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Abstract
This paper considers a coupled system with a new kind of hyperbolic-parabolic
partial differential equations based on image restoration. We show that this system
has global dissipative solutions under Dirichlet boundary conditions and initial
condition. Meanwhile, an experimental approach is given to show the efficiency of
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1 Introduction
The present paper considers the hyperbolic-parabolic system

∂u
∂t

– div
(
g(v)∇u

)
= , (.)

∂v
∂t +

∂v
∂t

– λdiv(∇v) – ( – λ)
(|∇u| – v

)
= , (.)

subject to the initial condition and Dirichlet boundary conditions

u(x, ) = u(x), v(x, ) = v(x),
∂v
∂t

(x, ) = , x ∈ �, (.)

∂u
∂n

∣
∣∣
∣
∂�

= ,
∂v
∂n

∣
∣∣
∣
∂�

= ,  < t < T , (.)

where � is a bounded domain of Rn with appropriately smooth boundary, n is the unit
outer normal to �, T > , and λ > . The nonlinear term g(s) obeys

g(s) =


 + ( s
K ) or g(s) = |s|– (.)

with K > .
Parabolic partial differential equations based image restoration is a powerful method to

deal with the trade-off between noise removal and edge preservation. This method is now
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a well-researched area within the image processing community. The most powerful model
is the parabolic model with variable coefficient

∂u
∂t

– div
(
c(x, y)∇u

)
= ,

where the degree of denoising and preservation of singularities can be determined by
changing c(x, y). There are other types of parabolic equations, such as anisotropic dif-
fusion models [, ], complex diffusion models [], fourth order equation models [, ],
and total variation models [–]. In Perona-Malik [] the denoising capabilities of the
linear diffusion can be better, let c(x, y) = g(|∇u|) and initial data u() = u. Here the diffu-
sion smooth function g : [,∞) −→ [,∞) is important in controlling the smoothing and
even enhancement of edges. They mainly considered the following two diffusion func-
tions:

g(s) =


 + ( s
K ) or g(s) = e–( s

K )
with K > .

Catte et al. [] first introduced a new modification and proved its well-posedness to
make the gradient computation robust outliers and provide a smooth edge map for the
diffusion operator. This makes the Perona-Malik type PDE better. We have

∂u
∂t

– div
(
g
(|Gσ � ∇u|)∇u

)
= ,

where

Gσ (x) = (πσ )–e– |x|
σ

is the Gaussian kernel and the operation means convolution.
Ratner and Zeevi [] introduced a new telegraph-diffusion model

∂u
∂t + λ

∂u
∂t

– div
(
c(x, y)∇u

)
= 

to describe the contraction and fluctuation of the image create denoising and edge pre-
serving effect. This model is based on viewing the image as an elastic sheet.

A coupled parabolic equations was introduced to create better edge maps (see [, ]),
which has the following form:

∂u
∂t

– div
(
g(v)∇u

)
= ,

∂v
∂t

– �v = .

In order to localize denoising effects in the diffusion process based scheme, Nitzberg
and Shiota [] introduced the following relaxation model:

∂u
∂t

– div
(
g(v)∇u

)
= ,
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∂v
∂t

– λGσ � |∇u| – λv = ,

where λ >  is the relaxation parameter.
Recently, Surya Prasath and Vorotnikov [] improved the above model and provided

some new modifications. One of them has caught our attention, as follows:

∂u
∂t

– div
(
g(v)∇u

)
= ,

∂v
∂t

– λdiv(∇v) – ( – λ)
(|∇u| – v

)
= ,

where g(s) = 
+( s

K ) (Perona-Malik type diffusion function) or g(s) = |s|– (total variation
diffusion function).  ≤ λ ≤  is a balancing parameter. The first equation is usually used
in Perona-Malik type PDEs. In their discussion, the above model is in favor of preservation
of edges. However, when the noise is very large, the preservation of edges will be unstable,
which is similar to that of the Perona-Malik model.

To the best of our knowledge, this is the first work which considers a coupled hyperbolic-
parabolic system as a method based on viewing the image as an elastic sheet to improve
the quality of the detected edges. As is well known, most of these schemes use the absolute
value of the gradient image as a guiding road map in the diffusion process to restore noisy
images. One can see [, –] for more details.

