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Abstract
In this paper, we are concerned with the compressible Euler-Poisson system coupled
to a magnetic field in the three-dimensional space. Based on a variational method
and the exact expression of the Green’s function for an elliptic equation in spherical
coordinates, we prove the existence of stationary star solutions.

Keywords: Euler-Poisson system; magnetic field; variational method; stationary star
solutions

1 Introduction
The Euler-Poisson system of compressible fluids coupled to a magnetic field is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ρt + div(ρv) = ,
(ρv)t + ∇ · (ρv ⊗ v) + ∇p(ρ) = –ρ∇� + μ(∇ × H) × H ,
Ht = ∇ × (v × H),
�� = πGρ,
div H = ,

(.)

where ρ is the density, v = (v, v, v) is the velocity field, H = (H, H, H) is the magnetic
field, p is the pressure function, � is the Newtonian potential, G is the gravitational con-
stant, and μ is the permeability of vacuum. We consider the polytropic gases for which
the equation of state is given by

p = p(ρ) = ρα , (.)

where α >  is the adiabatic exponent. The gravitational potential � is given by

�(x) = –
∫

R

ρ(y)
|x – y| dy = –ρ ∗ 

|x| , (.)

where ∗ denotes convolution.
Extensive works have been done on the existence of stationary solutions for system (.)

in [–] and references therein. Recently, some important progress has been made for sys-
tem (.) without magnetic field. For the pressure α-law in (.) with the adiabatic expo-
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nent α > 
 , the global existence of weak solutions was obtained in [] when the spatial di-

mension is three in the framework of Lions and Feireisl for the compressible Navier-Stokes
equations [, ]. Furthermore, Cai and Tan [] have proved the existence and unique-
ness of stationary solutions of the three-dimensional compressible Navier-Stokes-Poisson
equations basing on the weighted L method and the contraction mapping principle.

For a nonrotating gaseous star, it is important to investigate the spherically symmetric
motion since the stable equilibrium configuration is spherically symmetric. Moreover, the
spherically symmetric solution minimizes the energy among all possible configurations
[], which are called Lane-Emden solutions. More importantly, Luo, Xin, and Zeng []
were concerned with three-dimensional spherically symmetric solutions of the compress-
ible Navier-Stokes-Poisson equations with free boundary condition. They also proved the
nonlinear asymptotic stability of the Lane-Emden solutions for spherically symmetric mo-
tions of viscous gaseous stars if the adiabatic constant α lies in the stability range ( 

 , ).
For the rotating nonmagnetic stationary solutions, Auchmuty and Beals [] gave a priori

bound for the maximum of the density ρ . When the rotation is a fixed axis with constant
angular velocity, Chanillo and Li [] obtained a priori bound for the support of the relative
equilibrium form of a homogeneous, gravitating, and compressible mass of fluid. Coupling
to the magnetic field, Federbush, Luo, and Smoller [] first proved the existence of axisym-
metric stationary solutions of system (.). They utilized a variational method and proved
the existence of a stationary solution expressed by density, which is a minimizer of the as-
sociated energy functional. To prove the main result, an elliptic equation is derived for the
magnetic potential in cylindrical coordinates in R

. Let x = (x, x, x) ∈ R
, r =

√
x

 + x
,

z = x. They looked for solutions of the following form:
{

ρ(x) = ρ(r, z), �(x) = �(r, z),
H(x) = Hr(r, z)er + Hθ (r, z)eθ + Hz(r, z)ez,

(.)

where er = ( x
r , x

r , )T , eθ = (– x
r , x

r , )T , ez = (, , )T .
It is well known that almost every Newtonian gaseous star has crystal body. Auchmuty

and Beals [] have obtained a nonrotating nonmagnetic spherically symmetric solution of
some nonlinear integro-differential equations in R

, which are of interest in astrophysics.
Also, they formulated each problem as a variational problem and looked for a solution
among an appropriate class of nonnegative functions ρ . In this paper, for the nonrotating
magnetic case, we suppose that the stationary solutions should have the following form:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρ(x) = ρ(r, θ ),
H(x) = H(r, θ ) = (Hr(r, θ ), Hθ (r, θ ), ),
�(x) = �(r, θ ),
r = x

 + x
 + x

, θ = arccos x
r .

