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Abstract
In this paper, we investigate a generalization of the Dirichlet problem for the Poisson
equation in a rectangular domain. We assume that the kth-order normal derivatives of
an unknown function are given on lower and upper bases of the rectangle and that
homogeneous boundary conditions of the first kind are given on the lateral sides.
Under these conditions, we prove the existence of a unique regular solution of this
problem.
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1 Introduction. Formulation of the problem
The boundary value problems for elliptic equations have been studied extensively by many
authors (see, e.g., [, ] and the references therein). In [], the following problem for the
homogeneous heat conduction equation in the domain ( < x < ∞, t > ) was considered:

m∑

k=

ak
∂ku(, t)

∂xk = f (x, t), u(x, ) = ,

and the uniqueness and existence of the solution of this problem were proved. In [], for
the Laplace equation in an n-dimensional bounded domain D a problem with the bound-
ary condition of the form

dmu
dνm = f (x), x ∈ ∂D,

was investigated, and its Fredholm property was proved. For the Laplace, Poisson, and
Helmholtz equations, the boundary value problems in the unit ball with higher-order
derivatives in the boundary conditions were studied by Karachik [–], Sokolovskĭı [],
and others. In the papers [–], the boundary conditions were given on the whole bound-
ary. Therefore, the uniqueness of problems was proved within homogeneous polynomials
of certain degree. In a rectangular domain for the heat conduction equation, the initial-
boundary value problem with higher-order derivative in the initial condition was studied
in []. Boundary value problems in the rectangular domains were studied by Sabitov (see,
e.g., [–]).
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In the present paper, we consider the equation

∂u
∂x +

∂u
∂y = f (x, y) (.)

in the domain � = {(x, y) :  < x < p,  < y < q}.

Problem Find a function u(x, y) ∈ C(�), ∂k u
∂yk ∈ C(�) satisfying equation (.) in � and

the following conditions:

u(, y) = ,  < y < q, (.)

u(p, y) = ,  < y < q, (.)

∂ku
∂yk (x, ) = ϕ(x),  < x < p, (.)

∂ku
∂yk (x, q) = ψ(x),  < x < p, (.)

where k is a fixed nonnegative integer. If k = , then it is necessary for the functions ϕ(x)
and ψ(x) to satisfy the following conditions: ϕ() = ϕ(p) = , ψ() = ψ(q) = . In case k = 
and f (x, y) =  in �, problem (.)-(.) was studied in []. In the papers [] and [], the
authors used similar procedures.

In this paper, our goal is to show the existence of a unique regular solution for this prob-
lem.

2 Uniqueness of the solution of problem (1.1)-(1.5)
Here, we prove the uniqueness of the solution of problem (.)-(.).

Theorem . The solution of problem (.)-(.) is unique if it exists.

Proof Assume that

ϕ(x) = , ψ(x) = ,  ≤ x ≤ p, f (x, y) = , (x, y) ∈ �.

We will prove that u(x, y) =  in �. In order to show this, we refer to [] and consider the
integral

αn(y) =
∫ p


u(x, y)Xn(x) dx, (.)

where

Xn(x) =

√

p

sinλnx dx, λn =
nπ

p
, n = , , . . .

is a complete orthonormal system in L[, p] (see, e.g., []). Differentiating (.) twice with
respect to y, we get

α′′
n(y) =

∫ p



∂u
∂y Xn(x) dx.
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From the homogeneous equation (.) we have

α′′
n(y) = –

∫ p


uxx(x, y)Xn(x) dx.

Applying integration by parts and using conditions (.) and (.), we get

α′′
n(y) – λ

nαn(y) = . (.)

The general solution of equation (.) has the form

αn(y) = ane–λny + bneλny,

where an and bn are unknown constant coefficients. In order to find an and bn, we use
conditions (.) and (.), which imply

α(k)
n () = , α(k)

n (q) = . (.)

The derivative α
(k)
n (y) has form

α(k)
n (y) = λk

n
[
(–)kane–λny + bneλny].

Using (.), we have

{
(–)kan + bn = ,
(–)kane–λnq + bneλnq = .

The determinant of this system equals (–)k sh(λnq) �= . Therefore, an = bn = . Conse-
quently, αn(y) = . Finally, from completeness of the functions Xn(x) in L(, p) and from
(.) we obtain u(x, y) =  in �.

