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Bgﬁ;&mj:itvsz;tgﬁgif‘ggm14’ This paper is concerned with a thermoelastic suspension bridge equations with
Korea memory effects. For the suspension bridge equations without memory, there are

many classical results. However, the suspension bridge equations with both
viscoelastic and thermal memories were not studied before. The object of the present
paper is to provide a result on the global attractor to a thermoelastic suspension
bridge equation with past history.
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1 Introduction
In recent years, several authors have been concerned with the asymptotic behavior of the
following suspension bridge equations:

Uy + N?u+ ku* + Suy + f(u) = h(x), 1.1)

where u(x, £) is an unknown function, which represents the deflection of the roadbed in the
vertical plane, k > 0 denotes the spring constant of the ties, and § > 0 is a given constant.
The force u* = max{u, 0} is the positive part of u. The suspension bridge equations are
an important mathematical model in engineering. Lazer and McKenna [1] investigated
the problem of nonlinear oscillation in a suspension bridge. Lately, similar models have
been considered by many authors, most of them concentrating on the existence and de-
cay estimates of solutions; see [2—4] and references therein. Ma and Zhong [5] and Zhong
et al. [6] proved the existence of global attractors of weak and strong solutions for equa-
tion (1.1), respectively. Park and Kang [7] showed the existence of pullback attractor for a
nonautonomous suspension bridge equation with linear damping and in [8] obtained the
existence of global attractors for the suspension bridge equations with nonlinear damping.
Besides, the problem of attractor of the solutions to a coupled system of suspension bridge
equations has been studied by several authors [9-12]. Recently, Kang [13] proved the long-
time behavior to the suspension bridge equation when the unique damping mechanism
is given by the memory term. We construct some proper Lyapunov functions to show
the existence of global attractors. The asymptotic behavior of a thermoelastic system has
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been widely investigated by many authors. In particular, the stability of a thermoelastic
system with memory was proved by several authors [14—17]. To the best of our knowl-
edge, problem (1.1) was not earlier considered in a thermoelasticity point of view. Since
thermal effect is a major feature in the theory of elastic plates, we intend to investigate the
dynamical behavior of a thermoelastic version of problem (1.1). This paper is concerned
with long-time behavior of a solution to the following thermoelastic suspension bridge

equation with linear memory:

Uy + o A2u — Auy + kut —/ w(s)Au(t —s)ds + BAO + f(u)
0

=h(x) inQ xR, (1.2)
Qt—Ae—,BAMt—/OOOK(S)AQ(t—S)dS=O on Q x R*, (1.3)
u=0, Au=0, =0 ondQ xR (1.4)
u(x, t) = uo(x, ), u(x%,t) = m(x,t),

(1.5)

O(x,t) =6p(x,2), (x,t) € Q2 x (-00,0],

where Q is a bounded domain in R? with sufficiently smooth or rectangular boundary <2,
and A denotes the Laplace operator. Here « is the flexural rigidity of the structure, and
B > 0 provides connection between deflection and temperature and depends on mechani-
cal and thermal properties of the material. The initial conditions g, 6 : 2 x (-00,0] - R
are the prescribed past histories of u and 6, respectively. It is well known that u = u(x, )
represents the deflection of the roadbed in the vertical plane and 6 = 0(x, t) is the temper-
ature difference with respect to a fixed reference temperature. Memory kernels 1(s) and
Kk (s) are supposed to be smooth decreasing convex functions vanishing at infinity.

The only way to associate a process with such equations is to view the past history of
u and 6 as new variables of the system, which will be ruled by a supplementary equation.
To formulate system (1.2)-(1.5) in a history space setting, as in [18—21], we define new
variables n and ¢ by

N

n'(x,s) = u(x, ) — u(x, t —s), chx,s) = /0 Ox,t—y)dy, (x,5)ecQxR,t>0.
Formally, they satisfy the linear equations

ni(x, ) + nt(x,8) = ue(x, 2), ¢l 8) + ¢l(x,8) =0(x,8), (x,5) € xR, t>0,
and

n'(%0)=0,  ¢'(x0)=0, x€Qt>0,
whereas

n° (%, 5) = 1o (x, 0) — uo(x, —s), O%,s) = /seo(x, —y)dy, (x,5)€ QxR
0
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Assuming that i, v € L}(R*) and taking & = 1 + fooo wu(s)ds and v(s) = —«’(s), problem (1.2)-
(1.5) can be transformed into the equivalent system