(.)

Motivated by the paper [], we show the existence of stationary star solutions (.) of
system (.) in spherical coordinates by using the variational methods.

The paper is organized as follows. In Section , we obtain an expression of stationary
equations of system (.) in spherical coordinates by using the formula in []. Owing
to the methods in [, , ], we see that the stationary solution can be expressed by the
density that is a minimizer of the corresponding the energy functional. Thus, we only need
to derive the minimizer of the corresponding energy functional in Section .
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2 Euler-Poisson system coupling with a magnetic field
In this paper, we are interested in the stationary solutions of (.), which represent an
important class of equilibrium configurations. The stationary solutions (v = ) satisfy the
following system:

⎧
⎪⎪⎨

⎪⎪⎩

∇p(ρ) = –ρ∇� + μ(∇ × H) × H ,

�� = πGρ,

div H = ,

(.)

where ρ is the density, H = (H, H, H) is the magnetic field, p is the pressure function, �
is the Newtonian potential, G is the gravitational constant, and μ is the permeability of
vacuum.

2.1 The expression of stationary equation in spherical coordinates
Now, we will give a new method to get a specific expression of (.) in spherical coordi-
nates. Based on a recent paper [], Wang and Wang gave the general definitions of curl
and cross products on a -D Riemanion manifold (M, gij) with metric

ds = gij dxi dxj (i, j = , , ). (.)

Let A = (A, A, A) and B = (B, B, B) be smooth vector fields. From [] we immedi-
ately get the following formulae for ∇ × A and A × B:

∇A =
(

g ∂A

∂x , g ∂A

∂x , g ∂A

∂x

)

, (.)

∇ × A =
√g

(
∂A

∂x –
∂A

∂x ,
∂A

∂x –
∂A

∂x ,
∂A

∂x –
∂A

∂x

)

, (.)

A × B =
(√gg

g

(
AB – AB),

√gg

g

(
AB – AB),

√gg

g

(
AB – AB)

)

, (.)

where (A, A, A) = (gA, gA, gA).
Let x = (x, x, x) ∈ R

, r = x
 + x

 + x
, and θ = arccos x

r . In the spherical coordinates,
the metric is

ds = dr + r dθ + r sin θ dϕ. (.)

Obviously, we have

⎧
⎪⎪⎨

⎪⎪⎩

g = , g = r, g = r sin θ ,

gij =  (i �= j), gkk = 
gkk

(k = , , ),
√g = r sin θ .

(.)

Let H(x) = H(r, θ ,ϕ) = (H, H, H). Hence, from (.) we have

H = gjHj = H, H = gjHj = rH, H = gjHj = r sin θH. (.)
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Using the definition of curl product (.), we get

∇ × H =
√g

(
∂H

∂θ
–

∂H

∂ϕ
,
∂H

∂ϕ
–

∂H

∂r
,
∂H

∂r
–

∂H

∂θ

)

=


r sin θ

(

r sin θ cos θH + r sin θ
∂H

∂θ
– r ∂H

∂ϕ
,

∂H

∂ϕ
– r sin θH – r sin θ

∂H

∂r
, r sin θH + r ∂H

∂r
–

∂H

∂θ

)

. (.)

It follows from the definition of cross product (.) and (.) that

(∇ × H) × H

=
(

H ∂H

∂θ
+ H ∂H

∂ϕ
– r

(
H) – r sin θ

(
H) – rH ∂H

∂r
– r sin θH ∂H

∂r
,

H ∂H

∂r
+ H ∂H

∂ϕ
+


r

HH –

r H ∂H

∂θ
–  sin θ cos θ

(
H) – sin θH ∂H

∂θ
,

H ∂H

∂r
+ H ∂H

∂θ
+


r

HH +
 cos θ

sin θ
HH –


r sin θ

H ∂H

∂ϕ

–


sin θ
H ∂H

∂ϕ

)

. (.)

