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Abstract

By using the Leggett-Williams norm-type theorem due to O'Regan and Zima and
constructing suitable Banach spaces and operators, we investigate the existence of
positive solutions for fractional p-Laplacian boundary value problems at resonance.
An example is given to illustrate the main results.
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1 Introduction

Boundary value problems at resonance have attracted more and more attention. Many au-
thors studied the existence of solutions for these problems by using Mawhin’s continuous
theorem [1] and its extension obtained by Ge and Ren [2]; see [3—23] and the references
cited therein. By using Leggett-Williams norm-type theorems due to O'Regan and Zima
[24], the existence of positive solutions for the boundary value problems at resonance with
a linear derivative operator has been investigated (see [25—-28]). To the best of our knowl-
edge, there is no paper to show the existence of a positive solution for boundary value
problems with a nonlinear derivative operator (for instance, p-Laplacian operator) at reso-
nance by using Leggett-Williams norm-type theorems. Motivated by the excellent results
mentioned above, we will discuss the existence of positive solutions for the p-Laplacian
boundary value problem

Df. lpp(CDg)](0) = f (£, (CDg.0)(8)), £ € (0,1), L)
(€D%.%)(0) = (°D.x)(1), x90)=0, i=0,1,2,...,n-1, '
wheren-1<a <n,0<B<1,¢,(s)=Is/P%s,p>1, CDg+ is the Caputo fractional derivative
(see [29, 30]).

2 Preliminaries

For convenience, we introduce some notations and a theorem. For more details see [24].
Assume that X, Y are real Banach spaces. A linear mapping L : domL C X — Y is a

Fredholm operator of index zero (i.e. dimKerL = codimImL < +00 and ImL is closed in
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Y) and an operator N : X — Y is nonlinear. P: X — X and Q: Y — Y are projectors
with ImP = KerL and KerQ =ImL. J : InQ — KerL is a isomorphism since dimImQ =
dimKer L. Denote by Lp the restriction of L to KerPNdom L — ImL and its inverse by Kp.
So, x is a solution of Lx = Nx if and only if it satisfies x = (P + JQN)x + Kp(I — Q)Nx.

Let C C X be a cone, y : X — C be a retraction, ¥ := P + JQN + Kp(I - Q)N and ¥, :=
Woy.

Theorem 2.1 [24] Let 21, Q25 be open bounded subsets of X with Q1 CQand CN (2 \
Q) # 0. Assume that L :domL C X — Y is a Fredholm operator of index zero and the
following conditions are satisfied.
(C1) QN : X — Y is continuous and bounded and Kp(I — Q)N : X — X is compact on
every bounded subset of X;
(C2) Lx #ANx forallx € CN 032 NdomL and A € (0,1);
(C3) y maps subsets of Q2 into bounded subsets of C;
(C4) dp([I - (P+JQN)y]|kerr, Ker L N Q25,0) # 0, where dg stands for the Brouwer
degree;
(C5) there exists ug € C \ {0} such that ||x|| <o (uo)|| Vx| for x € Clug) N 921, where
C(uo) = {x € C: puo < x for some . > 0} and o (u) is such that
I + woll = o (uo)llx| for every x € C;
(C6) (P+JQN)y(0<) C C;
(C7) ¥, (22\ 1) CC. B
Then the equation Lx = Nx has at least one solution in the set C N (23 \ 21).

Now, we present some fundamental facts on the fractional calculus theory which can be
found in [29, 30].

Definition 2.1 The Riemann-Liouville fractional integral of order « > 0 of a function y :
(0,00) — R is given by

Iy = /0 (£ 9% y(s) ds,

1
')
provided the right-hand side is pointwise defined on (0, co).

Definition 2.2 The Caputo fractional derivative of order § > 0 of a function y : (0, 00) —

R is given by

1 t
Dyt = g | €9 0 ds

provided that the right-hand side is pointwise defined on (0, c0), where n = [§] + 1.
Lemma 2.1 [29, 30] Assumef € L[0,1],g>p >0, g > 1, then

DRGS0 =I5 (), DG IG.f(8) =£(2).
Lemma 2.2 [29, 30] Assume p >0, then

B.CDhf(t) =f(t) +co+ cat + -+ cpat™™,

where n is an integer and n —1 < p <n.
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Since CDg+ [(pp(CD‘(’)‘+ -)] is a nonlinear operator, we cannot solve the problem (1.1) by The-
orem 2.1. Based on this, we prove the following lemma.