Uy + A% — Auy + kut + / w(sS)A*n'(s)ds + BAO +f(u) = h(x) inQ xR, (L.6)
0

Qt—AO—ﬂAut—f v(s)Azi(s)ds=0 on Q xR, (1.7)
0

ni+nt=u, (%t5) € QxR xR, (1.8)
tiret=0, (xts) e QxR xR, (L.9)

with boundary conditions

u=Au=0, =0 ond2 xR

(1.10)
n=An=0, =0 ondQxR"x R,
and initial conditions
u(x,O) = uO(x)x Mt(x’ 0) = ul(x)’ G(x’ 0) = eo(x)y
(1.11)

Tlt(x, O) =0, ;t(xro) = O¢ Tlo(x, S) = Tlo(x: S), §O(x¢ S) = ;0(95’ S):

where

MO(x) = M()(.X,O), Ml(x) = 3tuo(x; t)'tzOr Go(x) = 90(96, 0)7 PAS Qx
no (%, 8) = ug(x, 0) — o (x, —s), Colx,s) = fos Oo(x, —y)dy, (x,5) € 2 x R*.

Because / is independent of time, the initial-boundary value problem (1.6)-(1.11) is in fact
an autonomous dynamical system with respect to the unknown pair (u(¢), u,(t), 0(¢), n*, £ ).
In order to settle (1.2)-(1.5) in the framework of dynamical systems, we investigate mod-
ified equations (1.6)-(1.11). Indeed, it turns out that they are the same thing; to be more
precise, the modified equations are in fact a generalization of the original equations. In the
past years, the asymptotic behavior of viscoelastic equations with past history has been
studied by many authors (see [22-27]).

We formulate our assumptions and results with respect to these new systems. The hy-
potheses and the well-posedness for the system (1.6)-(1.11) are presented in Section 2.
Also, we give some notation and fundamental results of infinite-dimensional dynamical
systems. In Section 3, we establish our main result on the existence of a compact global
attractor.

2 Preliminaries

Now we introduce the Hilbert spaces that will be used in our analysis. Let
Vo = LA(R), Vi = Hy(R), Vy = HX(Q) N Hy(Q).

As usual, (-, -) denotes the L2-inner product, and || - || » denotes the I”-norm. We consider
the history spaces Li (R*; V,) and L%(R*; V;) of measurable functions n with values in V;
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or V, respectively, such that

Iy, = /0 w(s)| An) | ds < 00
and
e 2
s, = [ OIvn)| ds< .
0

The following Cartesian product of Hilbert spaces will play the role of a phase space for
the considered model:

H =V x Vo x Vo x L2 (R Va) x L (R*; V)
with the norm
2
|G, 0,105 = 1Al + I+ 1017 + InlZ, v, + 115 14
Let A; and A be the best constants in the Poincdre inequalities

Ml <IVal?,  Aul® < |Aul?, (21)

respectively.
We assume that /2 € L2(R2) and the forcing term f : R — R satisfy

f(0) =0, [fw) —fW)| <ko(L+ |ul’ + V) u-v], u,veR, (2.2)

where ko > 0 and p > 0. This implies that H?(2) N Hy () = L*?*)(Q). Besides, we assume
that, for some k; > 0,

—ky <F(u) <f(u)u, ueck, (2.3)

where F(z) = [; f(s) ds.
In addition, with respect to the memory kernels p(s), v(s) > 0, we assume that

wveCH(RY)NLY(RY), /Ooou(s)ds:,uo >0, /000 v(s)ds=vg >0, (2.4)

and that there exist constants k», k3 > 0 such that
W(s) < ~kopu(s),  V'(s) < —ksv(s), s=0. (25)
The well-posedness of problem (1.6)-(1.11) can be obtained by the Faedo-Galerkin
method (see [4, 5, 28]). For the problem involving a memory term, we follow arguments

from [20, 21].

Theorem 2.1 Under assumptions (2.2)-(2.5), we have



Kang Boundary Value Problems (2016) 2016:206 Page 50f 18

(i) Forevery initial data (ug,us,60,00,%0) € H, problem (1.6)-(1.11) has a weak solution
(u,u,0,1,¢) € C([O, T];H), T>0,

satisfying
ue LOO(Ox T; V2)) Uy, 0¢€ LOO(O, T; VO),

nel®(0,T;L:(R%Va)), ¢ €L™(0,T;L (R 4)).

(i) The weak solutions depend continuously on the initial data in H. More precisely,
given any two weak solutions z1, z of problem (1.6)-(1.11), we have

|21(8) = 22(0) |, < | 21(0) - 22(0) | ,,, €0, T],
for some constant ¢ > 0.