This paper is organized as follows. In Section  we study the existence and uniqueness
of solutions of the problem (.)-(.). In Section  we give some numerical experiments.

2 Existence of dissipative solutions and weak solutions
This section is devoted to establishing the existence, uniqueness, and regularity of dissi-
pative solutions to the problem (.)-(.). Let Lp(�), W m

p (�), and Hm(�) be the Lebesgue
and Sobolev spaces. For convenience, we use the function space symbol and omit �. The
Euclidean norm in finite-dimensional spaces and L(�) are denoted by | · | and L(�), re-
spectively. The corresponding scalar products is denoted by a · and parentheses, (·, ·). Let
H

(�) be the closure of the smooth set, which is compactly supported in �. By means of
the Friedrichs inequality, ‖ · ‖ corresponding to the scalar product (u, v) = (∇u,∇v) is a
norm in H

. Then we collect some standard Sobolev inequalities.
The usual Sobolev inequality is

‖u‖L∞ ≤ C(�)‖u‖, ∀u ∈ V.

The Ladyzhenskaya inequality is

‖u‖ ≤ √
‖u‖‖∇u‖, ∀u ∈ H

.

Let Vr be the closure of V in W 
r with  < r < , where V = H

(�) ∩ H(�) is a Hilbert
space with the scalar product

(u, v) = (u, v) +
∑

|α|=

(
Dαu, Dαv

)
.
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We will consider our problem in the following space:

W = W(�, T) =
{

u ∈ L(, T ; V), u′ ∈ L
(
, T ; V ∗


)}

with the norm

‖u‖W = ‖u‖L(,T ;V) +
∥
∥u′∥∥

L(,T ;V∗
 ),

and

W = W(�, T) =
{

u ∈ L
(
, T ; H


)
, u′ ∈ L

(
, T ; H–)}

with the norm

‖u‖W = ‖u‖L(,T ;H
) +

∥∥u′∥∥
L(,T ;H–).

We also need the following class of pairs of functions:

R = L,loc(,∞; V) ∩ L∞
(
,∞; W 

∞
) ∩ W 

,loc(,∞; L) × L,loc(,∞; V)

∩ L∞(,∞; L∞) ∩ W 
,loc(,∞; L).

Define

E(u, v,ν) = –
∂u
∂t

– ν div
(
g(v)∇u

)
,

E(u, v,ν) = –
∂v
∂t –

∂v
∂t

+ λdiv(∇v) + ν( – λ)
(|∇u| – v

)
+ ( – δ)(∇v,∇λ),

E(u, v) = E(u, v, ),

E(u, v) = E(u, v, ),

where ν is a positive constant and ∀(u, v) ∈ R.

Definition . A pair of functions (u, v) ∈ Cw([,∞); L) is called a dissipative solution of
the problem (.)-(.), if ∀ test functions (ψ ,φ) ∈ R, one has

γ ‖u(t)‖[∥∥u(t) – ψ(t)
∥∥ +

∥∥v(t) – φ(t)
∥∥ +

∥∥v′(t) – φ′(t)
∥∥]

≤ γ t+‖u‖
{∥∥u() – ψ()

∥∥ +
∥∥v() – φ()

∥∥ +
∥∥v′() – φ′()

∥∥

+
∫ t


γ –s∣∣(E(ψ ,φ)(s), u(s) – ψ(s)

)
+

(
E(ψ ,φ)(s), v(s) – φ(s)

)∣∣
}

,

where v′(t) = dv
dt , u, v, v′

 ∈ L(�), and γ >  is a certain function of �, g , λ, ψ , and φ.

Definition . A pair of functions (u, v) ∈ W ×W is called weak solutions of the problem
(.)-(.), if ∀ test functions (ψ ,φ) ∈ V × H

,

d
dt

(u,ψ) + ε(u,ψ) + ν
(
g(v)∇u,∇ψ

)
= , (.)
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d
dt

(
v′,φ′) +

d
dt

(v,φ) + λ(∇v,∇φ) + ν(∇v,φ∇ν) – ν( – λ)
(|∇u| – v,φ

)
= , (.)

holding almost everywhere in (, T).