Lemma 2.3 u(t) is a solution of the following problem:

(DG )(®) =f (& pgu(®), € (0,1], 21
u(0) = u(1), '

if and only if x(t) is a solution of (1.1), where x(t) = I}, o4 (u(2)), }7 + % =1
Proof Assume that u(t) is a solution of the problem (2.1) and x(¢) = I§, ¢, (u(t)). Then u(t) =
[gap(CD‘(’)‘+x)](t) andx?(0) = 0,i=0,1,2,...,n—1. Replaces u(t) with [(pp(CD‘(§+x)](t) in (2.1),
we can see that x(¢) is a solution of (1.1).

On the other hand, if x(¢) is a solution of (1.1) and u(¢) = [(pp(Cng)] (¢), substituting u(t)
for [qop(CD‘5‘+x)](t) in (1.1), we can see that u(¢) satisfies (2.1). O

In this paper, we will always suppose that f € [0,1] x R — R is continuous, p > 1, ¢,(s) =
s-|s|p’2,llg+$=1,a>0,0</3<1.

3 Main result
Let X = Y = C[0,1] with the norm ||| = max,e[o, |#(¢)|. Take a cone

C={u(®) e X |u(t)>0,t<[0,1]}.
Define operator L:domL C X — Y and N : X — Y as follows:
(Lu)(®) = (“Dhu)(®),  (Nw)(®) =f(t, 0q (1)),
where
domL = {u(t) | u(t), Dl u(t) € X, u(0) = u(1)}.
Then the problem (2.1) can be written by
Lu=Nu, wuedomlL.

Lemma 3.1 L is a Fredholm operator of index zero. Kp is the inverse of L|qomLnKerp, Where
Kp:ImL — dom L N Ker P is given by

t 1
pr(t)z%ﬂ)[ [ -9 yoas- [ (1—s)ﬂy<s)ds].

Proof 1t is easy to see that

1
KerL ={c|ceR}, ImL:{er’/ (l—s)ﬂly(s)ds=0},
0

and ImL C Y is closed.
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DefineP: X — X,Q:Y — Y as

Pu = /01 u(t) dt, Qy=p8 /01(1 — )P Yy(s)ds

Obviously, P: X — X, Q: Y — Y are projectors and ImP = Ker L, X = Ker P @ Ker L.

It is easy to see that ImL C Ker Q. Conversely, if y(¢) € Ker Q, take u(t) = %ﬂ) f(f(t -
5)#71y(s) ds. Then u(t) € domL and Lu = CD’g+ u(t) = y(t). These imply Ker Q C Im L. There-
fore InL =KerQ.Forye Y, y=(y-Qy) + Qy e ImL + ImQ. If y € ImL N ImQ, then
y=Qyand y € ImL = Ker Q. This means that y =0, i.e. Y =ImL & Im Q. So, dimKerL =
codimImLZ =1 < +00. L is a Fredholm operator of index zero.

For y € ImL, it is clear that Kpy € domL N KerP and LKpy = y. On the other hand, if
u € domL N Ker P, by Lemma 2.2, we get

t 1
KpLu(t) = f (¢ — )P Lu(s) ds - % / (1—5)PLu(s) ds:|
0

il
I'(B) LJo
=10.°DF u(t) - 16 °DE, u(1)
=u(t) +c— IgflCDg+ u(l).

Thus, fo KpLu(t)dt = fo u(t)dt + c - IgflCng(l). It follows from u € Ker P and KpLu €
Ker P that ¢ — IgflCng(l) = 0. So, we have KpLu = u, u € dom L N Ker P. O

DefineJ:ImQ — KerL as J(c) =¢,c € R.
Thus, JON + Kp(I - Q)N : X — X is given by

1
[JON + Kp(I - QN ]u(t) = /0 G(t,9)f (5,04 (14(5))) dis, (3.1)

where

-1 5P | (t=5)f!
G(t,s) = {ﬁ( -9 - ﬂ+1)+ ) - /s+1>Jr rg o 0ss<i=l

-1 5)P
ﬂ(l—S)ﬂ (1_ ﬂ+1 F(ﬂ+2)) ﬂ+l) OSth(l.

Lemma 3.2 QN : X — Y is continuous and bounded and Kp(I - Q)N : Q@ — X is compact,
where Q2 C X is bounded.

