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1 Introduction

Periodic phenomena are omnipresent in the real world. Since Hale [1] first put forward the
concept of functional differential equation (FDE), a large amount of results for periodic
solutions of FDEs have been obtained; see e.g. [2-9].

In past decades, many authors investigated the existence of periodic solutions for p-
Laplacian differential equations by using Mawhin’s continuation theorem, for more de-
tails, see e.g. [10—15] for work on this subject. Now we summarize their research methods.
If we set L = (¢,(¥/(£)))’, then Mawhin’s continuation theorem cannot be used directly, be-
cause the operator L in Mawhin’s continuation theorem need be linear, while (¢, (x'(¢)))’
is non-linear when p # 2. In order to use Mawhin’s continuation theorem, hence, we must
change the form of the source equation. For example, Cheung and Ren [10] considered the

following Liénard equation with p-Laplacian:
(0ot (®))) +f (£, u®)u (£) + BO)g (u(t - T(D))) = e(®). (1.1)
Transfer (1.1) into the form

ui(£) = 04 (ua(2)),
uy(£) = ~f (&, 1 () 0q (u2(2)) — B)g(ua (£ — 7(2))) + e().

In the same way, in [11], one again investigated p-Laplacian Rayleigh equation as follows:

(0p (4 0))) +£(t, 4 () + Be(t,u(t - T(2))) = e(t). (1.2)
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Transfer (1.2) into the form

ui(£) = ¢4 (2 (1)),
1y (£) = ~f (0 (u2(2))) — Bg(ur (£ — 7(2))) + e(2).

Very recently, Wang [16] considered a class of prescribed mean curvature p-Laplacian
Rayleigh equation with one deviating argument as follows:

(fpp (%))' +f (¥ (1) +g(x(t - T(1)) = e(t). (1.3)

After that, based on the work of [16], Li, An, and Ge [17] studied a class of prescribed mean
curvature p-Laplacian Liénard equation with two deviating arguments,

@,,(%)) PO + g(x(t - 7®) + hx(t -y @) e (14)

1+x72

Similar to the above approach, (1.3) and (1.4) can be changed to a two-dimensional system.

In addition, we find that the above method can be applied to studying the existence of
periodic solutions to neutral equations with p-Laplacian, Zhu and Lu [7] considered the
following neutral equation with p-Laplacian:

(0p[ (u(t) = cult - 0))']) +g(t u(t - T(®)) = e®. (1.5)
Transfer (1.5) into the form

(Au1)'(t) = @q(us(t)),
uh(t) = —g(t,ur(t — (1)) + e(t),

where Au(t) = u(t) — cu(t — o).

In short, most of the papers used this method (transfer the source equation to a two-
dimensional system) for studying p-Laplacian equations. In the face of such a fact, we can-
not but ask how can we find the different ways for studying the p-Laplacian equations?’ In
order to investigate BVPs with a p-Laplacian, Ge and Ren [18] extended Mawhin’s contin-
uation theorem. The above generalized theorem removes the restriction that L is a linear
operator. Motivated by the work of Ge and Ren, in the present paper we will study the
existence and uniqueness of periodic solutions for equations (1.6) and (1.7) by using the
generalized Mawhin’s continuation theorem. Here, it is worth stating that the forms of
equations (1.6) and (1.7) need not to be transferred to a two-dimensional system. The ma-
jor challenges are as follows: (1) in order to apply a generalized Mawhin’s continuation
theorem, the proof of M-compactness (see Definition 2.2) of the operators is very diffi-
cult; (2) equations (1.6) and (1.7) are of much stronger non-linearity, so how to estimate
the prior bounds for periodic solutions is crucial; and (3) it is non-trivial to establish a
unified framework to handle the prescribed mean curvature term and the influence of
variable delays. It is, therefore, the main purpose of this paper to make the first attempt to
handle the listed challenges.