Remark 2.1 The well-posedness of problem (1.6)-(1.11) implies that the solution operator
S(t) : H — H defined by

S(t)(u07 ui, 901 No» CO) = (u(t)r ut(t): 9“)7 ﬂt’ ;t)x t = O’ (26)

satisfies the semigroup properties and defines a nonlinear Cy-semigroup, which is locally
Lipschitz continuous on H. Thus, we can study (1.6)-(1.11) as a nonlinear dynamical sys-
tem (H, S(¢)).

Now, we recall some fundamental results of infinite-dimensional dynamical systems (see
[29-31]).

Definition 2.1 Let S(¢) be a Cy-semigroup defined in a Banach space X. A global attractor
for (X, S(¢)) is a bounded closed set A C X that is fully invariant and uniformly attracting,
that is, S(¢).A = A for all ¢ > 0, and for every bounded subset B C X,

lim disty (S(¢)B, A) =0,
t—>00

where distx(Y,Z) = supyeyinfzezd(y, z) is the Hausdorff semidistance between Y and Z
in X.

Definition 2.2 A dynamical system (X, S(¢)) is dissipative if it possesses a bounded ab-
sorbing set, that is, a bounded set B C X such that, for any bounded set B C X, there
exists g > 0 satisfying

S(t)B cB, t>tp

Definition 2.3 Let X be a Banach space, and B be a bounded subset of X. We call a func-
tion ¢ (-, -) defined on X x X a contractive function on B x B if for any sequence {x,};°; C B,
there is a subsequence {x,, }2; C {x,}5; such that

lim lim ¢(x,,,%,,) = 0.
k—00 [—>00
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Theorem 2.2 ([30]) Let {S(¢)};>0 be a semigroup on a Banach space (X, | - ||) that has a
bounded absorbing set By. Moreover, assume that, for any € > 0, there exist T = T(By, €)
and ¢r1(-,+) € C(B) such that

”S(T)x—S(T)yH <e+¢rxy) forallx,ye By,

where C(B) is a set of all contractive functions on B x B, and ¢ depends on T. Then {S(t)} >0
is asymptotically compact in X, that is, for any bounded sequence {y,},2; C X and any
sequence {t,} with t, — 00, {S(t,)y.}oc; is precompact in X.

Theorem 2.3 ([30]) A dissipative dynamical system (X, S(t)) has a compact global attrac-
tor if and only if it is asymptotically compact.

The main result of this paper is the following:

Theorem 2.4 Suppose that assumptions (2.2)-(2.5) hold. For k, 8 > 0 such that

the dynamical system (H,S(t)) corresponding to system (1.6)-(1.11) has a compact global
attractor A C H.

3 Global attractor
To show Theorem 2.4, we apply the abstract results presented in the previous section.
Accordingly, we shall first prove that the dynamical system (#, S(¢)) is dissipative. By The-
orem 2.3 we need to verify the asymptotic compactness.

We have the following lemma on the system energy defined by

2

1 1 k 1 1
E() = el + S Aul + 2t [P+ 1007 + 2 '],

+ /;Z(F(u) - hu) dx.

1 2
e,

Lemma 3.1 Along the solution of (1.6)-(1.11), the energy E satisfies

1 [ 1 [
E() = —| Vit ||? - ||ve||2+§/ 1 )] an'es)|” ds + E/ V()| Vi) | ds. (3)
0 0

Proof Multiplying equations (1.6) and (1.7) by i, and 6, respectively, and integrating over
2, we get

(B vt A o0+ [ (0
dt<2||ut|| +2||Au|| +2||u l +2||9|| + Q(P(u) hu) dx

+ IVl + 1IVOI + (' ue) o + (g‘,e)u,v1 =0. (3.2)

wVa
From (1.8) and (1.11) we have

1d

1 [o¢]
(n'suae) = (000 +115) 0 = 37 |n* ||,i,v2 - 5/0 1) An'(s) | ds. (3.3)
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Similarly, by (1.9) and (1.11) we obtain
*© 2
(Ct’ )v Vi (C é‘t ; )v V1 2 dt ||C ||v 1% ) / U/(S) ||V§t(s) || ds. (34)
0
Combining (3.3) and (3.4) with (3.2), we get estimate (3.1). |

To this system, we define the Lyapunov functional
L(t) = ME(t) + ep(t) + ¥ (2)
with

$(0) = /Q w(Ou(t) dx,

(o) =- f e f ()’ () dsdx - / 0 / V() () dsd,
Q 0 Q 0
where € > 0 and M > 0 are to be fixed later.