Proof Assume that Q@ C X is bounded. There exists a constant M > 0, such that |Nu| =
(& o @) <M, te0,1,uec Q. So, |QNu| <M, u € Q, i.e. QN(R) is bounded. Based

on the definition of Q and the continuity of f we know that QN : X — Y is continuous.
For u € Q, we have

|Kp(I - Q)Nu(t)|

1
BRG) [/ (=571 - QNuls)ds - fo (1—S)B(1—Q)Nu(s)ds:|

< %,3)/0 (t—s)ﬁ’1|Nu(s)|ds+ 1"(1,3),/0 (t—s)ﬂ’l{QNu(s)|ds
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1 ! P 1 ! 8
+ 1-9)P |Nu(s)|ds + —— 1-s IN1(s)| ds
ﬂr(ﬂ)./()( )|t ,BF(,B)/O( | Qnuts)
4M
“rp+1)
Thus, |Kp(I — QIN(Q) is bounded.
Foru€§,0§t1<t2§1,weget
| Kp(I — Q)Nu(ts) — Kp(I - QNu(t))|
1 ty 5]
= — / (£ — )P — Q)Nu(s) ds —/ (t —$)P71(I - Q)Nu(s) ds
r'B)1Jo 0
t 5]
=— / [(tz —-s)f (1 —s)ﬂ_l](l — Q)Nu(s) ds + / (t — s)P71(I — Q) Nu(s) ds
F(ﬁ) 0 15
oM 4 15}
< [/ [t =) = (& —5)" ] ds + / (ty—s)" dS}
(/3) 0 5]
2M
_ B _ B B
=——|t — L 2(ty — ¢ .
F(,B+1)[1 9 t (& 1)]
It follows from the uniform continuity of ## and £ on [0, 1] that K»(I — Q)N () are equicon-
tinuous on [0,1]. By the Arzela-Ascoli theorem, we see that Kp(I — Q)N () is compact.
|

In order to prove our main result, we need the following conditions.

(H1) There exists a constant Ry > 0, such that f(t,u) <0, t € [0,1], u > Ry.
(Hz) There exist nonnegative functions a(t), b(t) with max;ejo, #3) f(;(t —8)BDa(s)ds :=

A < +00, maXse[o,1] %ﬁ) f(;(t —5)BVp(s)ds := B <1/2, such that

|f (&, u)| < a(e) + b(£)gp (|ul).

(Hs) f(t,u) > -1 - t)"P@,(u)/B, t € [0,1], u > 0.
(Hg) There exist 7> 0, ty € [0,1], and M{ € (0,1) such that

1-M

G(to,8)f (s,u) > 0 op(u), sel0,1),Mor<u<r.

0
(Hs) G(¢,5)f(s,u) > —¢,(u), s € [0,1), t € [0,1], u > 0.
Lemma 3.3 If the conditions (Hy) and (H,) hold, the set

Qo = {u(t) | (Lu)(¢) = ANu(t), u(t) € C NdomL, A € (0,1)}
is bounded.
Proof For u(t) € Qq, we get QNu(t) = 0 and u(t) = MéNu(t) +u(0). By (Hy) and QNu(z) =
0, there exists ty € [0,1] such that ¢, (u(ty)) < Ro. This, together with u(f) = M§+Nu(t) +

1#(0), means

u(0) < ulto) + | LIy Nulto)| < ¢,(Ro) + |15, Nu(to))-

Page 5 of 9
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Thus, we have

u(t) < u(0) + ’k]g+Nu(t)’ < @p(Ro) + 15+Nu(t0)’ + 15+Nu(t)‘. (3.2)

It follows from (H,) that
1 fo B-1
u(t) < @p(Ro) + Tﬁ) ./o (to —s) [f(s, goq(u(s))) | ds

1 ¢
r'(8) / (6 =Y |f (5, 04 (u(s))) | ds

< gp(Ro) + %ﬁ) /0 " (to = /P [als) + bls)u(s)] ds

ft(t —s)ft [a(s) + b(s)u(s)] ds
0

+

L
r'(B)
< ¢p(Ro) +2(A + Bllul)).

Therefore,

This means that €2 is bounded. O

Theorem 3.1 Assume that the conditions (H;)-(Hs) hold. Then the boundary value prob-
lem (1.1) has at least one positive solution.

