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Abstract

In this paper, we study the global nonexistence of solutions to a nonlinear wave
equation with critical potential V(x) on a Riemannian manifold, the form of which is
more general than those in (Todorova and Yordanov in C. R. Acad. Sci., Sér. T Math.
300:557-562, 2000). The way we follow is motivated by the work of Qi S. Zhang (C. R.
Acad. Sci., Sér. 1 Math. 333:109-114, 2001). We also prove the local existence and
uniqueness result.
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1 Introduction and main results
In this paper, we study the global nonexistence of solutions to the following nonlinear wave

equation with a damping term:

Au(x, t) + W(x)|ul? (x, ) — (%, t) — uge(x,£) =0 in M” x (0, 00),
u(x,0) = up(x) inM", 1.1)

us(x,0) = uy(x) in M”,

where M" (1 > 3) is a non-compact complete Riemannian manifold, A is the Laplace-
Beltrami operator, and [ u(x) dx, [ u;1(x) dx > 0, while the constant p > 1.

In [1], Todorova and Yordanov proved the following result for (1.1) when M” = R” and
Wix)=1:

Letl<p<l+ % If we assume that ug(x), 41 (x) is compactly supported and [ uo(x) dx,
J ui(x)dx > 0, then the global solution of (1.1) does not exist.

However, whether or not the critical case p =1+ % belongs to the blow-up case was left
open. In [2], Qi S. Zhang showed p =1 + 2 belongs to the blow-up case.

The investigation of nonexistence and existence of global solutions to evolution equa-
tions has a long history, We refer the reader to the surveys [3-7]. There are more recent
contributions to the discussion of the test function method; we refer to [8—11] for a survey
of the literature on this problem.
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In this paper, we study the global nonexistence of solutions to a nonlinear wave equation
with critical potential V(x) on a Riemannian manifold, the form of which is more general
than those in [1]. The way we follow is motivated by the work of Qi S. Zhang [2]. We also
prove the local existence and uniqueness result.

Through?ut the paper, for a fixed xy € M”, we make the following assumptions (see [2]):

. 0l 2
M ==

manifold;

1
< %, when r = d(x, %) is smooth; here g2 is the volume density of the

(ii) there are positive constants « > 2 and m > -2, such that
o C1r* < |B,(x0)| < Cr*, when r is large and for all x € M";

o]

+ W(x) are non-negative L7%.

Clr" < Wix) < Crm.

functions. For large r = d(x, %),

Lemma 1 (see [12]) Under assumptions (i) and (ii), there exist positive constants C and
Ro, for R> Ry amd}? + % =1, such that

Wb (x)dx < CInR+ CR™ 7 *°.
Bpr(x0)

Our result is as follows.

2+m
o

uy(x) is compactly supported and [ uy(x)dx, [ u1(x)dx > 0, then the global solution of (1.1)

Theorem 1.1 Under assumptions (i) and (ii), let p € (1,1 + ]. If we assume that uy(x),

does not exist.

Remark Clearly R” satisfies assumptions (i) and (ii), so if M = R” and W (x) = 1(m = 0),

from the proof of Theorem 1.1, it is in accordance with (a).

Theorem 1.2 (Local existence and uniqueness) Let M” be an n-dimensional smooth com-
pact manifold, and uy be a smooth hypersurface immersion of M into R"*\. Then there

exists a constant T > 0 such that the initial value problem

Aulx, t) + W) |ulP(x, t) — t(x, £) — Uy (x, ) =0 in M” x (0, 00),
u(x,0) = ug(x) inM", (1.2)
uy(x,0) = u1(x) inM”,

has a unique smooth solution u(x,t) on M" x [0, T'), where u;(x) is a smooth vector-valued

function on M".

Theorem 1.1 is proved in Section 2; Theorem 1.2 is proved in Section 3.
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2 Global nonexistence of solutions

Proof of Theorem 1.1 From now on, C is always a constant that may change from line to

line. Throughout the section, we let ¢, n € C*°[0, 00) be two functions satisfying

o(r) € [0,1], ifrel0,00),

e(r) =1, ifrelo,i],

o(r)=0, ifrell,ool;

n(t) €[0,1], if¢e[0,00),

n()=1, ifrelo,1], 2.1)
n(t) =0, iftel(l,o00];

Vel <, ifrefo,1)

tec, ifrefo];

-C<ep()<0;  lp(n)'1<C  -C=<n)<0;  In@®)"=<C.