Lemma 3.2 For M > 0 sufficiently large, there exist positive constants qo, q1, and C, such
that

GoE(t) — Co|Q| - Go||h|* < L) < iE@t) + Co|Q + Col|1|*, £>0, (3.5)
forany0<e <1.

Proof The Young inequality, (2.1), and (2.3) give that
1 2 1o
(F(w) — hu) dx > —ky |Q] = = || Aull® = = || h]1%. (3.6)
0 4 Y

Then by energy and (3.6) we have

1 PN 1 2

2 100,000, 6) [, < B0 + ka1 + 1Al (37)
From the Young inequality, (2.1), (2.4), and (3.7) we conclude that

0] = > el + | AulP < 2max {1, + | (E@) + kgl + - 1)

=2 Ty = "2 ) ’

1
()| < Enutn +—||0|| +—||n I?

IJ«VZ )\‘ ||; ||U,V1
§2max{1 £, %}(E(thkllﬂl + —||h|| >

Choosing C; = 2 max(l, % ko, ﬁ}, for some C, > 0, we obtain

|L(£) - ME(t)| < €|p(®)| + |[w(®)| < C2(E@®) + 120 + |1]]*), O0<e <L

Then, taking M > C,, we get inequality (3.5) with go =M — C, and q1 = M + C;. O
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Lemma 3.3 We have the inequality

B B

, 1 3k 3 1 1
¢'@) <-E@®) -~ - = - = JI1Aul® + llul* + — I Vue|* + <1101 + — I VO >
4 20 2 2 MB 2 M
1 £112 1 £112
(100 3 )0 0 31T 68)

Proof Using (1.6) and (2.3) and subtracting and adding E(¢), we obtain

'(t) = —||Au||2—/ VutVudx—kf u*udx—/oou(s)</ An‘(s)Audx) ds
Q Q 0 Q
+;3/ V@Vudx—/f(u)udx+/hudx+||ut||2
Q Q Q

1 1 2 1 2
w101+ 2, + 512

—/ VutVudx—k/ u*udx—/ ,u(s)</ Ant(s)Audx> ds
Q Q 0 Q

+;6/ VOVudx. (3.9)
Q

1 3 K
< B0 - S 1 8ulP + S gl + 5 [

Note that

‘_/OOOM(S)</Q An’(s)Audx) ds

by assumption (2.4). From (2.1), the Young inequality, and the inequality |u"| < |u| we see

2

1
< 1l + o',

(3.10)

that
B 2 1 2
= | VuVudx| <~ Aull” + — V|7, (3.11)
Q 4 Mp
B 2 B 2
B | VOVudx| < —|Au|”+ —|IVE|*, (3.12)
Q 4 A
+ k 2
—k | uudx| < —||Aull”. (3.13)
o )
Substituting (3.10)-(3.13) into (3.9), we get estimate (3.8). a

Lemma 3.4 There exist positive constants C3 and Cy such that

, " v Sk?
Yit) < —70||Mt||2 - 70”9”2 + (5 oot 5k0CsCZ) Au]? + (8 +86%) | Vase |I*

2
wVa

+(8+88%) VO + Cs|n' |

_ o) =
2o Jo

1
[ W

v(0) [
2voA1 Jo

1) An'(s)||* ds - V(s)|VeiGs)|” ds, (3.14)

where Cs depends on g, M, A, and 8, and C4 depends on vy and 5.



Kang Boundary Value Problems (2016) 2016:206 Page 9 0of 18

Proof Taking the derivative of the function ¥ and using equations (1.6)-(1.9), we have
W (t) = /Q(Azu — Au; + kut + /000 w(s)A%n'(s)ds + BAO + f(u) —h)
< [t dsas
/ (A9 + BAu; + ‘/00 v(s)AZ (s)ds) /OO v(s)¢i(s)dsdx

/ut/ s) ut ns(s dsdx / / v(s) e (s))dsdx. (3.15)

