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Abstract

In this paper, we prove the existence and multiplicity of solutions for a fractional
Kirchhoff equation involving a sign-changing weight function which generalizes the
corresponding result of Tsung-fang Wu (Rocky Mt. J. Math. 39:995-1011, 2009). Our
main results are based on the method of a Nehari manifold.
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1 Introduction
In this paper, we consider the following fractional elliptic equation with sign-changing

weight functions:

M(fpon 'Txxy U dxdy)(=A),u = A (x)u® + gx)u’, x€Q,

‘N+sp

(1.1)
u=0, xeRN\Q,

where Q is a smooth bounded domain in RN, N >2s5,0<s<1,0<g<l<r<pi-1

(pi= N ps ) A >0, M(t) =a+bt', (=A);, is the fractional p-Laplacian operator defined as

(- A)Su(x)—2]1m y, xeRN.

e\0

/ |ua(x) = u(y) P~ () - ) ,
B

|x y|N+sp

We may assume that the weight functions f(x) and g(x) are as follows:
(H1) f* =max({f,0} # 0, and f € L*4(S2) where 1, = q+1
with in addition f(x) > 0 a.e. in Q in the case g = 0
(H2) ¢g* =max{g,0} 0, and g € L' (2) where v, =
The fractional Kirchhoff type problems have been studied by many authors in recent

for some u € (g + 1, p}),

m for some v € (r +1,p}).

years; see [2—6] and references therein. In the subcritical case, Pucci and Saldi in [5] stud-
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ied the following Kirchhoff type problem in RV:

M(fgon MOV G dy) (~ Ao + V () |l

ey NP
= Aw(x) w2 u — h(x)|u| 2y, xEQ,
u= 0, X € RN \ Q,

with n > ps, s € (0,1), and they established the existence and multiplicity of entire solutions
using variational methods and topological degree theory for the above problem with a real
parameter A under the suitable integrability assumptions of the weights V, w, and /. In [7],
Mishra and Sreenadh have studied the following Kirchhoff problem with sign-changing
weights:

M([gon lu@-um)P dxdy)(-A)yu = M) T 2u + |u*2u, xc,

|x— y‘NtYp

u=0, xeRN\Q,

and they obtained the multiplicity of non-negative solutions in the subcritical case & < p
by minimizing the energy functional over non-empty decompositions of Nehari manifold.

When p=2,s=1,a=1and b =0, problem (1.1) is reduced to the following semilinear
elliptic equation:

—Au=7Mxul +gx)u", xeQ,
u=0, x € 0.

(1.2)

In [1], Wu proved that equation (1.2) involving a sign-changing weight function has at least
two solutions by using the Nehari manifold.
Motivated by the above work, in this paper, we investigate the existence and multiplicity
of solutions for a fractional Kirchhoff equation (1.1) and extend the main results of Wu [1].
This article is organized as follows. In Section 2, we give some notations and prelimi-
naries. Section 3 is devoted to the proof that problem (1.1) has at least two solutions for A
sufficiently small.

2 Preliminaries
For any s € (0,1), 1 < p < 00, we define

|u(x) — u(y) P

X = {u|u ;RN — R is measurable, u|q € LP(2), and
o ol

dxdy < oo},
where Q = R?V \ (CQ x CQ) with CQ = RN \ Q. The space X is endowed with the norm
defined by

@) )l dy)”’{

|x_y|n+ps

luallx = Nl + (
Q

The functional space X, denotes the closure of C5°(£2) in X. By [8], the space X, is a Hilbert
space with scalar product

|ux) = u(y) P (v(x) — v())

|x y|n+ps

dxdy, Yu,ve Xy,
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and the norm

u(x) — u(y)?
llullx, = (/' y|ngsl dy)

For further details on X and X, and also for their properties, we refer to [8] and the
references therein.
Throughout this section, we denote the best Sobolev constant by S; for the embedding
of X, into L ($2), which is defined as
I lu@-uP dxdy

2N
Joo— y|N+sp

S;= inf ,
Xo\OL ([ full dx) T

where [ € [p, p}].
A function u € Xj is a weak solution of problem (1.1) if

M(f lu(x) — u(y)|P dxdy)/ (%) — u(y) P2 (u(x) — u(y))(v(x) - V(y))d dy
Q Q

|x_y|N+sp |x y|N+sp

:)L/f(x)|u|q’1uvdx+/‘g(x)|u|”1uvdx, Vv € Xo.
Q Q

Associated with equation (1.1), we consider the energy functional .7, 5 in X,
Fioatw) = B1(1uy) - 5 [ fluit = [ gy s
M P Xo q+1Jq r+1 Jq ’

where M(¢) = fOtM(M) du.