Theorem . is proved. �

3 Existence of the solution of problem (1.1)-(1.5)
In this section, we first construct a formal solution of problem (.)-(.). Then, we prove
some lemmas on convergence of the series in the formal solution and its derivatives. Fi-
nally, we formulate the theorem on solvability of problem (.)-(.). We seek a formal
solution of this problem in the form of Fourier series

u(x, y) =
∞∑

n=

un(y)Xn(x) (.)

expanded along system Xn(x). It is clear that u(x, y) satisfies conditions (.)-(.). Assume
that

f (x, y) ∈ C(�), f (, y) = f (p, y) = , ϕ(x) ∈ C[, p], ϕ() = ϕ(p) = ,

ψ(x) ∈ C[, p], ψ() = ψ(p) = .
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We expand the given functions f (x, y), ϕ(x), and ψ(x) in the Fourier series along the func-
tions Xn(x):

f (x, y) =
∞∑

n=

fn(y)Xn(x), (.)

ϕ(x) =
∞∑

n=

ϕnXn(x), (.)

ψ(x) =
∞∑

n=

ψnXn(x), (.)

where

fn(y) =
∫ p


f (x, y)Xn(x) dx, (.)

ϕn =
∫ p


ϕ(x)Xn(x) dx, (.)

ψn =
∫ p


ψ(x)Xn(x) dx. (.)

Using Fourier’s method, we get a solution of problem (.)-(.) in the form

u(x, y) =
∞∑

n=

Xn(x)

{
eλn(q–y) – (–)ke–λn(q–y)

(–)k shλnq

[
ϕn

λk
n

–
[ k–

 ]∑

s=

f (k––s)
n ()

λk–s
n

+


λn

∫ q


e–λnηfn(η) dη

]
+

(–)keλnyy – e–λny

(–)k shλnq

[
ψn

λk
n

–
[ k–

 ]∑

s=

f (k––s)
n (q)

λk–s
n

+
(–)k

λn

∫ q


e–λn(q–η)fn(η) dη

]

–


λn

∫ y


e–λn(y–η)fn(η) dη –


λn

∫ q

y
e–λn(η–y)fn(η) dη

}
. (.)

Now, let us consider the derivatives

∂u
∂x = –

∞∑

n=

Xn(x)

{
eλn(q–y) – (–)ke–λn(q–y)

(–)k shλnq

[
ϕn

λk–
n

–
[ k–

 ]∑

s=

f (k––s)
n ()
λk––s

n
+




∑

s=


λs

n

(
f (s)
n () – f (s)

n (q)e–λnq)

+


λn

∫ q


f ′′
n (η)e–λnη dη

]
+

(–)keλny – e–λny

(–)k shλnq

[
ψn

λk–
n

–
[ k–

 ]∑

s=

f (k––s)
n (q)
λk––s

n
+

(–)k



∑

s=

(–)s

λs
n

[
f (s)
n (q) – f (s)

n ()e–λnq]
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+
(–)k

λn

∫ q


f ′′
n (η)e–λn(q–y) dη

]
–




∑

s=

(–)s

λs
n

[
f (s)
n (y) = f (s)

n ()e–λny]

–


λn

∫ y


f ′′
n (η)e–λn(y–η) dη –




∑

s=


λs

n

[
f (s)
n (y) – f (s)

n (q)e–λn(q–y)]

–


λn

∫ q

y
f ′′
n (η)e–λn(η–y) dη

}
, (.)

∂u
∂y =

∞∑

n=

Xn(x)

[
eλn(q–y) – (–)ke–λn(q–y)

(–)k shλnq

[
ϕn

λnk–
–

[ k=
 ]∑

s=

f (k=–s)
n ()
λk––s

n

+



∑

s=


λs

n

(
f (s)
n () – f (s)

n (q)e–λnq) +


λn

∫ q


f ′′
n (η)e–λnη dη

]

+
(–)keλny – e–λny

(–)k shλnq

[
ψn

λk–
n

–
[ k–

 ]∑

s=

f (k––s)
n (q)
λk––s

n
+

(–)k



∑

s=

(–)s

λs
n

(
f (s)
n (q)

– f (s)
n ()e–λnq) +

(–)k

λn

∫ q


f ′′
n (η)e–λn(q–η) dη

]
+ fn(y) –




∑

s=

(–)s

λs
n

[
f (s)
n (y)

– f (s)
n ()e–λny] –


λn

∫ y


f ′′
n (η)e–λn(y–η) dη –




∑

s=


λs

n

[
f (s)
n (y)