On the other hand, the dynamic properties of Duffing and Rayleigh equations have been
widely investigated due to the applications in many fields, such as mechanics, physics,
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and the engineering technique fields; see e.g. [19-22]. In such applications, it is important
to know the existence and uniqueness of periodic solution to the Rayleigh and Duffing
equations. We note that p-Laplacian equations have been widely applied in the field of
non-linear elastic mechanics and fluid mechanics, it is necessary to study the periodic
solutions of FDEs involving the scalar p-Laplacian. For the problems of periodic solutions
for p-Laplacian equations, see e.g. [7, 8, 10-13]. This paper is devoted to an investigation
of the existence and uniqueness of periodic solutions for a prescribed mean curvature
p-Laplacian Rayleigh equation and a p-Laplacian Duffing equation as follows:

(=) +/ ) selele=n0) - 6

1+x72

and

((pp (#}2“))) +g(x(t - 12(0))) = e2(), (L7)

where ¢,(s) = [sIP2s,p > 1, ¢, = goljl,}, + % =1;f,g,e;, 7 € C(R,R) where ¢;(t) = e;(t + T) and

7(t)=t(t+T),i=1,2,T >0, is a given constant.

Remark 1.1 Equations (1.6) and (1.7) are the one-dimensional version of the elliptic

Dirichlet problem,

v
—div<7x) —F(t,x) inQx=0ondxQ. (1.8)

V14| Vx|?

It is well known that a solution x of (1.8) defines a Cartesian in RN*! whose mean curvature
is prescribed by the right-hand side of the equation. Such problems have attracted much
attention by many researches; see e.g. [23—27] and the references therein.

Remark 1.2 As for equations (1.6) and (1.7), a common method for study is to transfer
the forms of equations (1.6) and (1.7) into the forms as follows, respectively:

©q(x2(1)
V122 0) (19)
() = (-2 ) _ o (£ — 11(2))) + ex(2), '
V194 (2(8))

x1(t) =

and

2@ )
1-gZ(xa(e)) " (1.10)
x5 () = —g(x1(t — 72(2))) + ea(1).

x1(2) = ¢q(

Let L = (x,x5)7, then L is a linear operator. Thus Mawhin’s continuation theorem can be
used to study the existence and uniqueness of periodic solutions to equation (1.9) and

equation (1.10).

To the best of our knowledge, there are few results for studying the existence and unique-
ness of periodic solutions to p-Laplacian prescribed mean curvature equations by using
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the generalized Mawhin continuation theorem, the main purpose of this paper is to intro-
duce a new method for studying the above equations. As to methods for studying the ex-
istence and uniqueness of periodic solutions, such as the Lyapunov second method, fixed
point theorem, coincidence degree theory, the Yoshizawa type theorem, and the Massera
type theorem, see [1, 28—30] and references therein.

The following sections are organized as follows: In Section 2, we give some useful lem-
mas and definitions. In Section 3, sufficient conditions are established for existence re-
sults of periodic solutions to equations (1.6) and (1.7). In Section 4, sufficient conditions
are established for uniqueness results of periodic solutions to equations (1.6) and (1.7).
In Section 5, some examples are given to show the feasibility of our results. Finally, some
conclusions are given for this paper.

2 Preliminary
In this section, we give some definitions and lemmas which will be used in this paper.

Definition 2.1 ([18]) Denote X and Z two Banach spaces with norms || - ||y, || - ||z, respec-
tively. A continuous operator

M:XNdomM — Z

is said to be quasi-linear if
(i) Im M := M(X NndomM) is a closed subset of Z;
(i) Ker M :={x € X Ndom M : Mx = 0} is linearly homeomorphic to R”, n < co.

Definition 2.2 ([18]) Let €2 C X be an open and bounded set with the origin 6 € Q. N; :
Q — Z,A €[0,1] is said to be M-compact in Q if there exists a subset Z; of Z satisfying
dim Z; = dim Ker M and an operator R : Q x [0,1] — X, being continuous and compact
such that, for A € [0,1],

(@) (I - QN(Q) cImM c (I-Q)Z,

(b) QN;x=0,1€(0,1) & QNx=0,Vx € ,

(©) R(,0)=0and R(, )5, = (I - P)l5,.

(d) MIP+R(,2)] = -Q)N;, 2 €[0,1],
where X, is a complement space of Ker M in X, i.e., X = Ker M @ X3; P, Q are two projec-
tors satisfying ImP = Ker M,ImQ = Z;, N =N}, 5, = {x € Q: Mx = N, x}.