For R > 0, we define Qg = Br(xo) % [0, R?]. We also need a cut-off function
Yr = gr[d(x,%0) |z (2), (2.2)
where @g(r) = ¢(%) and ng(t) = n(55). Clearly,
vofsd Selesl eled
or R ar? R2’ R? ot R2

[Verl> _ C @me)* _ C
g TR e~ RY

We use the method of contradiction. Suppose that u(x, t) is a global positive solution of
(1.1). For R > 0, we set

R [ W)l )yl o) dxdt, (2.4)
Qr

where L +1 =1,
rq

Since u(x, £) is a solution of (1.1), we have
I = /Q [0 (%, 8) = A, 8) + 1y (3, 8) Y f (x, ) dxedt = ]y + ), (2.5)
°
where
52 /Q [t0x,t) - Aulx, )W x, 0) dxdt, T, = /Q (e, OYl(x, ) dudt.  (2.6)
2 2

We will estimate /; and J, separately.
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By the Stokes formula and noting that ¥z = 0 on dBz(x), we have

RZ
]1=/ ut(x,t)wg(x,t)dxdt—/ / au(x’t)wg(x,t)dedt
Qr 0 Br(x0 on
+/ Vu(x, ) Vri(x, t) dx dt
Qr

=/ ut(x,t)wg(x,t)dxdt+/ Vu(x, t)Viri(x, t) dxdt, (2.7)
Qr Qr

which implies, via integration by parts,
I = / (%, R*) Y (x, R?) dx — / u(x, 0) ¥ (x,0) dx
Bp(xo) Br(xo)

R2
—q/(;k u(x, t)wg(x)n (t)nR(t)dxdt+/ /BR o u(x, ) nZ(t)dS dt

—/ u(x, t)Agog(x)nZ(t) dxdt. (2.8)
Qr

We observe that 1//2(96,122 0; [uo(x)dx > 0, Bn = qwg 1(/)1’3(371) =0 on 0Bg(xg), so we
obtain

hi<—-q / u(x, t)wZ(x)n?{l(t)nﬁe(t) dxdt - / u(x, £) AR (x)ni(t) dx dt. (2.9)
Qr Qr
Since Agh(x) = gl (¥) Agr(x) + q(q - Dok () Vr(®)%, (2.9) yields
Ji<-q / ulx, i)k (E)n,(t) dxdt g / ulx, ) () Apr(x)nk(t) dx dt
Qr Qr

—qlq-1) /Q e, D12 ()| Vo ()| n'(e) e i (2.10)

Recalling the supports of pr(x) and ng(¢), that is,

t)=1, L) =0, ift O,R—2,
{ﬂk() () =0, ifte0,X o

er(®) =1, Apr@x)=0, ifrelo,5],

we can reduce (2.10) to
RZ
i < —qﬁz / u(x, t)(pg(x)ng-l(t)n}?(t) dxdt
T Y Brxo)

RZ
g / / (e, D1 () Agr(e)n's(0) et
Bpr(x0)\ g (x0)

R2
qlg-1) / / ul, )9 (%) | Voor ()| (2) dx . (2.12)
Br(x0)\ gxo)
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Since ¢y, is radial, we have

1
n—-1 dlogg?
Agr=@p + |: . + P :|<,o}e

1
Taking R sufficiently large, by assumption (i), that is, 2 logg ’

IA
o)

C
Apr >_1T

when x € BR(xo)\B§ (%0). Merging (2.12), (2.14), and (2.3), we know

=R ﬁﬂ /BR o) u(x, o)k () dx dt

+_§1 / / ulx, o ()nh(e) dxdt
R Jo Japeonsg o

R2
—4lg-1) / / e, D 2(0) [ Veor() | n'y(e) e .
0 BR(xo)\B§ (x0)

By (2.3), we have
\Y
(x)|VgoR(x)| . 1M £ 7-1

- R2 (pR )
which yields

I < Cq /RZ/ u(x, )@l ()nL (&) dx dt
= 9 ) 77
' R % Bg(xo) 8 .