Combining (.) and (.), it is easy to see that

∇P(ρ) + ρ∇�

=
(

∂p
∂r

+ ρ
∂�

∂r
,


r

∂p
∂θ

+
ρ

r
∂�

∂θ
,


r sin θ

∂p
∂ϕ

+
ρ

r sin θ

∂�

∂ϕ

)

. (.)

Hence, we have, by (.), (.), and (.),

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂p
∂r + ρ ∂�

∂r = μ(H ∂H

∂θ
+ H ∂H

∂ϕ
– r(H) – r sin θ (H)

– rH ∂H

∂r – r sin θH ∂H

∂r ),


r
∂p
∂θ

+ ρ

r
∂�
∂θ

= μ(H ∂H

∂r + H ∂H

∂ϕ
+ 

r HH – 
r H ∂H

∂θ

–  sin θ cos θ (H) – sin θH ∂H

∂θ
),


r sin θ

∂p
∂ϕ

+ ρ

r sin θ

∂�
∂ϕ

= μ(H ∂H

∂r + H ∂H

∂θ
+ 

r HH

+  cos θ
sin θ

HH – 
r sin θ

H ∂H

∂ϕ
– 

sin θ
H ∂H

∂ϕ
).

(.)

Let Hr = H, Hθ = H

r , Hϕ = H

r sin θ
. The spherical coordinate expressions of (.) can be

rewritten as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂p
∂r + ρ ∂�

∂r = μ( Hθ

r
∂Hr
∂θ

+ Hϕ

r sin θ

∂Hr
∂ϕ

– H
θ +H

ϕ

r

– Hθ
∂Hθ

∂r – Hϕ
∂Hϕ

∂r ),

r

∂p
∂θ

+ ρ

r
∂�
∂θ

= μ(Hr
∂Hθ

∂r + Hϕ

r sin θ

∂Hθ

∂ϕ
+ HrHθ

r – cos θ
r sin θ

H
ϕ

– 
r Hr

∂Hr
∂θ

– 
r Hϕ

∂Hϕ

∂θ
),


r sin θ

∂p
∂ϕ

+ ρ

r sin θ
∂�
∂ϕ

= μ(Hr
∂Hϕ

∂r + Hθ

r
∂Hϕ

∂θ
+ HrHϕ

r

+ cos θ
r sin θ

Hθ Hϕ – 
r sin θ

Hr
∂Hr
∂ϕ

– 
r sin θ

Hθ
∂Hθ

∂ϕ
).

(.)
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Remark . Let H = (Hr , Hθ , Hϕ). Notice that (.) can be directly calculated by the def-
initions of gradient and of curl and cross products in spherical coordinates as follows:

∇ =
(

∂

∂r
,


r

∂

∂θ
,


r sin θ

∂

∂ϕ

)

, (.)

∇ · H =

r

∂(rHr)
∂r

+


r sin θ

∂(sin θHθ )
∂θ

+


r sin θ

∂Hϕ

∂ϕ
, (.)

∇ × H =


r sin θ

(

r cos θHϕ + r sin θ
∂Hϕ

∂θ
– r

∂Hθ

∂ϕ
,

r
∂Hr

∂ϕ
– r sin θHϕ – r sin θ

∂Hϕ

∂r
,

r sin θHθ + r sin θ
∂Hθ

∂r
– r sin θ

∂Hr

∂θ

)

. (.)

However, we give a new method to get (.) by using the definitions of curl and cross
products (.) and (.) on the -D Riemanion manifold M, which only need a simple
transformation (Hr , Hθ , Hϕ) = (H, H

r , H

r sin θ
).

Noticing that the solutions we look for have the form (.) and omitting the terms ∂
∂ϕ

,
we can rewrite (.) as follows:

⎧
⎨

⎩

∂p
∂r + ρ ∂�

∂r = μ( Hθ

r
∂Hr
∂θ

– H
θ

r – Hθ
∂Hθ

∂r ),

r

∂p
∂θ

+ ρ

r
∂�
∂θ

= μ(Hr
∂Hθ

∂r + HrHθ

r – 
r Hr

∂Hr
∂θ

).
(.)