It is easy to see that the solutions of equation (1.1) are the critical points of the energy
functional 7, .

The Nehari manifold for 7, s is defined as

Now(Q) = {u € Xo \ {0} : (T} s (w), 1) = 0}
={M€Xo\{0}|M(||u|| lull?, —A/flul"“dx /g|u|’+ldx=o}.

The Nehari manifold N; 4(€2) is closely linked to the behavior of functions of the form
it — Jom(tu) for t > 0, named fibering maps [9]. If u € X, we have

r+1
f g|u|r+l dx,
Q

W () = t"”lM(ﬂ"||u||‘§0)||u||‘§0 — At / Flult dx— ¢ / glul™ dx,
Q2 Q

1
hym(t) = (tp ||M||
p

and
_ 2
W) = (p-DtP 21\/1(t”|lbt||§7( Yull, +ptr” ZM’(prqu(O)HMH)(’:)

—qktq_l/f|u|q+1dx—rt’_l/g|u|”ldx.
Q Q

Page 3 of 16
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Obviously,
£ pi () = M2 ([ully, ) Nullf, —kfﬂﬂtul’“l dx—/gg|tu|”1 dx
= (Tam(tw), tu),
which implies that for u € Xp \ {0} and £ > 0, /; 41(¢) = 0 if and only if tu € N, p(S), i.e.,
positive critical points of /; s correspond to points on the Nehari manifold. In particular,

h; (1) = 0 if and only if u € N, 4(2). Hence, we define

() = {u e Nom(Q) : 1), (1) >0},
M u(Q) = {u e Nom(R) : 1, ,,(1) = 0},
Niw(Q) = {u e Nou(Q) : k), (1) < 0.

For each u € N, 4(S2), we have

1 0 1) = (o = DM (el ) ully, + oM (lully ) el

—qk/ﬂul‘“ldx—r/g|u|”1dx
Q Q
= (lﬂ—r—l)M(HMHf(O)HMHf(O +pM’(||u||f(0)||u||i1; —A(q—r)/flulq”dx (2.1)
Q
= (P—q—l)M(HMHf(O)HMHf(O +pM/(||u||§’(0)||u||§£ - (r—q)fglul”l dx. (2.2)
Q

Let M(t) = a + bt*™', where a > 0, b > 0 and p > 1. If u € N, (), then K] /(1) = 0, and
we have by (2.1) and (2.2)

2
ap == DIl + b(p" ~r=1) il g 1) [ flul ds =0, (2.3)
Q
2
cz(p—q—1)||u||’;(0 +b(p2 —q—1)||u||};(0 —(r—q)/g|u|”1dx= 0. (2.4)
Q
For convenience, we let
>p?-1, b#0,
(H3) 0<g<l,p>l+qandp-1>r
>p-1, b=0.

Lemma 2.1 If (H1) and (H3) hold, then the energy functional J, 1 is coercive and bounded
below on N, ().

Proof For u € N, (2), we have by the Holder and Sobolev inequalities

1 1 1 1 2
- 14 p
Trm(u) = “(1_7 - r+1>”u”X° +b(? - r+1>”u”X°
1 1
M- /f|u|q+1dx
g+l r+1) Jg

1 1 1 1 2
_ - 4 - '4
—a(p ,+1)Ilullxo+b<p2 M)nunxo

Page 4 of 16
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q+1
(q+1)(r+1)/f'”' da

> af aalty, + b = — —— Yllully
al - - — — |llu
- p p r+1 Xo

—}\4 Sq+1 q+1
e e Sl

where 11, = #qu)’ w € (g +1,p%). Thus Jyu is coercive and bounded below on N 4((€2).
d

Lemma 2.2 Let (H1)-(H3) hold. There exists Ay > 0 such that for any A € (0,1), we have
J\/ﬁ u(R)=0

