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Abstract
The aim of this work is to develop a hybridizable discontinuous Galerkin method for
elliptic problems. In the proposed method, the numerical flux functions are
constructed from the weak formulation of primal equation directly without
converting the second-order equation to a first-order system. In order to guarantee
the stability and convergence of the method, we derive a computable lower bound
for the constant in numerical flux functions. We also establish a prior error estimation
and give some theoretical analysis for the proposed method. Finally, a numerical
experiment is presented to verify the theoretical results.
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1 Introduction
In recent years, the discontinuous Galerkin method (DGM) has been extensively studied
by lots of researchers on various problems since it was first introduced by Reed and Hill
[]. Particularly, for elliptic problems, a unified analysis framework for the most of DGMs
proposed during the last  years has been given by Arnold et al. []. Unlike the continu-
ous finite element method (FEM), DGM is able to easily handle non-conforming meshes
and work well with varying polynomials on different cells. Therefore, DGM is much flex-
ible for hp-adaptive approaches. For more details of DGM, we refer the reader to [–].
However, compared with continuous FEM, DGM results in a much larger linear system
which leads to more computational costs. In order to overcome this issue, hybridizable dis-
continuous Galerkin method (HDGM) was proposed by Cockburn et al. in []. In HDGM,
additional unknowns defined on interior faces are introduced and the global linear system
only involves degrees of freedoms (DOFs) on interior faces. Therefore, this linear system
is smaller than that obtained via classical DGM. On the other hand, recently, a new kind of
DGM called direct discontinuous Galerkin method (DDGM) was introduced by Liu and
Yan [, ]. One of the key aspects of DDGM is that it directly uses the weak formulation
of the original equation instead of rewriting the equations into a first-order system. In this
way, the DDGM is easy to implement and more effective because of there being no extra
computation for auxiliary variables.

The purpose of this work is to develop a hybridizable discontinuous Galerkin method,
which combines the advantages of HDGM and DDGM together, based on the main idea
of DDGM. The rest of the paper is organized as follows. In Section , we introduce the
model problem and some basic notations which will be used in this work. Then the full
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derivation of our hybridizable direct discontinuous Galerkin method is given in Section .
In Section , we discuss the theoretical error analysis and derive computable lower bounds
for the constant coefficients in numerical fluxes in order to guarantee the stability and
convergence of this method. In Section , a numerical example is presented to verify the
theoretical analysis results. Finally, in Section , we give some concluding remarks.

2 Model problem and basic notations
In this work, for the sake of simplicity, we consider the following elliptic boundary value
problem:

–�u = f in �, ()

u = g on ∂�, ()

where � is a bounded polygonal domain in R
 and f ∈ L(�).

Let Th = {κ} be the subdivision of domain �. For two adjacent elements κ+ and κ–, ∂k+ ∩
∂k– is the interior face. For κ ∈ Th, ∂k ∩ ∂� is the boundary face. We denote by E I

h the set
of interior faces and EB

h the set of boundary faces. Also, we denote all the faces of Th by
Eh := E I

h ∪ EB
h . In addition, we denote the outward unit normals of ∂κ+ and ∂κ– by n+ and

n–, respectively. For E ∈ E I
h, we define the jumps

[Q · n]|E = Q+n+ + Q–n–,

where Q is a vector valued function and (·)± are the interior traces on ∂k±, respectively. In
order to approximate the modal problem using discontinuous finite elements, some useful
spaces are defined as follows:

Hs(Th) :=
{

u ∈ L(�) : u|κ ∈ Hs(κ),∀κ ∈ Th
}

,

V :=
{

u : u ∈ H(Th) ∩ H(�)
}

,

Vh :=
{

u ∈ L(�) : u|κ ∈Pp(κ),∀κ ∈ Th
}

,

and the traced finite element space

M :=
{

û : û ∈ L(Eh)
}

,

Mh :=
{

û ∈ L(Eh) : û|E ∈Pp(E),∀E ∈ Eh
}

.