Let Hϕ = . Omitting the terms ∂
∂ϕ

in (.), it is easy to see that ∇ · H =  implies that

r ∂Hr

∂r
+ rHr + r

∂Hθ

∂θ
+ r

cos θ

sin θ
Hθ = . (.)

For simplicity, we denote

m =
(

∂Hθ

∂r
+

Hθ

r
–


r
∂Hr

∂θ

)

.

Then (.) can be rewritten as
⎧
⎨

⎩

∂p
∂r + ρ ∂�

∂r = –μmHθ ,

r

∂p
∂θ

+ ρ

r
∂�
∂θ

= μmHr .
(.)

2.2 The problem and formulation
Owing to (.), we get

∂(r sin θHr)
∂r

+
∂(r sin θHθ )

∂θ
= , (.)

which enables us to introduce a magnetic potential ϕ(r, θ ) such that
⎧
⎨

⎩

∂ϕ
∂r = r sin θHθ ,

∂ϕ
∂θ

= –r sin θHr .
(.)
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Let

n(ρ) =
∫ ρ



p′(s)
s

ds. (.)

Then (.) and (.) imply

⎧
⎨

⎩

ρ
∂(n(ρ)+�)

∂r = –μm( 
r sin θ

∂
∂r ϕ),

ρ
∂(n(ρ)+�)

∂θ
= –μm( 

r sin θ
∂
∂θ

ϕ).
(.)

Let

μm
ρr sin θ

= W . (.)

In this paper, we only consider the case that W is a constant. Then it follows from (.)
and (.) that

⎧
⎨

⎩

∂
∂r (n(ρ) + �) = –W ∂

∂r ϕ,
∂
∂θ

(n(ρ) + �) = –W ∂
∂θ

ϕ.
(.)

Note that (.) implies that

∇(
n(ρ) + � + Wϕ

)
=  whenever ρ > . (.)

Therefore,

n(ρ) + � + Wϕ = const. := λ, in the region ρ > , (.)

where n(ρ) is given by (.), and � is given by (.).
In the following, we only need to solve problem (.) with the total mass constraint

∫

R
ρ(x) dx = M >  for some given M. (.)

3 Existence of star solution coupling to a magnetic field
3.1 The expression of magnetic potential
Combining (.) and ∂

∂ϕ
= , we have

∇ϕ =
(

∂ϕ

∂r
,


r
∂ϕ

∂θ
,


r sin θ

∂ϕ

∂ϕ

)

=
(

∂ϕ

∂r
,


r
∂ϕ

∂θ
, 

)

. (.)

Using the divergence formula (.), from (.), (.), and (.) we can deduce that

div

(


r sin θ
∇ϕ

)

=
m

r sin θ
=

W
μ

ρ. (.)

Let

ϕ(x, x, x) = ϕ(r, θ ). (.)
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Then (.) is equivalent to


x

 + x


(
∂ϕ

∂x


+
∂ϕ

∂x


+
∂ϕ

∂x


–
x

x
 + x



∂ϕ

∂x
–

x

x
 + x



∂ϕ

∂x

)

=
W
μ

ρ, (.)

where

ρ(x, x, x) = ρ(r, θ ).

Define the operator L as follows:

L =


x
 + x



(
∂

∂x


+
∂

∂x


+
∂

∂x


–
x

x
 + x



∂

∂x
–

x

x
 + x



∂

∂x

)

. (.)

It is easy to observe that L is a symmetric operator. Hence, it has a Green’s function G(x, y)
for x, y ∈R

. The following lemma gives an exact expression of G(x, y).

Lemma . The Green’s function G(x, y) for L has the expression

G(x, y) = –
�((x – y) + (x – y))

((x – y) + (x – y) + (x – y)) 


, (.)

where is a positive constant.