Now we state our main result.

Theorem . The problem (.)-(.) with conditions (.)-(.) admits a dissipative so-
lution (u, v) ∈ L 

 ,loc(,∞; V–ε+ 


) × H(,∞; H
) with the initial data u, v, v′

 ∈ L, and
 < ε < 

 . Moreover, if there exists a strong solution (uT , vT ) of the problem (.)-(.), then
the restriction of any dissipative solution to (, T) coincides with (uT , vT ) (T > ). Every
strong solution (u, v) ∈R is a unique dissipative solution.

To prove our main result, we introduce the following auxiliary problem:

∂u
∂t

= ν div
(
g(v)∇u

)
, (.)

∂v
∂t +

∂v
∂t

– λdiv(∇v) = ν( – λ)
(|∇u| – v

)
+ ( – δ)(∇v,∇λ), (.)

with the conditions

u(x, ) = νu(x), v(x, ) = νv(x), v′(x, ) = νv′
(x), x ∈ �, (.)

∂u
∂n

∣
∣∣
∣
∂�

= ,
∂v
∂n

∣
∣∣
∣
∂�

= ,  < t < T . (.)

Lemma . Let (u, v, v′
) ∈ L × L and T be positive constant. Then the problem (.)-

(.) admits a weak solution with ν = .

Proof We define the operators A and B from W × W to L(, T ; V ∗
 ) × H(, T ; H–) ×

L × L × L by

(
A(u, v), (ψ ,φ)

)

=
(

d
dt

(u,ψ) + ε(u,ψ),
d
dt

(
v′,φ′) +

d
dt

(v,φ) + (λ∇v,∇φ), u|t=, v|t=, v′|t=

)
,

(
B(u, v), (ψ ,φ)

)
=

(
–
(
g(v)∇u,∇ψ

)
, –

(
c(x)∇v,φ∇λ

)
+ ( – λ)

(|∇u| – v,φ
)
, u, v

)
,

where (ψ ,φ) ∈ V × H
 is a pair of test functions.

Then we can rewrite the problem (.)-(.) as the weak statement

A(u, v) = νB(u, v). (.)

Note that B is continuous and compact, W ⊂ Lp(, T ; W 
p) is compact for some p > , and

W ⊂ Lp(, T ; L
) (see []). If

(un, vn) −→ (u, v), weakly in W × W,
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then we have

(un, vn) −→ (u, v), strongly in Lp
(
, T ; W 

P
) × H(, T ; L).

By Krasnoselskii’s theorem [], we have

g(vn) −→ g(v) in Lp(, T ; Lq),∀q < +∞.

So

g(vn)∇un −→ g(v)∇u in Lp(, T ; L).

Since the linear operator A is continuous and invertible (see []), we can rewrite (.) as

(u, v) = νA–B(u, v) in W × W. (.)

Now we derive the following estimate:

γ ‖u(t)‖
[∥∥u(t) – ψ(t)

∥∥ +
∥∥v(t) – φ(t)

∥∥ +
∥∥v′(t) – φ′(t)

∥∥

+ ε

∫ t



∥
∥u(s) – ψ(s)

∥
∥

 ds + λ

∫ t



∥
∥v(s) – φ(s)

∥
∥

 ds
]

≤ γ t+ν‖u‖
{∥∥νu() – ψ()

∥∥ +
∥∥νv() – φ()

∥∥ +
∥∥νv′() – φ′()

∥∥

+
∫ t


γ –s∣∣(E(ψ ,φ,ν)(s), u(s) – ψ(s)

)

+
(
E(ψ ,φ,ν)(s), v(s) – φ(s)

)
– ε

(
ψ(s), u(s) – ψ(s)

)


∣
∣ds

}
, (.)

where γ >  is a certain function of �, g , λ, μ, ψ , and φ.
To prove the above estimate, we need to carry out an energy estimate. Let ψ(t) = u(t)

and φ(t) = v(t) in (.)-(.), respectively, and we have




d
dt

(u, u) + ε(u, u) + ν
(
g(v)∇u,∇u

)
= , (.)

d
dt

(
v′, v′) +

d
dt

(v, v) + λ(∇v,∇v) + ν(∇v, v∇ν) – ν( – λ)
(|∇u| – v, v

)
= . (.)