Proof Set
Q ={ueX|Mollul < |u(t)] <r<R,t€[0,1]}, Q={ueX||ul <R},
where R > max{g,(Ro), I'(8 + 1)A} is large enough such that Qy D €. Clearly, ; and €2,
are open bounded sets of X, Q; C €25 and C N (Qy \ Q1) # 7.
In view of Lemmas 3.1, 3.2, and 3.3, L is a Fredholm operator of index zero and the
conditions (C1), (C2) of Theorem 2.1 are fulfilled.
Define y : X — C as (yu)(¢) = |u(t)|, u(t) € X. Then y : X — C is a retraction and (C3)

holds.
Let u(t) € Ker L N 02, then u(t) = c = £R, t € [0,1]. Define

1

H(c,\) =c—Alc| - M}/O a- s)ﬁ’lf(s, (pq(|c|)) ds.
Ifc=R, A €[0,1], by (H;), we get

1
H(R,1)=R—-AR-AB / 1 -5 (s,04(R)) ds > 0.
0
If c = -R, x € [0,1], by (H3), we obtain
1
H(-R,1) =-R—-AR - B / 1 -5 f(s5,04(R)) ds < —(1 + A)R + AR = —R.
0

So, we have H(u,\) #0, u € Ker LN 32, A € [0,1].
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Therefore,

dB([I - (P +]QN)V]|KerL; KerL N 2,, 0)
= dB(H(, 1)|Kel‘Lr KeI'L N QZ,O) = dB(H(x 0)|KerL: KerL N QZ; 0)
= dB(HKerL, KerLN,,0)=1 Z0.
Thus, (C4) holds.

Setuy(t) =1, ¢t € [0,1], then ug € C\ {0}, C(uo) = {u € C | u(t) > 0,t € [0,1]}. Take o (1) =
land u € C(up) N 3. Then Myr < u(t) <r, t € [0,1]. By (Ha), we get

1 1
Wu(ty) :/0 u(s)ds+/0 G(to,s)f(s,wq(u(s)))ds

1 1 1 _MO
> u(s)ds + / u(s)ds
/o o Mo

> Mor+ (1= Mo)r =r = |lul.

Thus, |lu|| < o (uo)||Wul, for u € C(ug) N 921. So, (C5) holds.
For u(t) € 0€2,, t € [0,1], by the condition (Hs), we have

1 1
(P+]QN))/(L¢)=/0 |u(s)|ds+ﬂ/0 (1—s)’s’lf(s,goq(|u(s)|))ds

1 1
Z/o |u(s)|dS—/o |u(s)|ds = 0.

So, (P +JQN)y(0L2;) C C. Hence, (C6) holds.
For u(t) € 2, \ i, t € [0,1], it follows from (Hs) that

1 1 1 1
(W, u)(t) = |u(s)| ds + G(t,s)f(s, (pq(|u(s)|)) ds > |u(s)| ds — |u(s)| ds=0.
0 0 0 0

So, (C7) is satisfied.
By Theorem 2.1, we confirm that the equation Lu = Nu has a positive solution u. Based

on Lemma 2.3, the problem (1.1) has at least one positive solution. d
4 Examples

To illustrate our main result, we present an example.

Let us consider the following boundary value problem:

3 1 1 1 1 1
€Dy, [¢%(CD§+x)](t) = 11— - 55(1-1)3|°Dg.x(0)|3, t€(0,1),

1 1 (4.1)
#0)=0,  (CDL#(0) = CDEx)(D),
On the basis of Lemma 2.3, it is sufficient to examine the issue
3 1 1
CDé+u(t) = i(l_t)Z - %(l_t)z“’l(t)'; te [011]) (42)

u(0) = u(1).
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Corresponding to the problem (2.1), we have f(t,u) = %(1 - t)% - %(1 - t)% |u|%, p=
=5a=1,B8=2.50,

q
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5
3’

3 5 .
71 I _ 2 a3
Gt s) 2(1-9) 4(1_;(—%)4-1‘(1111))_(?(2? +(trz)%)4’ O<s<t<l
,8) = E )
: -3 £] 1 (1-5)2
Z(I—S) 4(1_1-—%)"'1_(%))_ F(%)’ 0<t<s<l.

Take Ry = 625, a(t) =1, b(t) = 1, r = 0.006, £, = 0, and M, = 0.95.

=1,
Clearly, (H;) holds. By simple calculations, we can see that

[f (&, )| < a(t) + b(£)gp(|ul),

1 t 4
A= max — /(t—s)_%ds:—<+oo,
te[0,1] F(Z) 0 .

1 ¢ 11 1 1
B=max — (t=s)%-—ds= —— < —,
tel01] T'(3) Jo 4 3.6762 2

4
f(t,u)z—g(l—t)%u%, u>0,

0.12828103 1.21630192 1
G(¢o, L U) > — 1
(to,s)f (s,u) > ) 0 ¢
0.05 1
= 5054 0.0057 < u < 0.006,s € [0,1),

G(t,s)f(s,u) > —ut, u>0,5€[0,1),¢¢€0,1].

So, the conditions (H;)- (Hs) hold. By Theorem 3.1, we can conclude that the problem

(4.1) has at least one positive solution.
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