Proof We know that (.) is equivalent to (.). Let ϕ = rϕ sin θ . Inserting this into (.),
we get

∂ϕ

∂r +

r

∂ϕ

∂r
+

 cos θ

r sin θ

∂ϕ

∂θ
+


r

∂ϕ

∂θ =
Wρ

μ
, (.)

and it is not difficult to observe that the Green’s function of the operator

∂

∂r +

r

∂

∂r
+

 cos θ

r sin θ

∂

∂θ
+


r

∂

∂θ

is given by

G(r, θ ) = –
�

r , (.)

where � is a positive constant.
Hence, the Green’s function G(x, y) of L can be expressed as

G(x, y) = –
�r sin θ

r =
�((x – y) + (x – y))

((x – y) + (x – y) + (x – y)) 


. (.)
�

3.2 Variational formulation
In this paper, we assume that the pressure function p(ρ) satisfies the α-law (.) for some
constant α > . Let

I(ρ) =
ρα

α – 
. (.)
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Then

n(ρ) = I ′(ρ). (.)

Moreover, the Newtonian potential operator is given by (.), and we can denote

�(x) = –
∫

R

ρ(y)
|x – y| dy := –E(ρ). (.)

Notice that the magnetic potential ϕ satisfies (.). By Lemma . we see that G(x, y) for
x, y ∈R

 is the Green’s function for the operator L defined in (.), that is,

LG = δ(x – y), (.)

where δ(x – y) is the Dirac measure giving the unit mass to the point x. Since L is symmet-
ric, we have

〈Lϕ, G〉 = 〈ϕ,LG〉 =
〈
ϕ, δ(x – y)

〉
= ϕ(y), (.)

where the inner product 〈·, ·〉 is taken in L. Thus, we have the following integral repre-
sentation for ϕ:

ϕ(x) = D(ρ), (.)

where the integral operator D is given by

D(ρ) =
W
μ

∫

R
G(x, y)ρ(y) dy. (.)

By (.), (.), and (.) it is obvious that equation (.) can be written as

I ′(ρ) + E(ρ) + WD(ρ) = λ for ρ > . (.)

According to (.), we define the energy functional F as follows:

F(ρ) =
∫

R

[

I(ρ) +


ρE(ρ) +



ρWD(ρ)

]

dx, (.)

where I(ρ) is the function given in (.). The energy functional F(ρ) means that solv-
ing (.) with the total mass constraint (.) is equivalent to proving that (.) has a
minimizer in some function space X.

Now, we review the results for stationary solution (.). For  < M < ∞, we define XM

by

XM =
{

ρ : R →R,ρ >  a.e.,
∫

R
ρ dx = M, and

∫

R

[

I(ρ) +


ρE(ρ)

]

dx < ∞
}

. (.)
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For ρ ∈ XM , we define the energy function F for the nonrotating nonmagnetic by

F(ρ) =
∫

R

[

I(ρ) +


ρE(ρ)

]

dx. (.)

Thanks to the Lemma  in [], Federbush et al. [] obtained the following useful lemma
for the minimizer of the functional F.

Lemma . Suppose that the pressure p(ρ) = ρα (α > 
 ). Let ρ∗ be a minimizer of (.)

in XM , and let

M =
{

x ∈ R
 : ρ∗ > 

}
. (.)

Then there exists a constant λ such that

⎧
⎨

⎩

I(ρ) + 
ρE(ρ) = λ, x ∈ M,

E(ρ) ≥ λ, x ∈R – M.
(.)

Remark . The variational problem is unusual, in that a solution turns out to have com-
pact support. The reason is that the functional one seeks to minimize is not lower semi-
continuous on the class of all admissible functions. Auchmuty and Richard [] first restrict
their considerations to functions with support in the ball of radius RM . Hence, we should
find the radius RM . Note that, for α > 

 , Luo and Smoller [] have proved that a local
minimizer ρ∗ of the function F in XM exists. Also, they showed that the minimizer ρ∗ is
actually radial and unique and has compact support, that is, for given total mass M, there
exists a unique constant RM >  such that

⎧
⎨

⎩

ρ∗(x) >  if |x| < RM,

ρ∗(x) =  if |x| ≥ RM.
(.)

Notice that ρ∗ satisfying (.) in XM is called a nonrotating nonmagnetic star solu-
tion, and RM is called the radius of the nonrotating nonmagnetic star solution with total
mass M.