Here Pp is the polynomial of degree at most p. In addition, we introduce the space with
Dirichlet boundary conditions

Mh(g) = {u ∈Mh : u = g on ∂�}.

3 The hybridizable direct discontinuous Galerkin method
3.1 Solving the local problems
In order to derive hybridizable discontinuous Galerkin method, we restrict the modal
problem to any element κ ∈ Th not the entire computational domain. Therefore, if we
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know the trace value û on ∂κ , we can solve the following local problem to obtain u in-
side κ :

–�u = f in κ , ()

u = û on ∂κ . ()

Thus, we can multiply the local problem () by a test function vh and integrate by parts to
obtain the following variational problem over κ : find uh ∈ Vh such that

(∇uh,∇vh)κ – (∇uh · n, vh)∂κ = (f , vh)κ , ∀vh ∈ Vh, ()

where n is the unit outward normal to ∂κ . In two dimensional case, based on the main
idea of direct discontinuous Galerkin method [, ], we approximate ∇uh := (ux, uy) via
numerical flux function ∇̂uh = (ûx, ûy), i.e.,

ûx = β
û – uh

hκ

n + ux,

ûy = β
û – uh

hκ

n + uy,
()

where ni is the ith component of n, β is a constant coefficient and hκ is the characteristic
length of ∂k. In this work, hκ is chosen as the diameter of the cell and for two dimensional
quadrilateral mesh hκ is approximated by the length of longest diagonal. For more com-
plicated cases, we refer the reader to []. Therefore, we get the discretization of the local
problem: find uh ∈ Vh such that

(∇uh,∇vh)κ – (∇̂uh · n, vh)∂κ = (f , vh)κ , ∀vh ∈ Vh, ()

where

∇̂uh · n = β
û – uh

hκ

+ ∇uh · n. ()

3.2 Defining the global problem
In the above derivation, we have given the discretization of the local problem when the
trace value û is known. However, in general, the value of û is unknown. Therefore, we
need additional conditions to overcome this issue. In this work, we weakly enforce the
flux is normal-continuous, which is the essential condition of hybridizable discontinuous
Galerkin method. Thus, the function û can be computed as the solution of the following
problems:

(
[∇̂uh · n], v̂h

)
E =  if E ∈ E I

h,∀v̂h ∈Mh, ()

û = g if E ∈ EB
h . ()

Summing () and () over all κ ∈ Th, we have

∑

κ∈Th

{
(∇uh,∇vh)κ – (∇̂uh · n, vh)∂κ

}
=

∑

κ∈Th

(f , vh)κ , ∀vh ∈ Vh, ()
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∑

E∈E I
h

(
[∇̂uh · n], v̂h

)
E = , ∀v̂h ∈Mh. ()

We note that () is a face-based form, i.e., each interior face occurs only once. In the
following, we rewrite this face-based form to element-based form, namely

∑

κ∈Th

(∇̂uh · n, v̂h)∂κ\EB
h

=
∑

E∈E I
h

(
[∇̂uh · n], v̂h

)
E = . ()

Then we add () to () and enforce the boundary conditions, from which one derives a
new discrete form: find uh ∈ Vh and ûh ∈M(g) such that for all vh ∈ Vh and v̂h ∈M() we
have

∑

κ∈Th

{
(∇uh,∇vh)κ + (∇̂uh · n, v̂h – vh)∂κ\EB

h

}

+
∑

κ∈Th

(
β

hκ

(g – uh) + ∇uh · n, v̂h – vh

)

∂κ∈EB
h

=
∑

κ∈Th

(f , vh)κ . ()

Moreover, we rewrite the above equation into equivalent form, i.e., find uh ∈ Vh and ûh ∈
M() such that for all vh ∈ Vh and v̂h ∈M() we have