Proof If not, that is, SM(Q) # ) for each A > 0, then by (2.3) and the Holder and Sobolev

inequalities, we have for 1y € ./\/,3 w($2)

a(r —p + Dlluol, < alr—p+Dlluol’, +b(r-p +1)|Iuo||

- Mr—g) / Fluol™ dx,
Q

which implies that

r—q)
lluo iy, < 4/f|u |11 dix

air-p+1
Ar—q) 1

< Sq+l q+

< ai(r o+1) If Il La llzo Il

and so
1
lluollxy, < Mr-a)_ If 1l ea SEH r (2.5)
% =\ Gr—p+1) p+ 1) ) '

Similarly, we obtain by (2.4) and the Holder and Sobolev inequalities

1 1
gl S, ol

gy, < ——1—
a(p-q+1)

which implies that

1
(p q B r+ r—p+1
llzollxy = ( g ”g”LVrS Y . (2.6)

But (2.5) contradicts (2.6) if A is sufficiently small. Hence, we conclude that there exists
A1 > 0 such that N2, () =4 for A € (0, Ay). O

Let

C) = inf JA,M(u).

ueN m()

Page 5 of 16
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From Lemma 2.2, for 1 € (0, A1), we write N, y(S2) = N}/, (2) UN;,,(2) and define

c= inf Jmw) and ¢, = inf  Tou(u).
e (1) el (1)

Lemma 2.3 (i) If u € N}\(R), then [, f|u|?*' dx > 0.
(i) If u € N (R2), then [, glu|*' dx > 0.

The proof is immediate from (2.3) and (2.4).
Define the function &, : R* — R as follows:

l0) = Ml Il =7 [ glul ™ e50. 7)

Obviously, tu € N () if and only if k,(¢) = A [, f|u|™ dx. Moreover,
K(6) = (p - q = D12 M (¢ |ull, Nl + pt2 =020 (¢ |ullfy, ) el 2
—(r—gq) ! / glul™ dx, (2.8)
Q

which implies that ¢7k;,(¢) = 1} ,,(¢) for tu € Ny ;(S). That is, u € N 1,(Q) (or N ,,(R)) if
and only if K, (¢) > 0 (or < 0).

Set
p—q-1

Tl

A

_a(r—p+1)< ap-q-1) )
 r—q \(-9lgllSt

R 09

r-q (r—q)llgll-S;t
Lemma 2.4 Assume that (H1)-(H3) hold. Let Ay =

and A € (0,1,), we have:
Q) If [of|ul?*! dx < 0, then there exists a unique t~ =t () > tmax (1) such that
tu e N, () and

— A Then, for each u € X, \ {0}
Wl g ST

JAM(L‘_M) = sug Tam(tu) > 0. (2.10)
=

(2) ]foquIq+1 dx > 0, then there exists a unique 0 < t* = t*(u) < tma (4) < t~ such that
true N}y (Q),tue ./\/;M(Q) and

._7AYM(t+u) = inf  Jm(tu), ﬂM(t_u) = sup Jo p(tus). (2.11)
0<t<tmax (1) t>0
Proof From (2.7) and (2.8), we have
2
l0) = el + b0y~ [ s oo

and

2
K, (1) = 9! [a(p—q— Dl + b(p? - g - 1) ul, - (r- " fg glul™ dx],
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which implies that k,,(0) = 0, k,(£) = —ocast — oo, lim,_, ¢+ k,(t) > 0 and lim,_, » k,,(£) < 0.
Thus there exists a unique fmax(#) := fmax > 0 such that k,,(¢) is increasing on (0, tmax), de-
creasing on (tmax, 00) and &, (tmax) = 0. Moreover, tmay is the root of

2
a(p—q - Dl +b(p? — g - 1)l — (= @)ty / glultdx=0. (212)
Q

From (2.12), we obtain

s (ST Y1 (g
"=\ el Tdx) T Tl \U -l ST

S~

" (2.13)