Summing up (.)-(.) and integrating over (, t), we get



(‖u‖ + ‖v‖ +

∥
∥v′∥∥) +

∫ t


ν
(
g(v)∇u,∇u

)
ds

+
∫ t


λ(∇v,∇v) + ν(∇v, v∇ν) – ν( – λ)

(|∇u| – v, v
)

ds

≤ ν


(‖u‖ + ‖v‖). (.)
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On the other hand, ∀(η, θ ) test function in V × H
, we have

d
dt

(ψ ,η) + ν
(
g(φ)∇ψ ,∇η

)
+

(
E(ψ ,φ,ν),η

)
+ ε(ψ ,η) = ε(ψ ,η), (.)

d
dt

(
φ′, θ ′) +

dt
dt

(φ, θ ) + (λ∇φ, θ ) + ν(∇φ, θ∇λ)

– ν( – λ)
(|∇ψ | – φ, θ

)
+

(
E(ψ ,φ,λ), θ

)
= . (.)

Let η = u – ψ and θ = v – φ. Summing up (.)-(.) and noticing (.), we get




d
dt

(
(η,η) + (θ , θ ) +

(
θ ′, θ ′)) + ν

(
g(v)∇η,∇η

)
+ ε(η,η) + (λ∇θ ,∇θ ) + ν

(
( – λ)θ , θ

)

= –ν
([

g(v) – g(φ)
]∇θ ,∇η

)
+ ν( – λ)

(|∇u| – |∇θ |, θ)
– ν(∇θ , θ∇λ)

+
(
E(ψ ,φ,ν),η

)
+

(
E(ψ ,φ,λ), θ

)
– ε(η, θ ). (.)

It is easy to derive that

–ν
([

g(v) – g(φ)
]∇θ ,∇η

)
+ ν( – λ)

(|∇u| – |∇θ |, θ)

≤ C(ψ , g)ν
(|v – φ|, |∇η|)

≤ ∥∥
√

νg(v)∇η
∥∥ + C(ψ ,φ, g)‖θ‖ + C(ψ , g)

(
θ,

√
νg(v)|∇u|) (.)

and

–ν(∇θ , θ∇λ) ≤ λ


‖θ‖

 + C(λ)‖θ‖. (.)

Thus, applying (.)-(.) to (.), we derive




d
dt

(
(η,η) + (θ , θ ) +

(
θ ′, θ ′)) + ε(η,η) +

λ


μ–‖θ‖



≤ C(θ ,φ,λ, g)
(
θ,  +

√
νg(v)|∇u|)

+
(
E(ψ ,φ,ν),η

)
+

(
E(ψ ,φ,λ), θ

)
– ε(η, θ ). (.)

Denote �(t) = ‖ +
√

νg(v)|∇u|‖. Then it follows from (.) that




d
dt

(‖η‖ + ‖θ‖ +
∥∥θ ′∥∥) + ε‖η‖

 + λμ
–‖∇θ‖

≤ C(θ ,φ,λ, g)�‖θ‖

+ 
(
E(ψ ,φ,ν),η

)
+ 

(
E(ψ ,φ,λ), θ

)
– ε(η, θ ). (.)

By (.), we have

t|�| ≤
∫ t


�(s) ds ≤ t|�| + ν‖u‖ –

∥∥u(t)
∥∥. (.)

Hence, using (.)-(.) and a Gronwall-type inequality, we obtain (.).
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Let η = θ = . It is easy to see that

‖u‖L∞(,T ;L) + ‖v‖L∞(,T ;L) + ‖v‖L(,T ;H
) ≤ C, (.)

‖u‖L∞(,T ;V) ≤ Cε– 
 , (.)

where C is a constant independent of ε and ν .
It follows from (.) that


√

g(s)
≤

∣∣∣
∣


√

g(s)
–


√

g()

∣∣∣
∣ +


√

g()
≤ C(g)

(
 + |s|). (.)