∑

κ∈Th

{
(∇uh,∇vh)κ + (∇̂uh · n, v̂h – vh)∂κ

}

=
∑

κ∈Th

(f , vh)κ +
∑

κ∈Th

β

hκ

(g, vh)∂κ∈EB
h

. ()

Note that () is asymmetric. Thus, it is hard to guarantee the optimal L error conver-
gence. In order to overcome this problem, additional interface integral terms are added to
the left hand side of () to make the discretization symmetric. For more introduction to
the symmetric direct discontinuous Galerkin method, cf. []. The final discretization is
given as follows: find uh ∈ Vh and ûh ∈Mh() such that for all vh ∈ Vh and v̂h ∈Mh() we
have

Bh(uh, vh) = L(vh), ()

where

Bh(uh, vh) :=
∑

κ∈Th

{
(∇uh,∇vh)κ + (∇̂uh · n, v̂h – vh)∂κ + (∇̂vh · n, ûh – uh)∂κ

}
, ()

L(vh) :=
∑

κ∈Th

(f , vh)κ +
∑

κ∈Th


β

hκ

(g, vh)∂κ∈EB
h

–
∑

κ∈Th

(∇vh · n, g)∂κ∈EB
h

, ()

and

uh := (uh, ûh), vh := (vh, v̂h),

∇̂uh · n = β
ûh – uh

hκ

+ ∇uh · n,
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∇̂vh · n = β
v̂h – vh

hκ

+ ∇vh · n.

Remark  Although the form of () is similar to the hybridizable symmetric interior
penalty method (HSIP) [], the derivation and motivation of the two approaches are dif-
ferent. For the discretization (), the numerical flux is directly approximated by the solu-
tion gradient. For HSIP method, the jumps are introduced as penalty terms to guarantee
the stability of the method.

3.3 Hybridization
Utilizing traces defined on element faces, we can eliminate DoFs related with uh to obtain
a global linear system only involving DoFs of traces through static condensation process,
as described below.

After assembling all of the cell and face terms in () together, we have the following
linear system:

(
A(uh ,vh) B(ûh ,vh)

C(uh ,v̂h) D(ûh ,v̂h)

)(
U (uh)

Û (ûh)

)

=

(
F (vh)

G(v̂h)

)

. ()

Here we divide the global matrix into four blocks A(uh ,vh), B(ûh ,vh), C(uh ,v̂h), D(ûh ,v̂h). The
superscript on the block matrix or vector means how the values of this matrix are coupling.
For example, A(uh ,vh) means this block matrix only consists of terms only involving the
integrals containing both of uh and vh. Additionally, U (uh) and Û (ûh) represent the vector
of unknowns for uh and ûh, respectively.

By the block matrix operations, we obtain

AU + BÛ = F , ()

CU + DÛ = G, ()

where, in order to simplify the formulas, we drop the superscripts of block matrices and
vectors. Thus, U can be eliminated by some algebraic operations, i.e.,

(
D – CA–B

)
Û = G – CA–F . ()

Therefore, we obtain a reduced global linear system only for Û . After solving the system
(), we can get U immediately through an element-by-element fashion, namely

U = A–F – A–BÛ . ()

Remark  We note that in () and () the inversion of A is needed. However, because
of the fact that DoFs related with uh are not coupled between different elements, A is easy
to invert.

4 A prior error estimation
In this section we give a prior error estimation of the method proposed above and de-
rive computable lower bounds for the constant β in numerical flux functions in order to
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guarantee the stability and convergence of this method. Before giving the theoretical error
analysis, let us define the following two energy norms associated to bilinear form ():

‖|u‖|∗ :=
∑

κ∈Th

{
‖∇u‖

κ +


hκ

‖û – u‖
∂κ

}
, ()

‖|u‖| :=
∑

κ∈Th

{
‖∇u‖

κ +


hκ

‖û – u‖
∂κ + hκ‖∇u · n‖

∂κ

}
, ()

where ‖ · ‖ is the L norm. Moreover, let us recall the following L-projection error esti-
mation inequality [].