Lemma 2.1 ([18]) Let X and Z be two Banach spaces with norms || - ||x, || - |z, respectively,
and Q C X be an open and bounded nonempty set. Suppose

M:XNdomM — Z
is quasi-linear and N : Q — Z, A € [0,1] is M-compact in Q. In addition, if the following
conditions hold:

(Hy) Mx #N,x,V(x,1) € 92 x (0,1);
(Hy) QNx #0,Vx € Ker M N0Q;
(H3) deg{JQN,Q2NKerM,0} #0,]:ImQ — Ker M is a homeomorphism,

then the abstract equation Mx = Nx has at least one solution in dom M N Q.
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Lemma 2.2 ([12]) Let p € (1,+00) be a constant, s € C(R,R) such that s(t + T) = s(t),
u € CYR,R) with u(t + T) = u(t). Then

T T
/0 ’u(t) - u(t —s(t)) |p dt < Z(trel?g);]b(t)‘)pfo ‘u’(t) ’p dt.

Throughout this paper, assume that e;(¢)(i = 1,2) is not a constant function on R. Fur-
thermore, we suppose that 7; € C/(R,R) with 7/(¢) < 1,V£ € R,i = 1,2. It is clear that the
function ¢ — 7;(¢) has a unique inverse, denoted by y;(¢).

Now, we list the following assumptions:

[Al] there is a constant ¢ > 0 such that

f@Wu=olulf, VuelR
or
fWu<-olulf, Vuel;
[A2] there is a constant o > 0 such that
fw)=olulP, VueR
or
f) <—olul, VueR
[A3] there is a constant / > 0 such that

lg) —gv)| <l —val, YymeR;

[A4] there exists a constant » > 0 such that

lg(2)] -

=1

e meN;
[A5] there is a constant D > 0 such that
g(x) <—lelo = |[f(0)| forx>D
and
g() > lelo +|f(0)] forx<-D;

[A6] there is a constant D; > 0 such that

glx)<—lelo forx>D;



Du and Ge Boundary Value Problems (2016) 2016:186 Page 6 of 16

and
g(x) > lelo forx<—Dy;
[A7] there is a constant o > 0 such that
gx)>olx”, VxeR,meN
or
gx) <—olx|", VxeR,meN.
3 Existence of periodic solutions
Denote Cr = {ulu € C(R,R),u(t + T) = u(t)}, Ck = {ulu € C'(R,R),u(t + T) = u(t)}, X =

C}. with the norm |u|| = max{|ulo, |#|o}, where |u|o = maxo<;<7 |u(t)|, Z = Cr, then the
operators M, N, are defined by

M:domMNX - Z, (Mx)(t):(w,,(\/%)), teR, (3.1)

N : X—Z, (Nwx)(¢)= —)Lf(x/(t)) - kg(x(t - ‘El(t))) + Aei(t),

teR,A€0,1], (3.2)
where dom M = {x € X : ¢, (x(£)/\/1 + x2(¢)) € CL}. Denote
F(tx@),x' (@), x(t - 11(8)) = ~f (¥ (1)) —g(x(t - 11(9))) + ex(), (3.3)

then (N, x)(t) = AF. By (3.1) and (3.2), equation (1.6) is equivalent to the operator equation
Nx = Mx, where Nj = N. Then we have

Ker M = {x edomMNX:x(t)=a,acR,te ]R},
T
ImM = {zeZ:/ z(s)ds = 0}.
0
Clearly, KerM = R, ImM is a closed set in Z, we have
Lemma 3.1 M is defined by (3.1), then M is a quasi-linear operator.
Let
P:X — KerM, (Px)(t)=x(0), teR,
1 T
Q:Z—->R, (Q2)(t)= ?/ z(s) ds.
0

Lemma 3.2 Iff,g,e;,71 € C(R,R) with e(t) = e1(t + T) and ©v(t) = (¢t + T), then N, is
M-compact.
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Proof Denote Z; = Im Q. For each bounded set @ C X ##,Vx € , since x(0) = x(T), there
is a point 1 € [0, T] such that

x'(n) =0. (3.4)

Define the operator: R : Q x [0,1] — KerP,
R(x, A)(t) = /(; 1+ x2(s)y
X |:/S MF (r, 2(r), 2 (r), x(r = 7(r))) = (QF)(r)) dr] ds, tel0,T],
n

where F is defined by (3.3), n is defined by (3.4). Based on the properties of f, g, 11, €1, we
see that R(-, 1) is continuous and relatively compact. Then we show that N is M-compact
in four steps.