= / f w(x, )T () (t) dx dt
R Jo Japaonsg o)

Cq(q+1) / / u(x,t)gpg‘l(x)ng(t)dxdt
BRr(xo)\BR (

N

R2
< u(x, t)p(x)nt ( Ydxdt
R2 \/B:R x() K

+_Z / / ulx, )l (X)) dxdt.
R o Jeonsg o)

Therefore, as ¢g, ng <1,

_R2 ﬁz ‘/BRxO x,t)l// (x,t)dxdt

R2
/ f %, )W I (x, £) dxcdt
BRr(x0)\BR (

w

, we obtain

Page 5 of 10

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)
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/2 WP ‘ u(x, t W (x,t)W_Il’(x)dxdt
R Bp(xo)

R2 1 1
/ / W7 () |ulx, £) |yrd (e, ) W7 (x) dx dit. (2.18)
BRr(x0)\BR (

¥

By the Holder inequality and noticing }7 + %1 =1, we have

R2 1 Rr?
N < —2|:/ W () |ul? (x, £) Y (x, ) dxdt]p X |:/2 W (x) dxdt:|q
R “ JBp(xg) o Y Brlxo)

R
4

R? 1%
[f ,/ W () [ul? (x, £) g (x, )dxdt}
Br xO)\BR (x0)

R . :
X [/ / Wr(x) dxdt]
0 BR(xo)\B§ (x0)

C 1 R q %
< _g[IR]; X |:f W (x )dxdt]
R B JBrixo)
R . .
+ —[IR]P X [/ f _P(x)dxdt:| . (2.19)
Br(x0)\BR (x

N

By Lemma 1, we obtain

1

R2 1 R2 1
-4 1 ——+a
[/ w P(x)dxdt] 5{/ [ClnR+C ]dt}
R? R?
T JBrxo)

4 4

2+a

<CRiInR+CR 74" (2.20)

Hence,

2+a 2+a

< 2 [g)? x [CRTInR+ CR7* i ]+_[,R],, x [CRTP 4]

2+a

]

= ClIg]? x [CRi2InR+CR 7472, (2.21)

Cq. .1 2 _m
< F[IR]p x [CRTInR+CR ?"

Now let us estimate /,. Using integration by parts, we obtain

]2:/ uu(x,t)lﬂg(x,t)dxdt
Qr

R2 R2

- / e O8] dr—gq / ugl S (Odne|  dx
Bp(xo) 0 Bpr(xo)

0
g / (e, DG ()02 n(e) dxe it
Qr

+alg-1) /Q e, D L(0) (O () dx . (2.22)
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We observe that y2(x, R?) = nr(R*) = 0; [ uo(x) dx, [ u1(x) dx > 0 and (2.3), The above im-
plies

R2
-1
peaf, [ et |5 dd
& JBp(xo)

_1(3mr)*

R2
+q(g-1) lulpin® dxdt. (2.23)
Rr2 B
7 Y Brxo)

Again by (2.3) and the Holder inequality, we have

c [® .
I =< —/ / lulpint™ dxdt
R* % Bg(xo)

2 1
C R 5
<g [ o [ wonreovies dxdt:|
RYLJE Jpgixo)
@ T
X [/ W™r (x) dxdt} . (2.24)
2
T YBrxo)

By (2.20), (2.24) yields

C 1 2 _m, 2a
)2 = 27 lRl? x [CRTInR+CR ?»" "4 |. (2.25)

Combining (2.5), (2.21), and (2.25), we obtain, for large R,

In=11+)>

2+

(o 1 2 _m, 2 (o 1 2 _m, 2
< U7 x [CRI IR+ CRF 74 |+ )7 x [CRTInR+ CRF 7]

< ClIg)? x [CRi2InR+CR 772, (2.26)
which yields
1 m, 2+
[ <CRiInR+CR 712 2.27)

pre(1,1+2’me),then—% + 2+T"‘—2<0. Let R — oo, we have

/ W (x)|ul? (x,t) dxdt = 0. (2.28)
o Jmr
Hence, (2.28) is a contradiction when R is large. This is because the left-hand side of (2.28)

is positive and non-decreasing while R — oo.
Ifp=1+ ZfT’”, then —% + 2*7"‘ —2 = 0. Therefore, when R is large, (2.27) becomes

29 q
Ir<C[CRT"IR+C]"<C. (2.29)
This shows

/ W (x)u? (x,t) dxdt = lim I < oo. (2.30)
0 M" R— o0
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Hence
R2
lim W (x)u (x,t) dxdt =0 (2.31)
R—00 % Bg(xo)
and
R2
lim / W (x)u? (x,t) dxdt = 0. (2.32)
foodo JBr@xonBg (wo)

Using the last two equalities, (2.19) and (2.24) again, we obtain
/ W (x)|ul? (x,t)dxdt = lim I = 0. (2.33)
0 M R—o0

This is a contradiction.
Thus, the proof of Theorem 1.1 is completed. d

3 Local existence and uniqueness

Proofof Theorem 1.2 Let u(-,t) : M" — R"*! be a one-parameter family of smooth hyper-
surface immersions in R"*! and g = {g;} be the induced metric on M in a local coordinate
system {x'} (1 <i < n).