From the Young inequality, (2.1), and (2.4) we derive that, for any § > 0,

/Auf s)dsdx| < 8| Au|® + 5 ||”’||M,v2' (3.16)
/Vut/ w(s)Vni(s)dsdx| < 8| Vu,|* + 48A | t”qu (3.17)
/ / w(s)n'(s)dsdx <—||A I + 48k Hn Huvz (3.18)
/(/ n(s)An (S)dS) dx| < po|n* HW2 (3.19)
Q 0
—,B/ ve)/ w(s)Vni(s)dsdx| < 88%|VO|* + 4M || f||ﬂv2 (3.20)
_/h/ 1u(s)n'(s) ds dx| < —||h|| +—U P (3.21)
Q 0
Using (2.2), (3.7), and the Sobolev embedding, since E(t) is decreasing, we obtain
| 5 [ wont@dsas| < [ k(e ey [ un')ds s
Q 0
< oL+l it | [ 61 ds
0
< 8koCsCE|| Aul* + 4M ” fHM (3.22)
where Cg = 2(E(0) + ki || + 1 [|/2]|*)"/2. Moreover, it follows that
o0 o0
V ut/ p(s)ni(s) dsdx| = ’—/ Mt/ W (s)n*(s) ds dx
Q 0 Q 0
Mo, .o H(0) [ T
= - A . .
<Gl =2 ) (8)]| An*(s)|" ds (3.23)
Similarly, we find that, for any é > 0,
Vo [ v(s)Vel(s)dsdx| < 8IVOIP + 2 |2t ., (3.24)
Q 0 457 1
|,3/ Vut/ v(s)VEi(s)dsdx| < 82| Vil + %Hgfniw (3.25)
Q 0
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[e'e) 2
f(/ v(s)Vg‘t(s)ds> dx §v0||§tni‘vl, (3.26)
2 \Jo
/ 0 [ vis)cie)dsds| < %nenz—;(—‘” "] Vet ds. (327)
e Jo VoAt Jo

Inserting (3.16)-(3.27) into (3.15), we deduce that

W v sk?
¥'(0) < —7°||ut||2 - 5""0”2 + (6 t—+ akoCsCZ) Il Au|)?

+ (8 +88%) I Vue|* + (8 + 88%) VO >

(o 5 55 3 * g I e+ (o 35 ) 1L
48 2% 280 28X w2 25 v
1
2

© [° t ©) [
iP5 | welan el s o |

/ t 2
- 2on v (s)||V§ (S)H ds. 0

Lemma 3.5 Suppose that conditions (2.2)-(2.5) hold. Then the dynamical system (H, S(t))
corresponding to problem (1.6)-(1.11) has a bounded absorbing set B C H.

Proof From (2.5), (3.1), (3.8), and (3.14) we see that

3
L(t) < —€E(t) - (% - ;) o |12 - (”30 - g) ik

B
- (M— ﬁ -(1 +ﬁz)6>||wt||2 - ( - f - (1+/32)8> Ivel?

1

1 3k 'S
_[<———<—é>e—(1+—+koCsC§)5]||AM||2

4 20 2 A

M € 1 CS M(O) /OO / t 2

= - =_" A d.
+<2 /<2</L0+2) o " 2100 ) ), IL(S)” 77(5)“ S

M € C4 V(O) o ’ t 2 l 2
(F-m-2- ) [ ervee) s e

2 2/(3 kg 2vpA1

We choose € so small that

3
@——6>0, U—O—S>0.
2 2 2 2
For k, B such that%—%—§>0and fixed €, we take § > 0 small enough such that
1 3k k?
1.3k & e—(1+—+kCCE )8 >0.
4 20 2 A

Finally, we choose M > 0 large enough such that

M > max{ﬁ + (1 + /32)8, 'i—f + (1 + ,32)5,

2C3 /,L(O) € 2C4 1)(0)
s s .
ky  por ks ks vk

kiz(wo +1)+
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Then we deduce that
/ 1 2
L'(t) < —€E(@) + Ellhll .
From (3.5) we get
6C2
~

, € 1
L'(t) < ——L() + 120+ [1201%) + = (1]l
Q1 q 2

which implies that
_e G 1 b e
uﬂngkqﬁ+<ii+—)0m+nmﬁ/meﬂ“)ﬁ
a2 0
Lo - (C+ BV @r+1m2) [t + (G + L) (190 + 1h12).
2¢ 2¢
Using (3.5) again, we have

_e 2C.
E(t) < ﬂE(O)e aly <—2 + i>(|Q| +Al?), t>o0.
90 qo  2€qo

Consequently, (3.7) infers that

| (u0), (), 6(8), ', &) |3, < CE©)e™ " + C(192] + 11]2), (3.28)

o 26 a

where C = 4max{qo, o e T % + ki} is a positive constant. Thus, taking the closed

ball B = B(0,R) with R = \/2C(|2| + ||%]|?), we conclude from (3.28) that B is a bounded
absorbing set of (H, S(¢)). O