– f (s)
n (q)e–λn(q–y)] –


λn

∫ q

y
f ′′
n (η)e–λn(η–y) dη

]
, (.)

and

∂ku
∂yk =

∞∑

n=

Xn(x)

{
shλn(q – y)

shλnq

[
ϕn –

[ k–
 ]∑

s=

λs
n f (k––s)

n () +



k–∑

s=

λk––s
n

[
f (s)
n ()

– f (s)
n (q)e–λnq] +


λn

∫ q


f (k)
n (η)e–λnη dη

]
+

shλny
shλnq

[
ψn –

[ k–
 ]∑

s=

λs
n f (k––s)

n (q)

+



k–∑

s=

(–)k+s

λs+–k
n

(
f (s)
n (q) – f (s)

n ()e–λnq) +


λn

∫ q


f (k)
n (η)e–λn(q–η) dη

]

+
[ k–

 ]∑

s=

λs
n f (k––s)

n (y) –
(–)k



k–∑

s=

(–)sλk––s
n

[
f (s)
n (y) – f (s)

n ()e–λny]

–


λn

∫ y


f (k)
n (η)e–λn(y–η) dη –




k–∑

s=

λk––s
n

[
f (s)
n (y) – f (s)

n (q)e–λn(q–y)]

–


λn

∫ q

y
f (k)
n (η)e–λn(η–y) dη

}
. (.)

Denote by C,
x,y (�) the class of the functions u(x, y) such that u(x, y), ux(x, y) ∈ C(�).

We have the following lemmas.
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Lemma . If

f (x, y) ∈ C,
x,y (�),

∂f
∂x

∈ Lipα[, p],  < α < ,

uniformly with respect to y, then the series in (.) absolutely and uniformly converges in �.

Proof Applying integration by parts to (.), we obtain

fn(y) =

λn

f ()
n (y), (.)

where

f ()
n (y) =

∫ p



∂f
∂x

(x, y)

√

p

cosλnx dx.

According to [], |f ()
n (y)| ≤ c

nα , where c >  is a constant. Then, |fn(y)| < cp
π


n+α , and the

series
∑∞

n=


n+α is convergent. Consequently, the series in (.) is absolutely and uniformly
convergent in �.

Lemma . is proved. �

Lemma . If

ϕ(x) ∈ W 
 (, p), ϕ() = ϕ(p) = 

and

ψ ∈ W 
 (, p), ψ() = ψ(p) = ,

then the series (.) and (.) are absolutely and uniformly convergent in [, p].

Proof Integrating the integral in (.) by parts, we have

ϕn =

λn

ϕ()
n , (.)

where

ϕ()
n =

∫ p


ϕ′(x)

√

p

cosλnx dx.

Taking into account equality (.) and applying the Hölder inequality to the sum (see,
e.g., []) of the series

p
π

∞∑

n=


n

∣∣ϕ()
n

∣∣,

we get

p
π

∞∑

n=


n

∣∣ϕ()
n

∣∣ ≤ p
π

( ∞∑

n=


n

) 

( ∞∑

n=

∣∣ϕ()
n

∣∣
) 



.
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Using Bessel’s inequality (see, e.g., []), we find

( ∞∑

n=

∣∣ϕ()
n

∣∣
) 



≤ ∥∥ϕ′∥∥
L(,p).

Furthermore,

p
π

( ∞∑

n=


n

) 


=
p
π

(
π



) 


=
p√


.

Hence, we have

p
π

∞∑

n=


n

∣∣ϕ()
n

∣∣ ≤ p√


∥∥ϕ′(x)
∥∥

L(,p).

Consequently, the series (.) is absolutely and uniformly convergent in [, p]. The proof
of absolute and uniform convergence of the series (.) is analogous.

Lemma . is proved. �

Lemma . If

ϕ(x) ∈ W 
 (, p), ϕ() = ϕ(p) = , ϕ′′() = ϕ′′(p) = 

and

ψ(x) ∈ W 
 (, p), ψ() = ψ(p) = , ψ ′′() = ψ ′′(p) = ,

then, for any k ≥ , the series

∞∑

n=

eλn(q–y) – (–)ke–λn(q–y)

(–)k shλnq
ϕn

λk–
n

(.)

and

∞∑

n=

(–)keλny – e–λny

(–)k shλnq
ψn

λk–
n

(.)

are absolutely and uniformly convergent in �.