Lemma  Let Ph be the L-projection onto Vh and u ∈ Hp+(κ),  ≤ m ≤ p, then

‖u – Phu‖Hm(κ) ≤ Chp+–m
κ |u|H(p+)(κ), ()

‖u|∂κ – Phu|∂κ‖∂κ ≤ Chp+ 


κ |u|H(p+)(κ), ()

where κ ∈ Th.

Theorem  Let the bilinear form B(uh, vh) be defined by (), then we have:
(i) If u is the exact solution of () and û is the trace value of u. Then

Bh(u, v) = L(v), ∀v ∈ V , v̂ ∈M(), ()

where u := (u, û) and v := (v, v̂). Furthermore, if uh ∈ Vh and ûh ∈Mh(), then

Bh(uh – u, vh) = , ∀v ∈ Vh, v̂h ∈Mh(). ()

(ii) Assume that θκ is the smallest angle in the two triangles obtained by subdividing the
quadrilateral cell κ ∈ Th along the longest diagonal and γκ is a positive constant
associated to κ . For all κ ∈ Th, define

β∗
κ =

pκ (pκ + )
γκ sin θκ

,

where pκ is the degree of the polynomial defined on κ . For all uh ∈ Vh, ûh ∈Mh, if
γκ <  and β > β∗

κ , then there are constants C, α independent of mesh size, such that

Bh(uh, uh) ≥ C‖|uh‖|∗ ≥ C
 + α

‖|uh‖|, ()

where C = minκ∈Th{min{ – γκ , (β – β∗
κ )}} and α = maxκ∈Th{ pκ (pκ +)

sin θκ
}.

(iii) For all u, v ∈ V and û, v̂ ∈M, we have

∣∣Bh(u, v)
∣∣ ≤ C‖|u‖|‖|v‖|, ()

where C =  + β .
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Proof First of all, we rewrite the bilinear form Bh(uh, vh) as follows:

Bh(uh, vh) =
∑

κ∈Th

{
(∇uh,∇vh)κ + (∇̂uh · n, v̂h – vh)∂κ + (∇̂vh · n, ûh – uh)∂κ

}

=
∑

κ∈Th

{
(∇uh,∇vh)κ + 

β

hκ

(ûh – uh, v̂h – vh)∂κ

+ (∇uh · n, v̂h – vh)∂κ + (∇vh · n, ûh – uh)∂κ

}
.

(i) Here u is the exact solution, thus,

(u – û)|E∈E I
h

= ,

therefore,

Bh(u, v) =
∑

κ∈Th

{
(∇u,∇v)κ + (∇u · n, v̂ – v)∂κ

}

=
∑

κ∈Th

{
–(�u, v) + (∇u · n, v̂)∂κ

}
+

∑

E∈EB
h


β

hκ

(–g, –v)E +
∑

E∈EB
h

(∇v · n, –g)E

=
∑

κ∈Th

(f , v)κ +
∑

E∈E I
h

(∇u · n, v̂)E

︸ ︷︷ ︸
=

+
∑

E∈EB
h

(∇u · n, v̂)E

︸ ︷︷ ︸
=

+
∑

E∈EB
h


β

hκ

(g, v)E –
∑

E∈EB
h

(∇v · n, g)E

= L(v).

Furthermore, due to vh ∈ V , v̂h ∈M(), we have

Bh(u, vh) = L(vh), ()

therefore,

Bh(uh – u, vh) = Bh(uh, vh) – Bh(u, vh)

= L(vh) – L(vh)

= .

(ii) For all uh ∈ Vh, ûh ∈Mh, employing the Cauchy-Schwarz inequality we have

Bh(uh, uh) =
∑

κ∈Th

{
‖∇u‖

κ + 
β

hκ

‖ûh – uh‖
∂κ + (∇uh · n, ûh – uh)∂κ

}

≥
∑

κ∈Th

{
‖∇u‖

κ + 
β

hκ

‖ûh – uh‖
∂κ – ‖∇uh · n‖∂κ‖ûh – uh‖∂κ

}
.
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Figure 1 The subdivision of quadrilateral mesh.