Lemma 3.6 Under the hypotheses of Theorem 2.4, given a bounded set B C H, let z; =
(u,u,0,1, ) and z = (it, iy, 0, 7], T) be two weak solutions of system (1.6)-(1.11) with corre-
sponding initial conditions z1(0) = (1o, 11,600, N0, Co) and z2(0) = (i, i1, 6o, 10> ZO) € B. Then
there exist positive constants y, Cy, and C, depending on B such that

|21(0) - 2(0) |3, < Coe"*|22(0) - 22(0) |5,

t
+ C'l/ e V) [[ua(s) — ia(s) ||§(p+1) ds, t>0. (3.29)
0

Proof Wesetw=u—it,9 =0 —0,& =n—17,and t = ¢ — . Then (w, w;, 9, &, 1) is a weak
solution of

Wy + A2w— Aw, + ku —kit* + /wu(s)Azét(s) ds+ BAY +f(u)-f() =0, (3.30)
0

ﬁt—Aﬁ—ﬁAwt—/oo v(s)ATi(s)ds = 0, (3.31)
0

& =& +wy, (3.32)

T =—T,+ 0, (3.33)
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with initial conditions

w(0) = up — o, wi(0) = ug — iy, #(0) = 6 — o,

£° = no — fjo, %= ¢ - &.

Now we consider the energy functional

1 1
G(t) = 2 | aw@)[*+ - w0
1 1 1
e @ 1+ 5160, + 317 20 (334)

Step 1. There exists a constant Cs5 > 0 such that

, )
G'(t) < -IIVw > - IVO|* + 30||th|2 + C5||W||§(,,+1)
I ’ t 2 I / t 2
+ = 7 (s)|| AEX(s) || ds + — V'(s) ||Vr (s) || ds, (3.35)
2 Jo 2 Jo
where Cs5 depends on &, kg, 8¢, ¢o, and Cp.

To show this, we multiply (3.30) by w; and (3.31) by ¥, respectively. Integrating and using
(3.32) and (3.33), we obtain

G/ =~V will = 1992 =k [ (" =" Yweds— [ (Fa) - F@))wed
Q Q
L[, t 2 L[~ t 2
+ 5 W (s) H A& (s)|| ds + 5 V'(s) ||Vt (s) || ds. (3.36)
0 0
By the Young inequality we get

k2 + =42 80 2
E%HM s “ +Z||Wt||

‘—k/ (u" - ") wydx
Q

k200

<
=5

do
W5y + 7 Wl (3.37)
where we have used the facts that |u* — | < |u — #| and that ¢y > 0 is an embedding

constant for L2?*)(Q) < L2(R). In addition, from (2.2) and (3.28), by the generalized

Holder inequality with 52— + 51

5o T 3pm * % =1 and the Young inequality we have

’—/(f(u)—f(ft))wtdx Sko/(1+Iul’”+|5t|’”)IWIIWt|dx
Q Q

)2 ~
< ko (12700 + [|ully 1y + U2l 1)) W2y el

kg CB
<
= 50

o
W56 + 7 1wl (3.38)

where Cjp is a constant depending on B. Combining (3.37) and (3.38) with (3.36) we see
that (3.35) holds.
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Step 2. Let us define the functional
O(t) = /Q we(t)w(t) dx.
Then there exists a constant Cg > 0 such that
0 <60 (3 -4 - 5 JIAwE + Sl e 1wl + S0 1P

MP
ﬂnwn +<2uo+—)||s I?

where Cy depends on ko, A, and Cj.

1
w317 o + Collwibn, (3.39)

Indeed, differentiating the function ®, using (3.30), and adding and subtracting G(t), we

obtain

@) =60~ 1wl + Sl + 191 + S [8 2, + 5 I
—kfﬂ(u - )wdx+/ Awwdx — // (s)AE (s) dsAwdx
—,B/QAﬁwdx—/Q(f(u) —f(@)wdx. (3.40)

By a similar procedure used in Step 1, from (2.1), (2.2), (2.4), and the Young inequality we

derive the following estimates:

>~

—k/ ut - )wdx| <k|lw|* < XIIAWHZ, (3.41)
1
- /Q fo WAE () dshwdx| < Sl Aw]® + 2u0 "] . (3.42)
. 1 262C,
- [ —s@)was| < glawi® s L i, (3.43)
/thdex < é||Aw|| + —||th|| ) (3.44)
Q 4 rMB
ﬁ/ VIVwdx| < §||Aw||2+ ﬁnwnz. (3.45)
Q 4 )»1