So by (.) and (.), we have

‖∇u‖L(,T ;L) ≤ ∥
∥
√

νg(v)∇u
∥
∥

L(,T ;L)

∥
∥
√

g(v)
–∥∥

L∞(,T ;L) ≤ C.

By the Sobolev embedding H
 ⊂ Lp for any p < ∞ and the Hölder inequality, we derive

‖∇u‖L(,T ;L) + ‖∇u‖L(,T ;Lr ) + ‖∇u‖L 


(,T ;L–ε+ 


) ≤ C.

Furthermore, by (.)-(.) and (.), for  < r <  and  < ε < 
 , we have the following

estimates:

‖∇u‖L(,T ;V∗
 ) + ‖v‖L(,T ;H–) ≤ C( +

√
ε),

‖v‖H(,T ;H–) ≤ C
(

 +
√
ε

)
,

where C is a constant independent of ε and ν .
Hence the above estimates imply that

‖u‖W + ‖v‖W +
∥
∥v′∥∥

W
≤ C,

where C depends on ε but not on ν .
Applying Schaeffer’s theorem (see [], p.), we know that there exists a fixed point

of (.),which is a solution of (.). This completes the proof. �

The following convergence proposition is taken from [].

Proposition . Let G be a measurable set in a finite-dimensional space, yn : G −→ R
be a sequence of functions and X : R −→ R be a continuous function. Assume that {yn} is
uniformly bounded in L∞(G) and ym −→ y in Lq(G) with q ≥ . Then

X (yn) −→X (y)

in Lp(G) for any p < ∞.
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Now we are ready to prove Theorem .. The proof is similar to that of Theorem  in
[]. For completeness of our paper, we sketch the proof. Based on Lemma ., we can
proceed with the sketch of the proof of Theorem .. We refer to [] for the details of the
technique, and we mainly focus on the new issues. The existence of dissipative solutions,
one passes the limit in (.) with ν =  as ε = εm −→  on every interval (, T) with T > .
Let (un, vn) be the weak solution to problem (.)-(.) with εn in Lemma .. Using the
Sobolev embedding W ⊂ L, we derive

um −→ u in L 


(, T ; L),

vm −→ v in H(, T ; L).

Then by (.) and Proposition .,

γ ‖un(t)‖ −→ γ ‖u(t)‖
in L(, T),

∥
∥un(t) – ψ(t)

∥
∥ −→ ∥

∥u(t) – ψ(t)
∥
∥ in L(, T),

∥
∥vn(t) – φ(t)

∥
∥ −→ ∥

∥v(t) – φ(t)
∥
∥ in L(, T),

∥
∥v′

n(t) – φ′(t)
∥
∥ −→ ∥

∥v(t) – φ(t)
∥
∥ in L(, T).

So we have

γ ‖un(t)‖(∥∥un(t) – ψ(t)
∥∥ +

∥∥vn(t) – φ(t)
∥∥ +

∥∥v′
n(t) – φ′(t)

∥∥)

−→ γ ‖u(t)‖(∥∥u(t) – ψ(t)
∥
∥ +

∥
∥v(t) – φ(t)

∥
∥ +

∥
∥v′(t) – φ′(t)

∥
∥)

in L(, T). Thus, we can pass to the limit in the right-hand side of (.) as well and the last
summand (the one with ε) goes to zero. Therefore, we conclude that Theorem . holds.

3 Numerical experiments
In this section, using Rothe’s method in time discretization and finite difference method
in spatial discretization, we show some experimental results on pictures in the two-
dimensions case. Let N be a positive integer. The lattice is denoted by {h, h, . . . , Mh} ×
{h, h, . . . , Lh}, where h is the space stepsize. In the discrete numerical algorithm, we sub-
divide the time interval (, T) by points tn = nτ with τ = T