Step 1. Using Q* = Q, we get Q( — Q)N;(R) = 0, so (I - QN,(Q) C KerQ = Im M. On
the other hand, Yz € Im M, obviously Qz=0,s0z=2z-Qz= (/- Q)z, then z € (I - Q)Z.
Thus,

(I-QN,(Q)cImM cC(-Q)2Z.

Step 2. We verify that QN x = 0, A € (0,1) <& QNx = 0,Vx € Q. Since QN x = % [rFdr=
0, then % f Fdr=0,ie,QNx = 0. The inverse is true.

Step 3. Obviously R(,0) = 0. Vx € ; = {x € Q: Mx = N, x}, we have ((pp(x’/m))’ =
AF and QF = 0. Hence

R(x, A)(t) = /0 V1+x2(s)g,

= /t V1+x2%(s)g, _/s )»]-'(r,x(r),x'(r),x(r - T(r))) dr] ds
0 LJn

- / V1+x2(s)g, _/s(gop(x//\/l +x’2(r)))/dri| ds
0 LJn

= /Otx/(s) ds

=x(t) — x(0)
= [ - P)x](®).

/s MF (r,2(r), &' (r), x(r = 7(r))) = (QF)(r)) dr] ds
n

Step 4. Vx € Q, we get

M[Px + R(x, A)](t)

= <¢p([x(0) + /o V1+x2(s)g, [/ MF (ry 2(r), %' (r), (r — T(r)))
"

- (QF)(r) dr} dS}/>),

- [ - QNx] ).

Hence, N;, is M-compact in Q. O
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Theorem 3.1 Assume that assumptions [Al], [A3], and [A5] hold, then equation (1.6) has

at least one T-periodic solution.

Proof We will complete the proof in three steps.
Step 1. Let @ = {x € domM : Mx = Nyx, 1 € (0,1)}. We verify that €2; is a bounded set.
If x € Q1, then Mx = Nyx, i.e.,

(Ql’p (J#—’)?(t))) =M (' () - 2g(x(t - (1)) + Aer(2). (3.5)

Let £y be the maximum point of x(¢) on [0, T], i.e., #(ty) = max;cjo, 77 %(£). Then x'(¢y) = 0
by (3.5), we get

g(x(to — T1(t0))) = =f(0) + ex(t0) = —|f(0)| - lerlo
and

g(x(to — mi(t0))) < |[f(0)] + lexlo,
which together with the condition [A5] shows that we have —D < x(ty — 71(fo)) < D. Since
x(¢) is a T-periodic function, there is a constant £* € [0, T] satisfying £, — t1(to) = £€* +
kT, k € Z, and we get

|x(6")| < D. (3.6)

By (3.6) we have

T T
< |x(£*)| +/0 |x’(s)|0ls§D+/0 |x’(s)|ds. (3.7)

|x]o = max
te[0,T]

x(E%) + /g:* x'(s)ds

Multiplying two sides of equation (3.5) by «(¢) and integrating over [0, T, we get

/T(<ﬂ (&)),x/(t)dt+A/Tf(x/(t))x/(t)dt+A/Tg(x(t—rl(t)))x/(t) dt
0 v V1+x2(t) 0 0

T
=2 /0 e ()% (¢) dt. (3.8)

2
G2 (0(0))
2 2nd

r () P2w(0) )
./o(%( 1+x’2()>> D= i/ 1= 2w “0 =

Hence equation (3.8) reduces to

Denote o(t) = gap(\/%—)z(”), then x/(¢) = &+

T T T
/ f(& @) (t)dt = - / g(x(t - n(®))x' (0) de + / e1(t)x'(t) dt. (3.9)
0 0 0
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From condition [Al], we have