Substituting (3.41)-(3.45) into (3.40), we get

1 k B 1
<I>’(t)f—G(t)—(Z—X——)IIAwllz —||wt||2+m||w,n2+—||ﬁ||2
B 2k:C
+ VoI + 2Mo+ lel, + —|| ot S By (3.46)
1

Step 3. Let us define the functional

W (¢) :—/S;wt(t)/o u(s)é (S)dsdx—/Qﬁ(t)/; v(s)t'(s)dsdx.
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Then there exist constants C;, Cg, and Cy > 0 such that

we) < L2 = 2oz« (s SN AW + (6,4 8,82) [Vl
__EIIWt” —?H -+ 1+ [AW)? + (81 + 8:18%) | Vw, |

(81 + 81’3 )||Vl9||2 + C7||W||2(p+1) + C8 ||é»': “;L 1% + C9 ”Tt”u 141
—M(O) - V(O) / t 2
© 20h /o 2voht /0 V)|V ds, (3.47)

where C;, Cg, and Cy depend on 8, o, vo, A1, A, and Cg. To prove this, we observe that,
by (3.30) and (3.31),

W'(t) = /;2<A2w— Aw, + kut — kit + /omu(s)Azét(s)ds+ ,BAz?)
Ys)dsd
< [ nogtodsas

+ [ (0 -r@) [ noodsar [ w [ uoeo dsas

/ (Az? + BAW, + /‘00 v(s)Att(s)ds) /00 v(8)Ti(s) dsdx
0 0

- [0 / )dsd.

Integrating with respect to s and using (2.1), (2.4), (3.32), (3.33), and the Young inequality,

we find that
/M/lWﬁ@ﬁM—ﬂMM”i/M/ (9)E(s) dsdx
g—ﬂWmW—gi%o (5)]| AEYs) | ds
and

_fﬂﬁfooo v(s)TH(s) dsdx < — ||19|| %/w V(s)]| Vei(s) | ds.

In addition, from (2.1), (2.4), and the Young inequality we have the following estimates for

any é; > 0:

/;ZAW/OOOM(S)Aét(S)dex

<s&illawl®+ Hsnﬂw

2
<&IVwe|” +

/vm/;mW?w%M = e
Q 0

48 A wVy’

2
< 2 aw KO e

481 wV2’

k/;z(u - )/0 W(s)E'(s)dsdx

L(fowu(s)ASt(s)ds> dx

< uoll&15, 1,
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oo
t 2 2
-5 [ Vo [ uevesiasas <o 100+ 2 e,
* 2 2
{ /Q (F(w) - £ (@) fo RIS 5)ds x| < oWl + 15 |1,
Moreover, we obtain that, for any §; > 0,
[ vo / Ve dsds <nIVOIE+ 2| ]},
,3/ th/ s)Vti(s)dsdx| < 6.8 ||th||2+—Htt”vvl

<volle‘[y,-

/;2(/0 v(s)VTi(s )ds)zdx

Therefore, we conclude that

, Mo 2 V0 a2 81k 2 2 2
‘If(t)i—7||W:|| —7”19” + 51+T IAW]® + (8, + 818 )”th”

2 2 Mo Mo
F G a0 (o 2 0 BN e,

(s )R s

w(0) v(0)
‘m/ 1)

VYS!
Step 4. We consider the functional

/ V(s)|Vei(s) ] ds.

G(t) =NG(t) + D + V¥,

where ¢ € (0,1) and N > 0 are to be fixed later. Then there exists a constant #y > 0 such
that, for N > ng,

mG(t) <Gt) <mGE), t=>0, (3.48)
where n; = N — np and n = N + ny. Indeed, it is easy to see that
1 1
O(t)] < = well> + = Aw|)?,
|o@)| < 2||Wt|| o lAwl|
W] = Sl + S 191+ 2 e |
=9 t 2 W, VZ )\'1 A%
Therefore, choosing ng large enough, we get

|G(t) - NG(1)| < e|@@)| + |¥(0)| < n0G(2),

and hence (3.4:8) holds.