Based on (.), we define the function spaces YM and Y α
MR

as follows:

Y α
M =

{

ρ : R →R,ρ(x) = ρ(r, θ ),ρ ≥ , a.e.,ρ ∈ L(
R

) ∩ Lα
(
R

),

α >



,
∫

R
ρ(x) dx = M

}

, (.)

Y α
MR =

{
ρ ∈ Y α

M,ρ =  for r ≥ R
}

, (.)

where r =
√

x
 + x

 + x
, θ = arccos x

r , R ≥ RM is a constant, and RM is the radius of the
nonrotating nonmagnetic star solution with prescribed total mass M.

We want to apply Theorem . in []. It is easy to see that a minimizer of the functional
F as defined in(.) in Y α

MR
solves equation (.).
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Theorem . Let ρ∗
 be a minimizer of the energy functional F in Y α

MR
, and

M =
{

x ∈ R
 : ρ∗

 (x) > 
}

. (.)

If α > 
 , then ρ∗

 ∈ C(R) ∩ C(M). Moreover, there exists a constant λ∗
M such that

I ′(ρ∗

)

+ E
(
ρ∗


)

+ WD
(
ρ∗


)

= λ∗
M, x ∈ M. (.)

Proof Let

F(ρ) =



W
∫

R
ρD(ρ) dx. (.)

Then F(ρ) can be written in two parts:

F(ρ) = F(ρ) + F(ρ), (.)

where F(ρ) is defined by (.).
Let ρ + tσ ∈ Y α

MR
for any t ∈ R under the condition

∫

R σ dx = . Let us note carefully
that

lim
t→

F(ρ + tσ ) – F(ρ)
t

= lim
t→


t

∫

R

(

I(ρ + tσ ) +



(ρ + tσ )E(ρ + tσ ) – I(ρ) –


ρE(ρ)

)

dx

= lim
t→

∫

R

I(ρ + tσ ) – I(ρ)
t

dx + lim
t→

∫

R

ρE(ρ + tσ ) – ρE(ρ)
t

dx

+
∫

R



σE(ρ) dx

=
∫

R
I ′(ρ)σ dx + lim

t→


t

∫

R

ρ



(∫

R

–ρ – tσ
|x – y| dy +

∫

R

ρ

|x – y| dy
)

dx

+
∫

R



σE(ρ) dx

=
∫

R

(

I ′(ρ)σ +


σE(ρ)

)

dx +
∫

R

σ (y)


(∫

R

–ρ(x)
|x – y| dx

)

dy

=
∫

R

(
I ′(ρ) + E(ρ)

)
σ dx (.)

if ρ ∈ Y α
MR

.
For F(ρ), we get

lim
t→

F(ρ + tσ ) – F(ρ)
t

= lim
t→


t

∫

R

(
W


(ρ + tσ )D(ρ + tσ ) –
W


ρD(ρ)
)

dx

= lim
t→


t

∫

R

Wρ


(
D(ρ + tσ ) – D(ρ)

)
dx +

∫

R

Wσ


D(ρ) dx

= lim
t→

∫

R

Wρ

t

(∫

R

(
G(x, y)(ρ + tσ ) – G(x, y)ρ

)
dy

)

dx +
∫

R

Wσ


D(ρ) dx
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=
∫

R

Wρ



(∫

R
G(x, y)σ dy

)

dx +
∫

R

Wσ


D(ρ) dx

=
∫

R

Wσ



(∫

R
G(x, y)ρ(x) dx

)

dy +
∫

R

Wσ


D(ρ) dx

=
∫

R
WσD(ρ) dx, (.)

where G(x, y) is defined by (.).
Hence, from (.) and (.) we have

lim
t→

F(ρ + tσ ) – F(ρ)
t

=
∫

R

[
I ′(ρ) + E(ρ) + D(ρ)

]
σ dx =  (.)

for all σ satisfying
∫

R σ dx = . Then we can prove the theorem using a similar argument
as in []. �

Now, we give the main theorem of this paper.