T T T
‘ f FE®)x @) dt‘ = / If (¥ @)% ()| dt = o / lx'@)|” dt,
0 0 0

which together with [A3], Lemma 2.2, (3.9), and the Holder inequality implies

T T T
a/o |x’(t)|”dt5/0 |g(x(t—r1(t)))x’(t)|dt+/0 |e1 ()’ (8)| dt

1

T T »
5/ |g(x(t—tl(t)))x’(t)|dt+||61||q</0 |x’(t)|pdt>

/ I[g(*(t - n(®)) - g(x(®)) ] (0)| dt

/|(x(t)) t)|dt+||61||q(/ |x(t)|”dt)
0
T T ) ;
5/0 l|[x(t—1:1(t))—x(t)]x(t)|dt+||el||q(/0 %' (2)] dt)
T 1/q T 1/p
51(/0 \x(t-rl(t))-x(t)r’) ( fo yx’(t)y"dt>
r }
+||e1||q<f0 \x’(t>\Pdt)
T 1/q T 1/p
_lzl/q ( / q) < / Pd)
= IT1lo /0 |x(t)| /0|x(t)| t
r }
+IIe1IIq</0 |x’(t)|pdt> . (3.10)

By p,q > 1, and (3.10), there must be a constant M; > 0 such that

T
f |¥'@)[ dt <M. (3.11)
0

Thus by the Holder inequality and (3.7), we have

T 1/p
lxlo <D+ T ( / '] dt) <D+ TYIM” := M,.
0

L
By (3.11), we have |x'|o < T ? M} := M3. Thus,
%]l < max{Ma, M3} +1:= M.

Step 2. Let Q5 = {x € Ker M : QNx = 0}. We prove that 2, is a bounded set. Vx € Q,,
then x = ag, ag € R, and we have

T
/0 (¢(a) +£(0) — er(8)) de = 0,
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Based on the integral mean value theorem, there exists a constant t; € [0, 7] such that

g(ag) +f(0) —e1(t1) = 0,

by [A5], we have |ag| < D. So 2, is a bounded set.

Step3.LetQ={xeX: x| < ]NVI}, then ;UQ, C Q.V(x,A) € 92 x (0,1), from the above
proof, Mx # N, x is satisfied. Clearly, condition (H;) of Lemma 2.1 is satisfied. Now, we
show that condition (H3) of Lemma 2.1 holds. Take the homotopy

H(x, 1) = —ux + (1 - w)JQNx, x<€ QnNKerM,pu €[0,1],

where J : ImQ — Ker M is a homeomorphism with Ja = a,a € R. Vx € 92 N Ker M, we
have x = ay, |a1| = M > D, then

1 T
o) =~y + (- ) [ (gl ~£(0) + ) d
0
1 T
aH (1) = ~au + (- ) /0 ar(—glar) —£(0) + (1) d.

By assumption [A5], we have H(x, 1) < 0. Using degree theory, we have

deg{/QN, 2 N Ker M, 0} = deg{H(,0), 2 N Ker M, 0}
= deg{H(-, 1), 2 NKer M, 0}
= deg{-1,2 N Ker M, 0} #0.

Using Lemma 2.1, we reach the conclusion. O

Remark 3.1 Assumptions [Al] and [A2] ensure that integrals fOTf(u(t))u(t)dt and
fOT f(u()) dt have no sign change, respectively.

Remark 3.2 Assumption [A5] is crucial for obtaining prior bounds of periodic solutions
and verifying the second condition of Lemma 2.1.

Theorem 3.2 Suppose that assumptions [A2], [A4], and [A5] hold, then equation (1.6)
has at least one T-periodic solution if
_ 1
(1) m=p,0 >maxseo,r] Im |r, or
(2) m<p.

Proof Similar to the proof of Theorem 3.1, integrating the two sides of (3.5) over [0, T,
we have

T

T T
/ F(& @) de+ / gx(t-n(@®))dt = / e1(t) dt.
0 0 0

In view of [A2], we have

’ fo ) dt‘ - /0 )|z o /0 "o
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and so

ofOT\x’(t)\"’dtg /OT]g(x(t— n())|dt + /OT}el(t)|dt. (312)
From assumption [A4], Ve > 0, we see that there is a constant p > D > 0 such that

lgx)| < (r+&)lx|",  whenever |x| > p. (3.13)
Let

Er={te0,T]: |x(t-n(®)| > p}, Ey={t€[0,T]:|x(t - u(®)| < p}.