Then we recall the inverse trace inequality for the two dimensional simplex []:

‖uh‖∂κ ≤
√

(pκ + )(pκ + )


|∂κ|
|κ| ‖uh‖κ , ∀uh ∈Ppκ

(κ). ()

For a quadrilateral cell with edges E, E, E, E, we subdivide it into two triangles T, T

along the longest diagonal, as shown in Figure , and the angle between Ei and the longest
diagonal is denoted by θi, i = , , , . Then we have

|∂κ| =
∑

i=

|Ei|,

|T| =



hκ |E| sin θ =



hκ |E| sin θ.

Therefore,

|T| =



hκ

(|E| sin θ + |E| sin θ
)
.

Similarly,

|T| =



hκ

(|E| sin θ + |E| sin θ
)
.

Thus,

|κ| = |T| + |T| =



hκ

∑

i=

(|Ei| sin θi
)
.

Here we assume θκ is the smallest angle of {θi}, namely, θκ = min{θi}, then

|κ| ≥ 


hκ sin θκ

∑

i=

|Ei|.

Finally, we obtain

|∂κ|
|κ| =


hκ

∑
i= |Ei|

∑
i=(|Ei| sin θi)

≤ 
hκ sin θκ

.
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Therefore, applying the inverse trace inequality (), we have

‖∇uh · n‖∂κ ≤ ‖∇uh‖∂κ ≤
√

pκ (pκ + )
hκ sin θκ

‖∇uh‖κ . ()

Furthermore, employing Young’s inequality, we have

‖∇uh · n‖∂κ‖ûh – uh‖∂κ ≤
√

pκ (pκ + )
hκ sin θκ

‖∇uh‖κ‖ûh – uh‖∂κ

≤ γκ


‖∇uh‖

κ +


γκ

pκ (pκ + )
hκ sin θκ

‖ûh – uh‖
∂κ ,

where γκ is a positive constant. Finally, we obtain

Bh(uh, uh) ≥
∑

κ∈Th

{
‖∇uh‖

κ + 
β

hκ

‖ûh – uh‖
∂κ – ‖∇uh · n‖∂κ‖ûh – uh‖∂κ

}

≥
∑

κ∈Th

{
( – γκ )‖∇uh‖

κ + 
β – pκ (pκ +)

γκ sin θκ

hκ

‖ûh – uh‖
∂κ

}
.

Thus, for all κ ∈ Th, if γκ <  and β > pκ (pκ +)
γκ sin θκ

, we have

Bh(uh, uh) ≥
∑

κ∈Th

{
min

{
 – γκ , 

(
β –

pκ (pκ + )
γκ sin θκ

)}(
‖∇uh‖

κ +


hκ

‖ûh – uh‖
∂κ

)}

≥ C‖|uh‖|∗,

where C = minγ∈Th{min{ – γκ , (β – pκ (pκ +)
γκ sin θκ

)}}.
Moreover, applying inequality (), we have

‖|uh‖| – ‖|uh‖|∗ =
∑

κ∈Th

hκ‖∇uh · n‖
∂κ

≤
∑

κ∈Th

pκ (pκ + )
sin θκ

‖∇uh‖
κ

≤ max
κ∈Th

{
pκ (pκ + )

sin θκ

} ∑

κ∈Th

‖∇uh‖
κ

≤ α‖|uh‖|∗,

where α = maxκ∈Th{ pκ (pκ +)
sin θκ

}.
Therefore,

‖|uh‖|∗ ≥ 
 + α

‖|uh‖|.

Thus, we have

Bh(uh, uh) ≥ C‖|uh‖|∗ ≥ C
 + α

‖|uh‖|.