Proof We show the inequalities

 ≤ eλn(q–y) – (–)ke–λn(q–y)

 shλnq
≤ C, (.)

 ≤
∣∣∣∣
(–)keλny – e–λny

(–)k shλnq

∣∣∣∣ ≤ C, (.)

where C = 

–e– πq
p

.
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Indeed,

eλn(q–y) – (–)ke–λn(q–y)

eλnq – e–λnq =
eλn(q–y)

eλnq
 – (–)ke–λn(q–y)

 – e–λnq .

Since

eλn(q–y)

eλnq ≤ ,  – (–)ke–λn(q–y) ≤ ,  – e–λnq >  – e– πq
p ,

we have

eλn(q–y) – (–)ke–λn(q–y)

 shλnq
≤ 

 – e– πq
p

= C.

Inequality (.) is proved.
Similarly, one can verify inequality (.). In the case k = , the series (.) and (.)

are absolutely and uniformly convergent in � according to Lemma .. When k > , the
series (.) and (.) evidently are absolutely and uniformly convergent in �. Let k = .
We consider the absolute value of the series in (.)

∞∑

n=

eλn(q–y) – (–)ke–λn(q–y)

 shλnq
λ

n|ϕn|.

In order to prove the convergence of the last series, we apply integration by parts in (.).
We have

ϕn = –

λ

n
ϕ()

n , (.)

where

ϕ()
n =

∫ p


ϕ′′′(x)

√

p

cosλnx dx.

Using (.) and (.) in the last series, we get

C

∞∑

n=

λ
n


λ

n

∣∣ϕ()
n

∣∣ = C

∞∑

n=


λn

∣∣ϕ()
n

∣∣.

Applying Hölder’s inequality to the sum to the last series, we obtain

C

∞∑

n=


λn

∣∣ϕ()
n

∣∣ ≤ C
p
π

( ∞∑

n=


n

) 

( ∞∑

n=

∣∣ϕ()
n

∣∣
) 



= C
p
π

π√


( ∞∑

n=

∣∣ϕ()
n

∣∣
) 



=
Cp√



( ∞∑

n=

∣∣ϕ()
n

∣∣
) 



.
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Using Bessel’s inequality, we have

( ∞∑

n=

∣∣ϕ()
n

∣∣
) 



≤ ∥∥ϕ′′′∥∥
L(,p).

Further, we have

C

∞∑

n=


λn

∣∣ϕ()
n

∣∣ ≤ Cp√


∥∥ϕ′′′∥∥
L(,p).

Consequently, the series (.) converges. Analogously, the proof of convergence of the
series (.) can be obtained, and, thus, we do not give it here.

Lemma . is proved. �

Lemma . If ∂k–f (x,y)
∂yk– ∈ C(�), then the series

∞∑

n=

Xn(x)
eλn(q–y) – (–)ke–λn(q–y)

(–)k shλnq

[ k–
 ]∑

s=

f (k––s)
n ()

λk–s
n

(.)

and

∞∑

n=

Xn(x)
(–)keλny – e–λny

(–)k shλnq

[ k–
 ]∑

s=

f (k––s)
n (q)

λk–s
n

(.)

are absolutely and uniformly convergent in �.

Proof By the condition of the lemma we have

∣∣f (k––s)
n (a)

∣∣ ≤ C, (.)

where a =  or a = q, and C >  is constant. Taking into account (.), (.), and the last
inequality, we conclude that the series

CC

√

p

∞∑

n=

[ k–
 ]∑

s=


λk–s

n
(.)

is a majorant for the series (.) and (.). If s =  and k ≥ , then the series (.)
converges. At s = [ k–

 ], we have

k – s = k – 
[

k – 


]
=

{
 if k is odd,
 if k is even.

Consequently, at s = [ k–
 ], if k is an odd number, then the series (.) has the form∑∞

n=

λ

n
; if k is an even number, then the series (.) has the form

∑∞
n=


λ

n
. In both cases,

the series (.) is convergent. Therefore, the series (.) and (.) are absolutely and
uniformly convergent in �.

Lemma . is proved. �



Amanov Boundary Value Problems  (2016) 2016:160 Page 10 of 15

Lemma . If

∂m–f (x, y)
∂ym– ∈ C(�),

∂mf (x, y)
∂ym ∈ L(, q),

then we have the estimate


λn

∣∣∣∣
∫ q


e–λn(q–η)f (m)

n (η) dη

∣∣∣∣ ≤ C
n 



∥∥f (m)
n

∥∥
L(,q), (.)

where C = ( p
π

) 
 , and m =  or m = k.