Hence, we have by (2.12), (2.13), and the Holder and Sobolev inequalities

ku(tmax)—tf;lzl[a||u||f” O ull — f glulmdx}

a(r=p+1) , 1. »
= S ul,

2
mtp 41|y ||P
r—4q

max

alr-p+1) ., br—-p*+1) » 2
> —i" ||M||§(O et ||M||‘;7(0

p=q-1
> ﬂ(V—P"'l)( d(p—q—l) )rml ” ||q+1
T r—q (r = @)ligllz» S,

Pl

+b(r—p2+1)( alp-q-1) ) g
r—q \G-qlegl ST

= Allullf. (2.14)

Case (1): [, f1u|?" dx < 0. Then k() = A [, f|u|?*" dx has unique solution ¢~ > t;n, and
k/,(t”) < 0. On the other hand, we have

ap-q-Dlcull, + b ~q-1) |t ully - =) [ eleul™ as
- [”(’”_q‘ DYty + b - a-1)() "l
~r-ae) " [ g
= (£) K, () <0
and
(T (E ), e u)
~afe ) Wl + oYl ()" [ e (o) [ grtas

- (t‘)q”[ku(t‘)—k /Q fluj®! dx:| =0
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Hence, t™u € /\f;’M(Q) or t~ =1. For ¢ > tmax, We obtain

2
ap - q-Dltulk, +b(p* —q-1)lltul, —(V—q)/ﬂgltul’“ dx <0,

2

d
E\%L,M(tu) < 0;

d 2
%jk,M(tu) = at’ M ul§, + btp2‘1||u||§(0 - m/f|u|q+1 dx — t’/ glultdx =0,
Q Q
for t =t~. Thus, J,m(u) = sup,. o Jrm(tu). Furthermore, we have
Tol) > Tt = 20l + 2t fulll - ¢ [ gluldx, ¢ 0
() > A,Ml/l_p ully, 7 ully, =7 qu , t>0.
Let
+1

a b > 2 1
ha(t) = = |lully, + =& llulll ——t’”/glm’”dx, t>0.
u p Xo p2 Xo r o

Similar to the argument in the function k,(t), we see that /,(¢) achieves its maximum at
allulfy,

1
ty = (W) rp+l Thus, we have
JQ

ap(r+1-p)+b(r+1-p*) [ aluly) T
2 r+1 >0
Pr+1) Joglul™ dx

Case (2): [, f|u|?" dx > 0. By (2.14) and
1
k,(0) = 0 < A /Qf|u|q“ dx < M|f llpra SE el
< Ao llf e STl = Alluld) < Kultmax),  for & € (0, 42).

Then there exist ¢t* and ¢~ such that 0 < £ < f0x < £,

ki (£) =)\/Qf|u|q+1dx=ku(t’).

Moreover, we have k/,(t*) > 0 and k/(¢7) < 0. Thus, there are two multiples of # lying in
Nom(R), thatis, £7u € N}, (Q) and t7u € N ,(R2), and Ty (6™ u) = Topa(tu) = Tppa(t* 1)
for each ¢ € [t*,¢7] and Jy a(t*u) < T m(tu) for each t € [0,£*]. Hence, t~ =1 and

Jrm() = sup Ty m(tu), Tam(tTu) = inf Ty a(tu). 0

t>0 <t=<tmax

Lemma 2.5 If (H3) holds, then we have ¢, <c} <0.

Proof For u € N, we get

2
(r—q)k/ﬂf|u|q+ldx>a(r—p+1)||u||§(0 +b(r—p2+1)||u||§(0.

Page 8 of 16
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Thus, we have

alr-p+1) b(r-p*>+1) )
Joaat) = LD e PP 7/ 0l dx
M p(r+1) PAr+1) (@+D)(r+1) Y
ar-p+1)[1 1 b(r—p*+1) 1 2
crope DL L0 B e DL L e,
r+1 p q+1 r+1 p* q+1
which implies that ¢, < ¢} <0. g

3 Main results
Using the idea of Ni-Takagi [10], we have the following.

Lemma 3.1 For each u € N, (), there exist € > 0 and a differentiable function & :
B(0;¢€) C Xo — R* such that £(0) = 1, the function & (v)(u — v) € N, () and

w
('(0),v) = , (3.1)
ap—q-Dlully, + b@* —q-Dlully, - (r—q) [, glul™ dx

forallv e Xy, where

W a/m ~HO) ) ) =)

|x _y|N+sp

b / () — w2 0u) ~uONO) =)
Q

=y N
—(g+ DA /f|u|q_1uvdx —(r+ 1)/ glu uvdx. (3.2)
Q Q
Proof For u € N, ,(S2), we define a function F : R x Xo — R by
Ful&,w) = (T p (8 - w)), £ —w))
= EPM (7 |u— wllg, )l — wilk,
—é‘“l)\/ﬂu—wlq*ldx—é”l g|u_w|r+ldx
Q Q
2
= a€?||u - wly, + bE” u—wi,