Theorem . Suppose that α > 
 . Then the following statements hold:

. infYα
MR

F(ρ) < ,
. F(ρ) ≥ C

∫

R ρα dx – C, ρ ∈ Y α
MR

, for some positive constants C and C

independent of ρ ,
. F has a minimizer ρ∗ in Y α

MR
.

Remark . In comparison with Theorem . with adiabatic exponent α >  in [], we
only need the adiabatic exponent α > 

 .

3.3 The proof of Theorem 3.5
Before giving the proof of Theorem ., we introduce the following lemma, which ensures
that the functional F is bounded on the set Y α

MR
if α > 

 .
Let

FM = inf
ρ∈Yα

MR

F(ρ).

Lemma . Let α > 
 . If ρ ∈ Y α

MR
, then there exist two positive constants C and C de-

pending only on α and M such that

C

∫

R
ρα dx – C < F(ρ) and FM < .

Proof Let F(ρ) be defined by (.). For F(ρ), Lemma . in [] implies that C
∫

R ρα dx –
C < F(ρ) for two positive constants C and C depending only on α and M. Here, we only
prove that C

∫

R ρα dx – C < F(ρ). By Hölder’s inequality we have

F(ρ) =



W
∫

R
ρD(ρ) dx

≤ C‖ρ‖–ε

∥
∥D(ρ)

∥
∥ –ε

–ε
.
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Note that

D(ρ) = –
�W
μ

∫

R

(x – y) + (x – y)

((x – y) + (x – y) + (x – y)) 

ρ(y) dy.

By the Riesz potential estimate [], Lemma ., p., we get

∥
∥D(ρ)

∥
∥ –ε

–ε
≤ C|�|μ–δ‖ρ‖p if p <

( – ε)
 – ε

(.)

for μ = 
 and δ = 

p – –ε
–ε

, where � is the compact support of ρ .
By the interpolation inequality (Theorem . in []), if f ∈ Lq ∩ Lr ( ≤ q < p < r < ∞),

then

‖f ‖p ≤ ‖f ‖a
q‖f ‖–a

r (.)

for a = p––r–

q––r– .
Inserting q = , r =  – ε, and a = (–ε)/p–

–ε
<  into (.), we get that (.) implies

∣
∣
∣
∣




∫

R
ρD(ρ) dx

∣
∣
∣
∣ ≤ C‖ρ‖–a

–ε‖ρ‖a
 . (.)

By the interpolation inequality [], (.), p., we obtain

∫

R
ρ–ε dx ≤ ω

∫

R
ρα dx + ω– –ε

α–+ε |�| α–+ε
α ≤ ω

∫

R
ρα dx + ω– –ε

α–+ε |�| α–+ε
α , (.)

where (α >  – ε), and � is the compact support of ρ .
Together (.) with (.), we have

∣
∣
∣
∣




∫

R
ρD(ρ) dx

∣
∣
∣
∣ ≤ ‖ρ‖a



(∫

R
ωρα dx + C(ω)

) –a
–ε

,

where C(λ) = λ– –ε
α–+ε |�| α–+ε

α .
Choosing a = ε, it is obvious that

p =
 – ε

 + ε – ε >
( – ε)
 – ε

,

which implies that  – ε >  + ε – ε, ε < 
 .

It follows from α >  – ε that

α >



⇐⇒ ε <



.

Hence, for α > 
 , we have

∣
∣
∣
∣




∫

R
ρD(ρ) dx

∣
∣
∣
∣ ≤ ωMa

∫

R
ρα dx + C(ω)Ma.
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Letting ω be sufficiently small, then we have

F(ρ) > C
∫

R
ρα dx – C. �

Proof of Theorem . Note that Lemma . proves conclusion () of Theorem .. Con-
clusion () in Theorem . can be proved by using the same method as in [].

Notice that

F(ρ) = –



W
∫

R
ρD(ρ) dx

= –
�W 

μ
ρ

∫

R

(x – y) + (x – y)

((x – y) + (x – y) + (x – y)) 

ρ(y) dy < .

Also, by the argument in [] we get

F(ρ) =
∫

R

[

I(ρ) +


ρE(ρ)

]

dx < .

Hence, conclusion () of Theorem . is established. �
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