
=

n+∏
k=

(
 – Pk)– and Wn := (C + Dn).

Then, inequality () leads to

ln Vn ≤ αn

p + αn–

(
ln Vn– + ln C(p + αn–)p + ln Wn–

)
= P–( – Pn+)(ln Vn– + p ln CP–n+(p + α) + ln Wn–

)
≤ P–( – Pn+) ln Vn– + pP– ln(C + )P–n+(p + α) + P– ln Wn–

≤ P–n

( n∏
k=

(
 – Pk+)) ln V + p

n∑
k=

P–k ln(C + )P–n+k(p + α)

+
n∑

k=

P–k ln Wn–k

= P–nQ–
n ln V + p

n∑
k=

P–k ln(C + )P–n+k(p + α) +
n∑

k=

P–k ln Wn–k

for every n because of ln(C + )P–n+(p + α) >  and ln Wn >  for all n. Therefore, we have

ln‖v‖Lp̃(p+αn)(B(x,R′
n))

=
ln Vn

αn
=

Pn ln Vn

p + α – pPn

≤ Q–
n ln V

p + α – pPn +
∑n–

l= Pl ln(C + )P–l(p + α)
p + α – pPn +

∑n–
l= Pl ln Wl

p + α – pPn . ()

Here, taking a sufficiently large positive constant C′ independent of n, we see that

n–∑
l=

Pl ln(C + )P–l(p + α) ≤ C′
∞∑
l=

Pl(l + ) =: S < ∞

and

n–∑
l=

Pl ln Wl ≤ C′
n–∑
l=

Pl(l + ) ≤ C′
∞∑
l=

Pl(l + ) =: S < ∞.

Next, we shall show that {Qn} is a convergent sequence. It is easy see that {Qn} is increasing.
Moreover, setting dk := ln( + Pk

–Pk ), we see that

lim
k→∞

dk+

dk
= lim

k→∞
ln( – Pk+)
ln( – Pk)

= lim
k→∞

 – Pk

 – Pk+ P = P < 

by L’Hospital’s rule. This implies that

ln Qn =
n+∑
k=

ln

(
 +

Pk

 – Pk

)
≤

∞∑
k=

ln

(
 +

Pk

 – Pk

)
< ∞.
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Therefore, {Qn} is bounded from above, whence {Qn} converges, and

 <


 – P = Q ≤ Q∞ := lim
n→∞ Qn < ∞.

Consequently, letting n → ∞ in (), we have

‖v‖L∞(B(x,R∗)) ≤ (pSS)


p+α ‖v‖
α

(p+α)Q∞
Lp∗ (B(x,R∗))

.

This yields our conclusion since ‖v‖Lp∗ (B(x,R∗)) →  as |x| → ∞, α > , and the constant
pSS is independent of x. �
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