_ %.q+l)\ /f|u _ W|q+1 dx — $V+1 g|u _ W|r+1 dx.
Q Q
Then F,(1,0) = (7, 5 (u), u) = 0 and

]: (1,0) —ﬂP||M|| + bp? ||M|| (q+1)A/f|u|q+1dx—(r+1)/g|u|’+1dx
d& Q Q

2
- alp~ = Dlulfy + by g - Yl -~ ) [ gl dx 70.
Q

Page9of 16
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From the implicit function theorem, we know that there exist € > 0 and a differentiable
function & : B(0;¢€) C Xo — R such that £(0) =1,

W

(5/(0)!1/) = ) ’
alp—q-Dlulk, + bE? - q-Dluly, - (r—q) [qglul dx

where W is as in (3.2), and
Fu (E(v), v) =0 forallve B(0;¢)
which is equivalent to
(J{,M(g(v)(u - v)), EW)(u- V)) =0 forallveB(0;¢),
which implies that & (v)(x — v) € N; m(R). O
Similar to the argument in Lemma 3.1, we can obtain the following lemma.

Lemma 3.2 For each u € N, (), there exist € > 0 and a differentiable function &~ :
B(0;¢) C Xo — R* such that £~(0) =1, the function £~ (v)(u —v) € N{)M(Q) and

w
2 )
a(p - q - Dlull, +b@* —q-Dllul, - (r—q) [ glul™! dx

(€)=

forallv e Xy, where W is as in (3.2).

Let
(r=1)
(H4) p<2+ %.

Moreover, we let

* (p—2)r
p = -9
r—1

and

i <a(p-q-1)(r-p2+1))(a(p-q_1))w(i-qw%)(r-n
T r-@-q-1) r—q

gl
( 1 ) ( 1 ) (r-1)(p—q-1-p*)
X .
11 pea S/ \llgllpor ST

Remark 3.1 By (H4) we know that p* < 0.

Lemma 3.3 Assume that (H1)-(H4) hold. Let Ty = min{Ay, Ao, A3}, then for A € (0,T):

(i) There exists a minimizing sequence {u,} C Ny y(S2) such that

Tm(n) = +0Q1), T, p(u,) =0Q1) in (Xo)*.
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(i) There exists a minimizing sequence {u,} C ./\/';’M(Q) such that
Tm(un) =c; +0(1), T} y(u,) =0(1) in (Xo)*.

Proof By the Ekeland variational principle [11] and Lemma 2.2, there exists a minimizing
sequence {u,} C N, (€2) such that

1
Trm(tn) < ¢y + . (3.3)
and
1
Tnm(tn) < Tom(w) + P Ilw—unllx, YweNou(Q). (3.4)

Let n large enough, by Lemma 2.5, we obtain

_a(r p+1) b(r-p*+1) AMr—q) a
Tnm(ttn) 70 D [l n” —p ) I n” BT r+1)/f|un|q dx
1 Cy
<CK+;<E’

which implies that

+ . ( +1)r+1c
I llza ST a1 > / Flug i d> L2 05 (3.5)
S Mr-q) 2
This implies u,, # 0 and by using (3.4), (3.5), and the Holder inequality, we get
(g+D0r+1)c;
Nt o > [ a2 Il g S, (3.6)
and
1
Ap(r—q)(r+1) L
n ST+ . 3.7
Izl < |:a(q+1)(r+1)(r—p+1) 1 llea ST (37)

In the following, we will prove that
”jf\/,M(””)”(xo)* —0 asn— 0.
By using Lemma 3.1 with u, we get the functions &, : B(0;¢,) — R* for some ¢, > 0, such

that &,(w)(u;, — W) € N, (). For fixed n € N, we choose 0 < p < €,,. Let u € X, with u #0

andletw, = .Setn, = &,(w,)(u, —w,), since n, € N; m(£2), we deduce from (3.4) that