Page 15 of 18
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Step 5. From (2.5), (3.35), (3.39), and (3.47) we have
/ Mo 38 SN s (vo € 5
£) < -eGt)— (22 - = 2% (22w
G'(t) = -eG(0) (2 _ 2)nwtn (2 2)n ||

- (N— S ﬂ2)51> IVwe]? ~ (N— ’i—f -1+ ﬁz)ﬁl) VoI

MB
1 k B K2
_ [(Z - §>e - (1 + 7)51] [AW|* + (CsN + Coe + C) [ wll3p09
N lsCsu(O)/“/ N
——(2po+= ) - = - —= A d
(5 (2003) - - a0 [Tl aso) s

0

+ (N ¢ 6 O )/00 V()] Vh(s) ||2ds.
1

We first take & > 0 so small that

3¢ Y e
&——>0, —0—§>0.

2 2 2

For fixed &, we choose 8; > 0 so small that

1 k B K2
————=J)e—-(1+—)&>0.
4 A 2 A

Next, for fixed 8, and €, we take N so large that

€ Be
N > max{ i +(1+p%)é1, o +(1+ B%)éy,

1
(4pto + 1) & . 2Cy s w(0) ¢ .\ 2Cy s v(0)
Ho ky ky  por ks ks vorr )’

Finally, choosing 8¢ > 0 small enough, we get that there exist constants &g, Cip > 0 such

that
(3.49)

G'(t) < —eoG(2) + C10||W||§(p+1), t>0.
Combining (3.48) with (3.49), we obtain
/ €0 2
g < _}’l_g(t) + C10||W||2(p+1)»
2
and so
-0 ! -0 (1) 2
G(6) =G(0)e ™"+ Co | e wis) |y, ds £ 0.
0
Using (3.48) again, we see that
_t0, Cipo ' _f0q
G@) < @G(O)e o T iy (1=5) ||w(s)||§(p+1) ds, t=>0.
m m Jo

Since G(¢) = || z1(£) — z2(8) 13, we get (3.29) with Cy = 2y = Z—i’ and C; = Cnllo
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Using the ideas presented in [25, 26], we easily get the following lemma.

Lemma 3.7 Under the assumptions of Theorem 2.4, the dynamical system (H(t), S(t)) cor-
responding to problem (1.6)-(1.11) is asymptotically smooth.

Proof Let B be a bounded subset of H positively invariant with respect to S(£). De-
note by Cp several positive constants that depend on B but not on ¢. For 29,29 € B,
S()2Y = (u(t), us(t),6(2), n', ¢%) and S(£)29 = (iu(t), it,(£), 6(t), ii*, ) are the solutions of (1.6)-
(1.9). Then, given € > 0, by inequality (3.29) we can choose T > 0 such that

T 3
|S(T)2) = S(T)23 |, <€+ Cs ( /0 [[ua(s) — ia(s) “iw) ds) , (3.50)

where Cp > 0 is a constant depending only on the size of B. The condition p > 0 implies that

2 < 2(p + 1) < 0o. Taking ag = % and applying the Gagliardo-Nirenberg interpolation

inequality, we have
[16) = 0) | yyy = €l A () = 20) | ) = ()| ™ < CaJuae) - )] .
Since ||u(t)|| and ||%(¢)|| are uniformly bounded, there exists a constant Cp > 0 such that

) - i), < Ca|u(e) — ae)| "4, (3.51)
|| | [

2

) || 2(p+1)

Therefore, from (3.50) and (3.51) we obtain
IS(T) = STV, < € + (e 20)

with

: ;
CDT(z?,zg) =Cp (/ Hu(s) - Zt(s)”zu_%) ds) .
0

Thus, by Theorem 2.2 it remains to prove that ¢ is a contractive function on B x B.
Indeed, given a sequence (20) = (19, u},0%,1%,¢0) € B, let us write S(£)(2°) = (4, (2), tn,(£),
0,(t),n’, ¢L). Because B is positively invariant by S(¢), ¢ > 0, it follows that the sequence
(Un(2), U (2),0,(2), %, £ 1) is uniformly bounded in #H. On the other hand,

(thn, thn;) is bounded in C([0, T1, Vo x Vo), T >0.

By the compact embedding V, C V| the Aubin lemma implies that there exists a subse-
quence (u,, ) that converges strongly in C([0, T, Vp). Hence, we see that

T
lim lim / |4 (5) = 14y () |47 dis = 0.
xJo

k—o00l—

This completes the proof of Lemma 3.7. d

Proof of Theorem 2.4 From Lemmas 3.5 and 3.7 we conclude that (#, S(¢)) is a dissipa-
tive dynamical system, which is asymptotically smooth. Therefore, by Theorem 2.3 it has
compact global attractor in H. O
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