L , n = , , , . . . , N . Assume
that the image (u(t), v(t)) is defined in the lattice. Denote by (un

i,j, vn
i,j) an approximation

of (u(nτ , ih, jh), v(nτ , ih, jh)). Define the discrete approximation

∇+
x un

i,j =
un

i+,j – un
i,j

h
, ∇+

x vn
i,j =

vn
i+,j – vn

i,j

h
,

∇–
x un

i,j =
un

i–,j – un
i,j

h
, ∇–

x vn
i,j =

vn
i–,j – vn

i,j

h
,

∇+
y un

i,j =
un

i,j+ – un
i,j

h
, ∇+

y vn
i,j =

vn
i,j+ – vn

i,j

h
,

∇–
y un

i,j =
un

i,j– – un
i,j

h
, ∇–

y vn
i,j =

vn
i,j– – vn

i,j

h
,
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Figure 1 Artificial heavily noised image. (pic 1) Original noise-free image. (pic 2) Heavily noised image with
SNR = 1.24. (pic 3) Image restored using the present model with τ = 0.21, λ = 21, K = 7, σ = 1.5, and 662
iterations, SNR = 10.40. (pic 4) Image restored using the (1.1)-(1.2), (1.2) with τ = 0.3, λ = 21, K = 7, and 5,151
iterations, SNR = 9.06.

Figure 2 Artificial heavily noised image. (pic 1) Original noise-free image. (pic 2) Heavily noised image with
SNR = 2.25. (pic 3) Image restored by the present model with τ = 0.21, λ = 21, K = 7, σ = 1.2, and 662
iterations, SNR = 10.30. (pic 4) Image restored by (1.1)-(1.2), (1.2) with τ = 0.3, λ = 21, K = 7, and 5,151
iterations, SNR = 9.06.

δun
i,j =

un
i,j – un–

i,j

τ
, δvn

i,j =
vn

i,j – vn–
i,j

τ
,

δvn
i,j =

δvn
i,j – δvn–

i,j

τ
, gn

i,j =


 + (
vn

i,j
K )

.

Then the discrete explicit scheme of the problem (.)-(.) can be obtained:

δun+
i,j –



[(

gn
i+,j + gn

i,j
)∇+

x un
i,j +

(
gn

i–,j + gn
i,j
)∇–

x un
i,j

+
(
gn

i,j+ + gn
i,j
)∇+

y un
i,j +

(
gn

i,j– + gn
i,j
)∇–

y un
i,j
]

= ,

δun+
i,j + δun+

i,j –


[(

cn
i+,j + cn

i,j
)∇+

x vn
i,j +

(
cn

i–,j + cn
i,j
)∇–

x vn
i,j
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+
(
cn

i,j+ + cn
i,j
)∇+

y vn
i,j +

(
cn

i,j– + cn
i,j
)∇–

y vn
i,j
]

– ( – λ)
(∣∣∇+

x un
i,j
∣
∣ +

∣
∣∇–

x un
i,j
∣
∣ – vn

i,j
)

= ,

with the conditions

u
i,j = u(i, j), v

i,j = v(i, j), δv
i,j = δv(i, j),  ≤ i ≤ M,  ≤ j ≤ L,

un
,j = un

,j, un
M,j = un

M+,j, un
i, = un

i,, un
i,L = un

i,L+,

vn
,j = vn

,j, vn
M,j = vn

M+,j, vn
i, = vn

i,, vn
i,L = vn

i,L+.

We show numerical results which are obtained by applying the above scheme to two arti-
ficial heavily noised images. The image, rescaled for the theoretical results obtained in the
previous section, can be applied. Meanwhile, it can stabilize the numerical scheme. Our
experiments depend on two parameters: the ‘scale’ of the diffusion λ and the threshold K .
Define the signal-noise ratio (SNPR) as

SNR =  log

(∑
�(ui,j – ū)
∑

�(ni,j)

)
,

where ū is the mean of the signal ui,j, ni,j is the noise. The better quality image should
have a higher SNR. One can see in the first set of images (Figure ) that our method could
improve the general hyperbolic or parabolic method. Figure  illustrates the performance
of the proposed approach in real image. Figure  tests the denoising effect of our method
on a standard digital image. The numerical tests show that the proposed method yields
better results in image restoration in the case of real images, which is also useful in the
case of artificial heavily noised images.
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