IIuIIx

1
T () = I (tn) = - Imp — tullx, YweNm(R),

and by the mean value theorem, we obtain

1
(j):,M(unL Np — urz) + O(||77p - un”Xo) > _; ||77p - un”Xo-
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Hence,
(j)C,M(un): _Wp> + (Sn(wp) - 1)(\.7)‘/,1\/[(”;1)’ Uy — Wp>
1
Z—;”ﬂp_un”Xo +0(||77p_un”X0)' (3.8)

By &,(w,)(u, — w,) € Nym(S2) and (3.8) it follows that

—p<J;,M<un), L> + (Eawp) = V)T s tt) = Ty (1)t — W)

lla2llx,

1
= —;”77/) - un”Xo + 0(”77,0 - un”Xo)'
Thus,

, u 1 1
<u7)hM(un)r m> < E”’?p - un”Xo + ;0(”771) - un”Xo)
n -1 / /
+ M<«Z_M(un) - jx,M(np): Uy — Wp)O (3‘9)
Since
115 = allxy < £1En(Wo)| + [Ex(wp) = 1|l utullx,

and

li < |€,0)

n—00

’

. Eawp) -1

m —
0

taking the limit p — 0 in (3.9), we obtain

C
(Tt ) < = 1+ [0))

llatllx

for some constant C > 0, independent of p. In the following, we will show that ||£/,(0)] is
uniformly bounded in #. From (3.1), (3.7), and the Holder inequality, we obtain for some

k>0

K [IvIlx

(s;l(o)’v> S P pz .
alp—q- 1)””71”)(0 + b(pZ —-q- l)llun”xo - (r—!Z)ngIMnl”ldx

We only need to prove that

2
alp - q-Dlually, + b(p* —q-1)unl, - (r—q) /Q glu,|" dx| > ¢ (3.10)

for some ¢ > 0 and # large enough. If (3.10) is fails, then there exists a subsequence {u,,}
such that

2
a(p—q-Dlully, +b(p* - 1) ludlly, - (- q) f gl " dx = o(1). (3.11)
Q
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Combining (3.11) with (3.6), we may find a suitable constant d > 0 such that
‘/leun ""'dx>d for n sufficiently large. (3.12)
By (3.11) and u,, € N ;(R2), we have
A /flu,,|q+1 dx
Q

2
p p 1
= allually, +bllually, - / gl dx
Q

1 2
- (@l = 1)l + b - - 1)) - [ gl s
p'—q-1 Q
1 2
> —g-1 nP b2_ -1 nP _/ nr+ld
_pz_q_l(a(p q-Dlually, +b(p* —q-1)lualy,) | gl dx
r—q r+1 r+l
=— |14, dx—/ |ty dx + o(1)
pz—q—lfszg o8
— 251
:FZL/g|unl”ldx+o(1). (3.13)
p'—q-1Jq

Moreover, we have by (3.11) and (3.13)

2 v
a(p—q—Dllunl , <alp-q- l)llun” +b(p _q_l)”un”xo

“ (r-q) fg gl dx + of1)

2 _ -1 _

< )\(p q )(r 6]) f|un|q+1 dx+0(1)

r-p*+1 Q

- _1)(7 +

_)L(p r?p 2+1 2 I 1l q5q+1||14n||q 1+0(1)

which implies that
P> -q-1)(r-q) nYas
lunllx, < | A P +1)|lf||L 1 S, +o(1). (3.14)

Let

e, \™
Lim(u) =K(p,q,r) W - A Qf|Lt| dx,
Q n

where

a(p—q—l))ﬁr—p2+1

K(p,q,r) = )
& 4r) ( r—q pP-q-1

From (3.11), it is easy to see that

N2t 1%, (p Py / glu, | dx. (3.15)
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Thus,

Tl )<<ﬂ@—q—D)flw1ﬂ+l<Q@q- lkgWM”VM)>$
un —
M r—gq P -q-1 Jo &lun dx

—p?+1
—FQL/g|un|”ldx+o(l)
p-q-1Jg

= 0(1). (3.16)
But, by (3.12), (3.14), and A € Ty,

leeall?,

(i) > K(p,q, r)(—,
* gl zor Sy et 15T

m
1 1
) = Al o ST et 1%

Nl (K o @, ) g 57 SE a6, = A1 e ST)