Proof Applying the Hölder inequality (see, e.g.,[]) to the integral on the left-hand side
of inequality (.), we obtain


λn

∣∣∣∣
∫ q


e–λn(q–η)f (m)

n (η) dη

∣∣∣∣ ≤ 
λn

(∫ q


e–λn(q–η) dη

) 

(∫ q



(
f (m)
n (η)

) dη

) 


=
[


λn

(
 – e–λnq)

] 
 

λn

∥∥f (m)
n

∥∥
L(,q)

≤ 
(λn) 



∥∥f (m)
n

∥∥
L(,q) =


( nπ

p ) 


∥∥f (m)
n

∥∥
L(,q)

=
C
n 



∥∥f (m)
n

∥∥
L(,q).

Lemma . is proved. �

Lemma . If ∂k–f (x,y)
∂yk– ∈ C(�), then the series

∞∑

n=

Xn(x)
eλn(q–y) – (–)ke–λn(q–y)

(–)k shλnq

[ k–
 ]∑

s=

f (k––s)
n ()
λk––s

n
(.)

and

∞∑

n=

Xn(x)
(–)keλny – e–λny

(–)k shλnq

[ k–
 ]∑

s=

f (k––s)
n (q)
λk––s

n
(.)

absolutely and uniformly converge in �.

Proof Taking into account (.) and (.), we conclude that the series

C

√

p

∞∑

n=

[ k–
 ]∑

s=

|f (k––s)
n (a)|
λk––s

n
, (.)

where a =  or a = q, is majorant for the series (.) and (.). If s = [ k–
 ], then we have

k –  – s = k –  – 
[

k – 


]
=

{
 if k is odd,
 if k is even.
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Therefore, in the case where k is an odd number, the series (.) has the form

∞∑

n=

|f ′
n(a)|
λn

, (.)

and if k is an even number, then the series (.) has the form

∞∑

n=

∣∣fn(a)
∣∣. (.)

Applying the Hölder inequality to the series (.), we get

∞∑

n=

|f ′
n(a)|
λn

≤
( ∞∑

n=


λ

n

) 

( ∞∑

n=

∣∣f ′
n(a)

∣∣
) 



.

Using Bessel’s inequality, we find

( ∞∑

n=

∣∣f ′
n(a)

∣∣
) 



≤
∥∥∥∥
∂f (x, a)

∂y

∥∥∥∥
L(,q)

.

Since (
∑∞

n=

λ

n
) 

 = p√


, the series (.) converges. In order to proof the convergence of
the series (.), we integrate by parts the integral

fn(a) =
∫ p


f (x, a)Xn(x) dx,

and we obtain

fn(a) =

λn

f ()
n (a), (.)

where

f ()
n (a) =

∫ p



∂f (x, a)
∂x

√

p

cosλnx dx.

Substituting (.) into the series (.), we find

∞∑

n=

∣∣fn(a)
∣∣ =

∞∑

n=


λn

∣∣f ()
n (a)

∣∣.

Further, as in the case of (.), we have

∞∑

n=

∣∣fn(a)
∣∣ ≤ p√



∥∥∥∥
∂f (x, a)

∂x

∥∥∥∥
L(,p)

.

If s ≤ [ k–
 ], then the series (.) converges for both odd and even k. Consequently, the

series (.) and (.) are absolutely and uniformly convergent in �.
Lemma . is proved. �
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Lemma . If

∂k–f (x, y)
∂xi ∂yj ∈ C(�), i, j = , , . . . , k – , i + j = k – ,

∂lf
∂xl (, y) =

∂lf
∂xl (p, y) = ,

where

l = , , . . . ,

{
k–

 if k is even,
k–

 if k is odd,
(.)

then the series

∞∑

n=

[ k–
 ]∑

s=

λs
n
∣∣f (k––s)

n (a)
∣∣ =

∞∑

n=

[
∣∣f (k–)

n (a)
∣∣ + λ

n
∣∣f (k–)

n (a)
∣∣

+ · · · +

{
λk–

n |fn(a)| if k is even,
λk–

n |f ′
n(a)| if k is odd

]
(.)

converges, where a =  or a = q.