This completes the proof.
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(iii) Applying the Cauchy-Schwarz inequality we obtain

∣∣Bh(u, v)
∣∣ ≤

∑

κ∈Th

{
‖∇u‖κ‖∇v‖κ + ‖∇u · n‖∂κ‖v̂ – v‖∂κ

+ ‖∇v · n‖∂κ‖û – u‖∂κ + 
β

hκ

‖û – u‖∂κ‖v̂ – v‖∂κ

}

≤
∑

κ∈Th

{(
‖∇u‖

κ + hκ‖∇u · n‖
∂κ +


hκ

‖û – u‖
∂κ + 

β

hκ

‖û – u‖
∂κ

) 


·
(

‖∇v‖
κ + hκ‖∇v · n‖

∂κ +


hκ

‖v̂ – v‖
∂κ + 

β

hκ

‖v̂ – v‖
∂κ

) 

}

≤
(∑

κ∈Th

(
‖∇u‖

κ + hκ‖∇u · n‖
∂κ +


hκ

‖û – u‖
∂κ + 

β

hκ

‖û – u‖
∂κ

)) 


·
(∑

κ∈Th

(
‖∇v‖

κ + hκ‖∇v · n‖
∂κ +


hκ

‖v̂ – v‖
∂κ + 

β

hκ

‖v̂ – v‖
∂κ

)) 


=
(

‖|u‖| +
∑

κ∈Th


β

hκ

‖û – u‖
∂κ

) 
 ·

(
‖|v‖| +

∑

κ∈Th


β

hκ

‖v̂ – v‖
∂κ

) 


.

Based on the definition of the energy norm, we have

∑

κ∈Th


hκ

‖û – u‖
∂κ ≤ ‖|u‖|.

Therefore,

∣∣Bh(u, v)
∣∣ ≤ (‖|u‖| + β‖|u‖|) 

 · (‖|v‖| + β‖|v‖|) 


= C‖|u‖|‖|v‖|,

where C =  + β .
This completes the proof. �

Corollary  Assume that θmin = minκ∈Th{θκ} and the uniform polynomials are used in the
computational domain. Then the threshold value of β is obtained when γκ = , i.e., βths =
p(p+)
sin θmin

.

Theorem  Let u ∈ H (p+)(Th) be the exact solution of () and uh ∈ Vh be the solution of
(). Then there is constant C >  such that

‖|u – uh‖| ≤ Chp|u|H(p+)(Th), ()

where h = maxκ∈Th hκ and C is independent of h.

Proof Employing (), we have

Bh(uh – Phu, uh – Phu) ≥ C‖|uh – Phu‖|,



Yue et al. Boundary Value Problems  (2016) 2016:191 Page 11 of 16

where Phu := (Phu,Phû). Furthermore,

Bh(uh – Phu, uh – Phu) ()= Bh(u – Phu, uh – Phu)
()≤ C‖|u – Phu‖|‖|uh – Phu‖|.

Therefore, we have

C‖|uh – Phu‖| ≤ C‖|u – Phu‖|‖|uh – Phu‖|,

namely,

‖|uh – Phu‖| ≤ C

C
‖|u – Phu‖|.

Then

‖|u – uh‖| ≤ ‖|u – Phu‖| + ‖|uh – Phu‖|

≤
(

 +
C

C

)
‖|u – Phu‖|.

Using Lemma , we can deduce

‖|u – Phu‖| ≤ Chp|u|H(p+)(Th).

Finally, we obtain

‖|u – uh‖| ≤ Chp|u|H(p+)(Th). �

Theorem  Let u ∈ H (p+)(Th) be the exact solution of () and uh ∈ Vh be the solution of
(). Then there is a constant C >  such that

‖u – uh‖L(Th) ≤ Chp+|u|H(p+)(Th), ()

where h = maxκ∈Th hκ and C is independent of h.