*

17

r+l 2 1) r— q
> q+1 K . 1‘}755 r (p —-9- Sq+1
luea { g NGNS |2 = s Wl
- ansz“},
which contradicts (3.16), where p* = % -q<0.
Hence, we obtain
u C
ot )< €
< P ullxg [~
This completes the proof of (i). Similarly, we can prove (ii) by using Lemma 3.2. O

Theorem 3.4 Assume that (H1)-(H4) hold. For each 0 < A < Ty (g is as in Lemma 3.3),
the functional Jy m has a minimizer u; in N, /(Q) satisfying:

1) Tamuy) =c; = c;

(2) uf is a solution of (1.1).

Proof By Lemma 3.3(i), there exists a minimizing sequence {u,} C N, »(Q2) for J, » on
Nom(€) such that

Tm(n) =i +0(), T yy(un) =0(1) in (Xo)*.

From Lemma 2.5 and the compact embedding theorem, we see that there exist a subse-

quence {u,} and u] € X, such that
u, —u, weaklyin X,
and

u, — u; strongly in L"(2) for 1 < n < p}. (3.17)
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In the following we will prove that [, f|u}|?*! dx # 0. In fact, if not, by (3.17) and the

Holder inequality we can obtain

/f|un|q“dx—>/f|u;|q+1dx:0
Q Q

as n — 00. Hence,
2 P2 r+1
alual, + bllually, = | glital™* dax + 0(1)
Q

and

1 1 1 1
_ p
Tolit) = a(; -3 1) ol + b(p—2 -3 )nunnxo +o(D),

which contradicts J; a(u,) — ¢; < 0 as n — oo. Furthermore,

o(1) = (jk’,M(u,,),¢) = (]X,M(u{),qb) +o(1) forall ¢ € X,.

Thus, u] € N, m(S) is a nonzero solution of (1.1) and J; m(u]) > c;. Next, we will prove
that 7, m(u3) = c,. Since

a b 2
Fin() = Sl v bty = 2 [ sl e = [ et

- (2wl ¢ (- )l
() [

Slimnglg[(l%—%)llunll <§—%>nunnéﬁ
R (% - ﬁ) /f|un|q“dx]

= lim inf jk,M(un) =Cy.
n—00

Hence, J, (1)) = c,. Moreover, we have u} € N}, (Q). In fact, if u € N ,/(2), by
Lemma 2.4, there are unique ¢* and ¢~ such that t*u} € N} ,(Q) and t"u} € N ,/(Q),

we have £ <] =1. Since

d d? s
E._Z\M(t;u;) =0 and E\ﬁ,M(t;uk) >0,

there exists £ < t* <t; such that J, p(¢5u;) < Tom(t*u]). By Lemma 2.4, we get
TG ul) < T (£°u3) < T (815) = T (u5),

which is a contradiction. Since Jm(u;) = Thm(luy|) and |u)| € Ni73,(R2), we see that u;
is a solution of (1.1) by Lemma 2.3. O
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Similarly, we can obtain the theorem of existence of a local minimum for J, , on
N () as follows.

Theorem 3.5 Assume that (H1)-(H4) hold. For each 0 < . < T'g (g is as in Lemma 3.3),
the functional J, s has a minimizer u; in N ,(Q) satisfying:

W) Fomlesy) = c5;

(2) uj is a solution of (1.1).

Finally, we give the main result of this paper as follows.

Theorem 3.6 Suppose that the conditions (H1)-(H4) hold. Then there exists T'y > 0 such
that for , € (0,Ty), (1.1) has at least two solutions.

Proof From Theorems 3.4, 3.5, we see that (1.1) has two solutions u; and u; such that
uj € Niy(Q), u; € Ny (Q). Since N}, () NN () = ¥, we see that u] and u; are
different. O

Remark 3.2 Obviously, if p = 2, then (H3) and (H4) hold. Moreover, ifp =2,s=1,a =1,
and b = 0, then Theorem 3.6 is in agreement with Theorem 1.2 in [1].
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