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1 Introduction
In this paper, we consider the following 3D generalized Hall-MHD system:
1 2 o
oiu+u-Vu+V n+§|b| +(=A)u=>b-Vb, 1.1)
ab+u-Vb-b-Vu+(-A)Pb+rot(roth x b) =0, 1.2)
divu=divb =0, (1.3)
(,b)(-,0) = (uo,bo) in R, (1.4)

@ Springer

Here u, 7w, and b denote the velocity, pressure, and magnetic field of the fluid, respectively.
0 < «, B are two constants. The fractional Laplace operator (—A)* is defined through the
Fourier transform, namely, (—/A)\“f(“g‘) = |E]% f (&).

The applications of the Hall-MHD system cover a very wide range of physical objects,
for example, magnetic reconnection in space plasmas, star formation, neutron stars, and
the geo-dynamo.

When the Hall effect term rot(rotb x b) is neglected, the system (1.1)-(1.4) reduces to
the well-known generalized MHD system, which has received attention in many studies
[1-6].

When o = B =1, the system (1.1)-(1.4) reduces to the well-known Hall-MHD system,
which has received many studies [7—11]. Reference [7] gave a derivation of the isentropic
Hall-MHD system from a two-fluid Euler-Maxwell system. Chae-Degond-Liu [8] proved
the local existence of smooth solutions. Chae and Schonbek [9] showed the time-decay
and some regularity criteria were proved in [10-12]. Some other relevant results about
Hall-MHD equations can be found in [13-17].

The local well-posedness is established in Wan and Zhou [18] when 0 <« <1 and % <
B=L
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When % <a< % andl1 < fB< %, Jiang and Zhu [19] prove the following regularity criteria:

28 3 3
VbeL'(0,T;L°) with—'3+—§2ﬁ—1,—<s§oo,
t s 28 -1

and one of the following two conditions:

6a
<gqg= )
200 —1 201

20 3
uel?(0,T;L9) with — + > <20 -1,
P a

or

6a
3a—1

<gq=

2a 3
AuelP(0,T;19) with — + > <301,
p q 3 -1

Whenl<a< % and1 <8< %, Ye [20] showed the following regularity criterion:
uel?(0,T;L7) and Vbel’(0,T;L"),

where p, ¢, £, and k satisfy the relation

3 20 3 28 3 28
i <20-1, 2+ <op-1, 2+ <2B-,
q p qg »p k¢
and
3 3
max , —— | <qg < o0, <k <o0.
20-1"28-1 28 -1

The aim of this paper is to refine the results in [19, 20] as follows.

Theorem 1.1 Let 3 <o <2 and 3 < B < Z and uy, by € H* with divug = divbo = 0 in R3,
If Vu and Vb satisfy

20 .
Vu e L% (0, T;BJlL,),

2 . (1.5)
Vb e L1 (O, T;B;OV?DO) with0 <y <20 and 0 <y, <28 -1,

with 0 < T < 00, then the solution (u, b) can be extended beyond T.

In the following proof, we will use the following bilinear products and commutator es-
timates due to Kato-Ponce [21]:

|8 @@, < CUAS ] oy lglzan + 1 Nle2 | A% a0 ), (1.6)
| &%) —f 8%g |y < CUNVSF Il [ A oy + [ A, lgllLe2), (17)

. 1
withs>0, A:=(-A)2,and 1 =L + L =L L,
p @ pn @

We will also use the improved Gagliardo-Nirenberg inequalities [22—-24]:

IVulgs < CIIVMIIB;({%OIIVMIIIZ.{%, (1.8)

VB35 < ClIIVbl 52 VDI 4, 1.9)
00,00 H7
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IVBlirs < CIVBILS 1V (1.10)

| A7)0, < CIVOI, ||Vb||,,s, (L11)
with 6 := S+y2,s—1+y2—ﬂ p3i= g andq3 %1

1Bl < CIVBILS 1AbI, (1.12)

S C||Vb||§2;0nw|mb||};92, (L13)
with 6, := 1+S+V2 D= G and q4 := Lf?z‘ We have

[A%#D] s < CIVEILS, 1ADIG, (1.14)

| Ables < CIVBI, 18D]5", (115)
with 63 := stz,pg = 9_’ and gs := ﬁ.

2 Proof of Theorem 1.1
This section is devoted to the proof of Theorem 1.1, we only need to prove a priori esti-
mates.

First, testing (1.1) by u# and using (1.3), we see that

2dt/|u| dx+f|A“u| dx = /(b-V)b-udx.