Noting

p g 3u i Ou
Au=Au=g"ViViu=g e Fl’/’ﬁ , (3.1)

the wave equation (1.1) can be equivalently rewritten as

- 3%u ou
i (3,) =g“< - éﬁ) F Wl () - ). (32)
Since
%u  du
k=gl ——,— |, 3.3
i=8 (axlayd axl> (3:3)
it follows that
L, 0u i af 0*u  du\ du
utt(xr t) :gjm _glg (8961 oxi’ @) w + W(x”u'p(x! t) - ut(x’ t)' (34)

We note that equation (3.4) is not strictly hyperbolic. Therefore, in order to consider equa-
tion (3.4), we need to follow a trick of DeTurck [13] by modifying the flow through a dif-
feomorphism of M”, under which (3.4) turns out to be strictly hyperbolic, so that we can
apply the standard theory of hyperbolic equations.

Suppose u(x, t) is a solution of equation (3.2) and ¢, : M” — M" is a family of diffeo-
morphisms of M". Let

u(x,t) = ¢;K’:£(x: £), (3.5)

Page 8 of 10
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where ¢} is the pull-back operator of ¢;. We now want to find the evolution equation for
the metric u(x, t).
Denote

(6, 1) = ¢ (%) = {5' (0, 0y° (x, 0 (5, 8) - - " (.0}, (3.6)

in local coordinates, and define y(x, t) = ¢;(x) by the following initial value problem:

0
Do W g (Th ~ 1),

3.7)
y"‘(x,O):x , ¥¢(x,0) =0,
where f‘]’; is the connection corresponding to the initial metric g;(x). Since
Ay ayP axk ., xk 82
rk - ﬁi—rgfﬁ W 0 (3.8)
A 9a dxt dyr Ay 0/ dux!
the initial value problem (3.7) can be rewritten as
LS A PO i N il iy 9y Pk
7 =8 (aad o ¥ o T LBy Wrﬂ)’ (3.9)

y¥(x,0) = x%, ¥ (x,0)=0

Obviously, (3.9) is an initial value problem for a strictly hyperbolic system. On the other
hand, we note that

Pu ., 0i
_pr. 2%
9y« 9yP gy

gklay P [ 9 (Ou dx u B_xif‘y
dxk axl | 9y \oxi 9yf ) oai dyr P

Agit = gV, Vu =§aﬂ(

_ 0% g0y du 9 g ou (L 0a 0ty
=8 o ko T8 L Ao & i\~ W,
dxk dx dxk dxl dx! dy* dyP dx dyr dxk dx

=g"ViViu = Agu. (3.10)

We have
du on A 9y
m_ L By
ot ot dyk ot
0% 3y~ 3y 5 %a ayP 9% 814 9%y~
-+ -—+ —
dy* dyP ot ot otoyP ot o 9y« o
i 3y 9yf 0% 9yP . du dxk 3%y
+ — + AN+ ——
T 9y ayﬁ at dat  atdyP ar ¢ dxk dyr or2
o % 3y* 3yP %0 oyP
kg (Fk sz)" B ar a7 T B a7
v dye dyP ot ot dtdyP ot
i u RO\ ek g i 9y ayf a2 9yP
=8 555 ~Tiagr ) * 308 (T = Th) + B t 25008 ot
dxi o oxk ) " ax dy*dyP ot ot otdyP ot
?u  du g %0 3y* dyP 5 % dyP
- — 22—
owiow  owkS MY Goao i or ot T 2atayP ot

(3.11)

Uy =

:Agu+

— ol (312)
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By the standard theory of hyperbolic equations (see [14]), we obtain a local existence and
uniqueness result. Thus, the proof of Theorem 1.2 is completed. O
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