Proof Let k be an even number. If s = [ k–
 ], then s = [ k–

 ] = k – . If the series

∞∑

n=

λk–
n

∣∣fn(a)
∣∣ (.)

converges, then the series (.) is also convergent, where

fn(a) =
∫ p


f (x, a)

√

p

sinλnx dx.

Integrating the last integral by parts k –  times, we have

fn(a) =


λk–
n

f (k–,)
n (a), (.)

where

f (k–,)
n (a) =

∫ p



∂k–f (x, a)
∂xk–

√

p

sin

[
(k – )

π


+ x

]
dx.

Taking into account (.), the series (.) gives

∞∑

n=

λk–
n

∣∣fn(a)
∣∣ ≤

∞∑

n=


λn

∣∣f (k–,)
n (a)

∣∣.

Applying the Hölder inequality to the right-hand side of the last inequality, we have

∞∑

n=


λn

∣∣f (k–,)
n (a)

∣∣ ≤
( ∞∑

n=


λ

n

) 

( ∞∑

n=

∣∣f (k–,)
n (a)

∣∣
) 



=
p√


( ∞∑

n=

∣∣f (k–,)
n (a)

∣∣
) 



.
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Using Bessel’s inequality, we find

( ∞∑

n=

∣∣f (k–,)
n (a)

∣∣
) 



≤
∥∥∥∥
∂k–f (x, a)

∂xk–

∥∥∥∥
L(,p)

.

Hence, we obtain

∞∑

n=

λk–
n

∣∣fn(a)
∣∣ ≤ p√



∥∥∥∥
∂k–f (x, a)

∂xk–

∥∥∥∥
L(,p)

.

The convergence of the series (.) is proved.
Let k be an odd number and s = [ k–

 ]. In this case, s = [ k–
 ] = k – . If the series

∞∑

n=

λk–
n

∣∣f ′
n(a)

∣∣ (.)

is convergent, then the series (.) is also convergent for odd k. The proof of this assertion
is analogous to the proof of convergence of the series (.).

Lemma . is proved. �

Lemma . Let the conditions of Lemma . be satisfied. Then the series

∞∑

n=

k–∑

s=

λk––s
n

∣∣f (s)
n (a)

∣∣, a = , q,

is convergent, and the series

∞∑

n=

k–∑

s=

λk––s
n

∣∣f (s)
n (y) – f ()

n e–λny∣∣

and

∞∑

n=

k–∑

s=

λk––s
n

∣∣f (s)
n (y) – f (s)

n (q)e–λn(q–y)∣∣

are absolutely and uniformly convergent.

Proof of this lemma is analogous to that of Lemma .. Using the results of the presented
lemmas, we get the following theorem.

Theorem . Let the following conditions be satisfied:

(i) ϕ(x) ∈ W 
 (, p), ϕ() = ϕ(p) = , ϕ′′() = ϕ′′(p) = ;

(ii) ψ ∈ W 
 (, p), ψ() = ψ(p) = , ψ ′′() = ψ ′′(p) = ;

(iii)
∂k–f (x, y)

∂xi ∂yj ∈ C(�), i + j = k – , i, j = , , . . . , k – ,

∂kf (x, y)
∂yk ∈ L(�),

∂lf
∂xl (, y) =

∂lf
∂xl (p, y) = ,
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where

l = , , . . . ,

{
k–

 if k is even,
k–

 if k is odd.

Then the series (.)-(.) absolutely and uniformly converge in �, and solution (.) sat-
isfies equation (.) in � and conditions (.)-(.), where u(x, y) ∈ C(�), ∂k u

∂yk ∈ C(�).

Proof Adding (.) and (.), we find that solution (.) satisfies equation (.) in �. From
the properties of the functions Xn(x) it follows that solution (.) satisfies conditions (.)
and (.). The absolute and uniform convergence of the series (.) in � follows from
Lemma . with m = k and from Lemmas . and .. Therefore, u(x, y) ∈ C(�). The ab-
solute and uniform convergence of the series (.) and (.) in � follows from Lemmas
.-.. Hence, we have ∂u

∂x ∈ C(�), ∂u
∂y ∈ C(�). The absolute and uniform convergence of

the series (.) in � follows from the Lemmas ., ., ., and .. Therefore, ∂k u
∂yk ∈ C(�).

Consequently, u(x, y) ∈ C(�), ∂k u
∂yk ∈ C(�). Taking the limit in (.) as y →  and y → q,

we conclude that solution (.) satisfies conditions (.) and (.).
This proves the theorem. �
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