Testing (1.2) by b and using (1.3), we find that

27 / |b)? dx + /|Aﬂb| dx = /(b V)u - bdx.
Summing up the above two equations, we get the well-known energy inequality
1 2 2 g 2 B1,|2 1 2 2
5 (|u| + |b| )dx+ (}A“u‘ + ‘A b’ )dxdt§ 5 (|u0| + |bo| )dx. (2.1)
0
Testing (1.1) by —Au and using (1.3), we infer that

1+
2dt/|Vu| dx+/|A u| dx

=/u-Vu-Audx—/b~Vb-Audx
=—Z/8,ui aluajudx+2/8,bl albajudx+2/b,8l8,b8,udx
ij if iy

< ClVul; + C| VDI, + Z/biaia,b dudx=9L+1D+1. (2.2)
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Testing (1.2) by —Ab and using (1.3), we deduce that

1+8
2dt/ww dx+/|A b| dx

:/u~Vb~Abdx—/b~Vu-Abdx+/(rotbx b)Arotbdx
=- Z/ ua; ;b b dx + Zf 3;b; du b dx

ij ij

£y / bid;dju b dx -y / (roth x 3;b) 9 rot b dx

ij i

< ClIVul3; + CI VD35 + Z/biaia,u dbdx - Z/(rotb x 9;b) 9;rotbdx
ij i
=L+ +14+15. (2.3)
Summing up (2.2) and (2.3), using (1.6), (1.8), (1.9), (1.10), (1.11), and I5 + I, = 0, we derive
;;t/(wuﬂ + VD] )dx+/(|A”°‘u|2 + | AYPB|*) dx

< C||Vu||i3 + C”Vb”ig - Z / AP (roth x 9;b) - AP 9;rotbdx

< CIVulls + CIVBI + ClIVbls | A>Pb| 4 | A™FB]

Ab]

< C||vM||B;onw||Vu||j.{% + C||Vb||ggg%o||Vb||2m + CIVbly Vbl
20-2L) 21 20-42) 252
< ClIVullgn IVall, ™ | A u] ™ +C|[ Vbl I1IVb], | A"P D] ,7

+ClIVblign, ||Vb|| 4 ||A“ﬂb||L2

2a
o I e T e 2 e A

28 28
B— B—
+ cnw)nz IV + cn%nz , VD%,

which gives
|, b) HLOO(O,T;Hl) + ull 20,5100y + 1Bl 200, 7301408) < C. (2.4)
In the following proofs, we will use the following Sobolev embedding theorem:

IVallye < Cllullga, N Aulizs < Cllullyee < C[A*ul,, +C, 05
IVbllps < Cllbllgpes,  |AD] s < C|A*Pb|| 5 + C.

Taking A to (1.1), testing by Au and using (1.3), we have

2+o
2dt/|Au| dx+/|A u| dx

=—/(A(u-Vu)—u-VAu)Audx+f(A(b~Vb)—b~VAb)Audx
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+/b-VAb-Audx
=216 +17 +18- (26)

Applying A to (1.2), testing by Ab and using (1.3), we have

1d
——/IAb|2dx+/]A2+f‘by2dx
2dt

:—/(A(u~Vb)—u-VAb)Abdx+/(A(b-Vu)—b~VAu)Abdx
+/b-VAu-Abdx—/A(rotbxb)-Arotbdx
=ty + Lo + Iy + hha. 2.7)

Note that Iz + I;; = 0.
Using (1.7), (2.4), and (2.5), we bound Is + I7 + Iy + I as follows:

I +I; +Ig + Iy
< ClIVullpsllAull s | Aull2 + CIIVDI 4[| Ab 4]l Aull 2
+ C(IIVBlIa | Aullgs + |Vl o | Al a) | ADI 2
< Cllull grve llell gr2ve l| Auell 2 + ClIDN res D1 r2es | Al 2
+ C(1Bl o 1l v + N1l s 1Bl 218 ) | ABN 2

1 1
< llullp + gllbllim + C(I#l 0 + 1617005 (1 AullZ, + 1 ADI1Z).

Using (1.6), (1.12), (1.13), (1.14), and (1.15), we bound I}, as follows:

112

—/(rotb x Ab) - Arotbdx—ZZ/(Birotb x 8;b) A roth dx

= —/Al’ﬂ(rotb x Ab) - AP T Arothdx
- 2Z/A1‘ﬂ(8i roth x 3;b) - AP Arotbdx
< C(IVDllpa | A*7Pb] g, + [ A27FB] s 1 AL N L35 ) | AP B] 15
< ClIVbllgn | Abl s [ A*Fb] 2
< CIVblzon 8B, [A>75];7

2f
2

1 e
< SIAPPB] L + VBT, 1AbI,.

Inserting the above estimates into (2.6) and (2.7), and summing up the results and using

the Gronwall inequality, we arrive at

|Gt D) || oo 0, 7012y + N8 1200, 731220y + 1Bl 20, 7502248) < C.

This completes the proof.
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3 Conclusions

The applications of Hall-MHD system cover a very wide range of physical objects, such
as magnetic reconnection in space plasmas, star formation, neutron stars, and the geo-
dynamo. In this paper, we obtained a new regularity criterion that improves and extends
some known regularity criteria of the 3D generalized Hall-MHD system.
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