Proof We note that Bh(·, ·) is symmetric and discretization () is consistent (Theorem ).
Thus, the discretization () is adjoint consistent. Therefore, we can define the following
adjoint problem:

Find z ∈ V , ẑ ∈M(), ∀v ∈ V , v̂ ∈M() such that

Bh(v, z) = (u – uh, v)�.

Particularly, we take v = u – uh, then

‖u – uh‖
L(Th) = Bh(u – uh, z).
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For all zh ∈ Vh, ẑh ∈Mh(), by employing (), we obtain

Bh(u – uh, z) = Bh(u – uh, z – zh)
()≤ C‖|u – uh‖|‖|z – zh‖|.

From Theorem , we have

‖|u – uh‖| ≤ Chp|u|H(p+)(Th),

‖|z – zh‖| ≤ Ch|z|H(Th).

And we assume that the elliptic regularity holds [], i.e.,

|z|H ≤ C‖u – uh‖L .

Finally, combining the above formulas together, we deduce

‖u – uh‖L(Th) ≤ Chp+|u|H(p+)(Th),

where C is a constant and independent of h. �

5 Numerical results
In this section, we present a numerical experiment to assess the practical performance
of the proposed method and verify the theoretical analysis. The right hand side f and
boundary condition are chosen such that the analytical solution is u(x, y) = cos(πx) +
cos(πy), and � := [, ]. The analytical solution of this problem is shown in Figure .
We carry out the numerical computation on a uniform mesh with , elements which
is shown in Figure . For this uniform mesh θmin = π

 . Therefore, the threshold value β∗ =√
p(p + ). Figures  and  show the numerical solution under different β for p = , ,

respectively. From these results we note that for a smaller β the numerical solution is
unstable, while for β > β∗ no oscillation occurs. Furthermore, we plot the error ‖u – uh‖L

under different β in Figures  and . From these figures, we again observe that for a smaller
β the oscillation occurs and when β > β∗ the L error tends to be stable. Moreover, we can

Figure 2 Exact solution.
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Figure 3 Structured mesh with 1,024 elements.

Figure 4 Numerical solution for p = 1 under
different β . β = 1 (top), β = 2 (middle), β = 4
(bottom).
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Figure 5 Numerical solution for p = 2 under
different β . β = 1 (top), β = 5 (middle), β = 9
(bottom).

Figure 6 The error ‖u – uh‖L2 under different β
on the same mesh for p = 1.
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Figure 7 The error ‖u – uh‖L2 under different β
on the same mesh for p = 2.

Table 1 Convergence of the error ‖u – uh‖L2 with p = 1, 2, 3

Elements p = 1 p = 2 p = 3

Error Order Error Order Error Order

64 4.229e–01 - 1.270e–01 - 1.285e–02 -
256 9.523e–02 2.15 1.211e–02 3.39 1.285e–03 3.32

1,024 2.331e–02 2.03 1.529e–03 2.99 8.043e–05 4.00
4,096 5.802e–03 2.01 1.916e–04 3.00 5.030e–06 4.00

also get the ‘numerical lower bounds for β ’ that are equal to  for p =  and  for p = ,
which confirms the effectivity of the theoretical lower bounds of β . Table  shows the
history of the convergence under global mesh refinement with a fixed β > β∗. From these
results we note that the convergence rate is optimal in L norm, i.e., for p = , , , the order
of convergence is p + . This result coincides with the prior error analysis which has been
shown in Theorem .

6 Conclusion
In this paper, we have proposed a hybridizable discontinuous Galerkin method based on
DDGM. During the derivation of this method, we introduced the main idea of HDGM
and showed how to construct numerical flux based on DDGM. Then a rigorous theoreti-
cal analysis has been established. We also gave computable lower bounds for the constant
in the numerical flux functions. The numerical results obtained coincided with the the-
oretical analysis and the optimal convergence order has been observed. Although in this
work our analysis is based on the Dirichlet boundary condition, we can easily extend this
method to the Neumann or Robin boundary condition, which we leave here as future re-
search work.
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