By (3.12) and (3.13), we have
T
‘| d - d - dt+T
o /0 WO d < /El|g(x(t 7(0)))] de + /Ez|g(x(t ()] dt + Tlerlo

T
< / (r+&)|x(t - (®)|" dt + Tg, + Tleilo
0

T
(r+ e)/ |x(6)|" dt + Tg, + Tleilo, (3.14)
0

1
< max |—————
~ telo,71| 1 - (1 (28))

where g, = max),j<, |g(v)|.

Case 1. If p = m and o > maxc[o, |m |r. Choose € < 0 — maxe[o, 1] |m|r. So
by (3.14), fOT | ()P dt is bounded.
Case 2. If m < p, by the Holder inequality and (3.14), we get
! p 1 / ’ p "
o X)) dt < max | ————|(r+&)T?™" 1"</ x(t) dt)
/0 <) telo,71] 1 = 7{(1(2)) 0 <ol
+ Tg, + Tleio. (3.15)

From m/p <1 and (3.15), we see that fOT |’ (¢)|P dt is bounded. Hence we know that in
two cases there exists a constant M > 0 such that

T
/ |x’(t) |p dt <M,
0
which together with (3.7) yields
T 1/p
lxlo <D+ T“q( / |x'(6)[” dt) <D+ TYIM"P.
0

The rest of the proof of the theorem is identical to that of Theorem 3.1. O

Remark 3.3 The results of Theorem 3.2 show that the existence of a periodic solution is
related to the delays.

Now, we give an existence theorem for equation (1.7).
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Theorem 3.3 Suppose that assumptions [A6] and [A7] hold, then equation (1.7) has at

least one T-periodic solution x.

Proof Similar to the proof of Theorem 3.1, let

x'(2) '
.d X—Z, = — ], R, 3.16
M :dom M N (Mx)(2) ((pp< 1+x’2(t))) te (3.16)
Ny X—Z, (Nwx)(8) = -2g(x(t - 12(0))) + Aex(t), teR,Ae[0,1]. (3.17)

Let ©Q; = {x € dom M : Mx = Nyx, 1 € (0,1)}, where M and N, are defined by (3.16) and
(3.17), respectively. We show that ; is a bounded set. If x € 5, then Mx = N; %, i.e.,

/() '

((ﬂp(ﬁ)) = —)»g(x(t - Tz(t))) + }\.ez(t). (3‘18)
Similar to (3.6) and (3.7), by assumption [A6] there exists a constant n* € [0, T] such that

[2(n")| < Dy
and

¢ T T
|xlo = max x(n*) + / x'(s)ds| < |x(n*)| + / |x’(s)| ds <D + / |x’(s)| ds. (3.19)
te[0,T] n* 0 0

On the other hand, multiplying the two sides of (3.18) [0, T], we get

T T
/ g(x(t—fz(t)))dt=/ ey (t) dt
0 0

and

Toge)) (T
/o =) - /o eale)d.

It follows from [A7] that

T T T
dt| = "d
VO 2(x(@®) t‘ /0 |g(x(t))|zo/0 |x(6)|" dt

and so

T T
U/O ]ad(t)]'”dtf/o lex(8)] dit. (3.20)

_ 1
min (——————=
sel0,71] 1 — 75 (y2(s))

It follows from (3.19), (3.20), and the Holder inequality that there exists a positive constant
C; such that

T
/ l'@)|"dt < G
0
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and
l¥lo < Dy + TV"CY™ = G,

where % + % = 1. The rest of the proof of the theorem is identical to that of Theorem 3.1.
O

Remark 3.4 From the proof of the above theorems, we find that the prior bounds esti-
mation to the periodic solutions is key for obtaining existence results. Here, we use a new
method for obtaining the prior bounds, which is different from the methods of [26] and
[16].

4 Uniqueness results

In this section, we will study the uniqueness of periodic solutions to equations (1.6) and
(1.7).

Theorem 4.1 Suppose that v,(t) = &1 (&1 is sufficiently small constant) and the following
condition holds:

[B1] (1 — ua)[g(11) — g(u2)] < O for all uy,uy € R,uy # us.
Then equation (1.6) has at most one T-periodic solution.

Proof Denote

x'(2)
t)=¢ <7> + F(x(t)),
PO=o\ e (+(2)
where F(x(¢)) satisfies % = f(«/(¢)). Then (1.6) can be changed into the following form:
x/(t) _ ©q(y(t)-F(x(2)))
V1= 0O-Fx()
¥'(t) = g(x(t — &1)) + e ().

The rest of the proof of the theorem is identical to that of Theorem 4.1 in [17]. O

Theorem 4.2 Suppose that t1(t) = &1 (&1 is sufficiently small constant), assumptions [Al],
[A3], [A5], and [B1] hold, then equation (1.6) has a unique T-periodic solution x.

Theorem 4.3 Suppose that t1(t) = € (&1 is a sufficiently small constant), and assumptions
[A2], [A4], [A5], and [B1] hold, then equation (1.6) has a unique T-periodic solution x, if
(1) m=p,0 > maxeeo,r] |m |r, or
(2) m<p.

We also have the following uniqueness results to (1.7).

Theorem 4.4 Suppose that ©,(t) = &5 (&2 is sufficiently small constant) and assumption
[B1] hold. Then equation (1.7) has at most one T-periodic solution x.

Theorem 4.5 Suppose that t,(t) = &, (&5 is sufficiently small constant), assumptions [A6],
[A7], and [B1] hold, then equation (1.7) has a unique T-periodic solution x.
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Remark 4.1 We give an example for verifying the existence of F(x(t)). Let F(x(t)) =

5x(t),f(x'(£)) = 5¢/(£). Then we have &0 = 5x/(¢) = £(x'(£)).

Remark 4.2 In [16], based on the delay 7 (¢) = 0, Wang gave uniqueness results to equation
(1.6), our results allow 7 () to be a small positive constant, and this is more significant than
the work of Wang.

5 Examples

As applications, we provide some examples to illustrate the main results.

Example 5.1

( (ﬂ>>/ . (x/)3esinx/ + (x(t— 1S11’1t>> =COSt (5 1)
"\ v 220 B o |

wherep =4,f(x) = ()3 7 (t) = % sint, e(t) = cost, T = 27,

—%u for u < 0.

_e(2+cosu) for u >0,
g(u) =
Conclusion Equation (5.1) has at least one 27 -periodic solution.

Proof From f(x')x = (x')*e"™¥ and o|x/|*, choose o < e, then assumption [A1] holds.
From f(0) + |e|op = 1, choose D = 2, then assumption [A3] holds. From g’ () being bounded,
then assumption [A5] holds. Applying Theorem 3.1, equation (5.1) has at least one 27 -
periodic solution. O

Example 5.2

®'(2) e 1. _
(ol ) " ealo{e-gme) ) =eone o

where p = 4,f(x') = (%)%, T(¢) = % sint,e(t) = cost, T = 2,

-1y for u < 0.

—ue™  foryu >0,
g(u) =
2

Conclusion Equation (5.2) has at least one 27 -periodic solution.

Proof Let m=p=4,0 <0 <1. We have

F) = (@) =0, tim S5

|x|—+00 |x|P—1
and

_
1-7{(4(1)

> max r=0
te[0,T]

Page 14 of 16
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Thus, all conditions of Theorem 3.2 hold. Applying Theorem 3.2, equation (5.2) has at
least one 27 -periodic solution. d

Example 5.3

X2 ' 1. 5.3
() ) o

where p =4,t(t) = % sint,e(t) = cost, T = 27,

_e(2+cosu) for u >0,

—%u for u < 0.

g(u) =

Conclusion Equation (5.3) has at least one 27 -periodic solution.

1
2

and m = 1, then assumption [A7] holds. If u > 0, choose ¢ sufficiently small and m =1,

Proof From |e|p =1, choose D; = 2, then assumption [A6] holds. If # < 0, choose 0 < o <

then assumption [A7] also holds. Applying Theorem 3.3, equation (5.3) has at least one
27 -periodic solution. O

6 Conclusions

In this paper, we have investigated a periodic solution problem for two types of p-Laplacian
prescribed mean curvature equations. Some sufficient conditions are obtained for the ex-
istence and uniqueness of periodic solutions to the above equations. Three examples are
given to show the effectiveness of the results in this paper.

We mention here that the technique used here is different from the usual methods em-
ployed to solve periodic solutions cases such as the Mawhin continuation theorem and
some fixed point theorems. We develop a new method (i.e., a generalized Mawhin con-
tinuation theorem) for p-Laplacian equations. This method is more extensively applicable
than classical methods.
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