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Abstract
By means of a variational analysis and the theory of variable exponent Sobolev
spaces, we study the existence of periodic solutions for a class of nonlocal
Hamiltonian systems with p(t)-Laplacian. Some new solvability conditions of periodic
solutions are obtained; this unifies and generalizes some of the recent corresponding
results in the literature.
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1 Introduction
In this paper, we consider the existence of periodic solutions of the following p(t)-
Laplacian Hamiltonian systems:

{
M(

∫ T


|u̇(t)|p(t)

p(t) dt) d
dt (|u̇(t)|p(t)–u̇(t)) = ∇F(t, u(t)), a.e. t ∈ [, T],

u() – u(T) = u̇() – u̇(T) = ,
(.)

where T >  and ∇F(t, u) denotes its gradient with respect to the second variable, that is,

∇F(t, u) =
(

∂F
∂u

, . . . ,
∂F
∂uN

)
,

u(t) =
(
u(t), . . . , uN (t)

)
.

In the sequel, we assume that the variable exponent p(t) ∈ C([, T];R+), p(t) = p(t + T),
and

 < p– := min
≤t≤T

p(t) ≤ p+ := max
≤t≤T

p(t) < +∞. (.)

Moreover, we suppose that M(s) : R+ → R
+ are continuous functions and F : [, T] ×

R
N → R satisfies the following assumption:
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(A) F(t, x) is measurable in t for each x ∈R
N and continuously differentiable in x for a.e.

t ∈ [, T], and there exist a ∈ C(R+,R+), b ∈ L([, T];R+) such that

∣∣F(t, x)
∣∣ ≤ a

(|x|)b(t),
∣∣∇F(t, x)

∣∣ ≤ a
(|x|)b(t)

for all x ∈R
N and a.e. t ∈ [, T].

Throughout this paper, we denote the usual norm and the usual inner product in R
N ,

respectively, by | · | and (·, ·).
Especially, when p(t) ≡  and M(s) ≡ , problem (.) becomes the well-known second

order Hamiltonian system

{
ü(t) = ∇F(t, u(t)), a.e. t ∈ [, T],
u() – u(T) = u̇() – u̇(T) = .

(.)

In the monograph [], Mawhin and Willem investigated the existence of periodic solutions
for problem (.) and obtained a series of results. During the past two decades, inspired by
[] the existence of periodic solutions for systems (.) has been studied via critical point
theory; for example, see [–]. In some recent work, a potential F(t, x) is the sum of an au-
tonomous potential F(u) and a non-autonomous potential F(t, u), where the autonomous
term satisfies a directional bounded on the gradient, that is, there exists a positive constant
r such that

(∇F(x) – ∇F(y), x – y
) ≤ r|x – y|

for all x, y ∈R
N , and the gradient of non-autonomous term is bounded, sublinear or F(t, x)

grows to ∞ as |x| → ∞; see [, , ].
When the nonlocal coefficient M(s) ≡ , problem (.) becomes

{
d
dt (|u̇(t)|p(t)–u̇(t)) = ∇F(t, u(t)), a.e. t ∈ [, T],
u() – u(T) = u̇() – u̇(T) = .

(.)

The operator d
dt (|u̇(t)|p(t)–u̇(t)) is said to be p(t)-Laplacian. It is well known that problems

with the p(t)-Laplacian operator possess more complicated nonlinearities than the con-
stant case. Nonlinear problems with a variable exponent Laplacian arise in lots of math-
ematical physics contexts, such as this type of problems can be applied to describe the
physical phenomena with ‘pointwise different properties’. The study of boundary prob-
lems with p(t)-Laplacian is now an active area of research. In particular, by using critical
point theory, considerable attention has been paid to the periodic solutions of problem
(.); see [–].

Since the equations in (.) contain an integral over [, T], this problem is no longer
a pointwise identity. This type of problems are often called Kirchhoff-type or nonlocal
problems, they arise in the description of nonlinear vibrations of an elastic string. Chipot
and Lovat [] pointed out that this type of problems can be used to model a spreading
process of a particular species within the domain, where u is its population density.

Recently, a lot of researchers have investigated p(x)-Kirchhoff-type equations with
Dirichlet or Neumann boundary condition; see [–]. However, to the best of our
knowledge, there are very scarce papers discussing periodic solutions for system (.).
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Motivated by the results mentioned above, we first prove that problem (.) has at least
one periodic solution. The periodic solutions which we get appear either as saddle points
or as minimizers of the energy functional associated to problem (.). Next, based on the
three critical points theorem due to Brezis and Nirenberg, we will obtain the existence of at
least two distinct periodic solutions of the problem (.). Finally, when the potential energy
term is even, we are going to study the existence of infinitely many periodic solutions of
problem (.).

2 Preliminaries
Now, we recall the properties of the space W ,p(t)

T listed for the convenience of the reader.
In this section, the definitions and lemmas can be found in [, , ].

Definition . ([]) Let p(t) ∈ C([, T];R+), and p(t) satisfy(.). Define

Lp(t)([, T];RN)
=

{
u ∈ L([, T];RN) ∣∣∣ ∫ T


|u|p(t) dt < ∞

}
,

with the norm

|u|p(t) = inf

{
λ > 

∣∣∣ ∫ T



∣∣∣∣u
λ

∣∣∣∣
p(t)

dt ≤ 
}

.

Define

C∞
T = C∞

T
(
R,RN)

=
{

u ∈ C∞(
R,RN) | u is T-periodic

}
.

Definition . ([]) Let u ∈ L([, T];RN ) and v ∈ L([, T];RN ). If

∫ T


vφ dt = –

∫ T


uφ′ dt, ∀φ ∈ C∞

T ,

then v is called the T-weak derivative of u and is denoted by u̇.

Definition . ([]) Define

W ,p(t)
T =

{
u : [, T] →R

N | u ∈ Lp(t)([, T];RN)
, u̇ ∈ Lp(t)([, T];RN)

, u() = u(T)
}

,

with the norm

‖u‖ = |u|p(t) + |u̇|p(t).

When p– = min≤t≤T p(t) > , W ,p(t)
T is a reflexive Banach space.

For u ∈ W ,p(t)
T , we write

‖u‖ = |ū| + |u̇|p(t),

then ‖ · ‖ is an equivalent norm on W ,p(t)
T , where ū = 

T
∫ T

 u(t) dt.
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For u ∈ W ,p(t)
T we can write u(t) = ū + ũ(t). Denoting

W̃ ,p(t)
T =

{
u ∈ W ,p(t)

T

∣∣∣ ∫ T


u(t) dt = 

}
,

then W ,p(t)
T = W̃ ,p(t)

T ⊕R
N .

Lemma . ([]) If we denote

ρ(u) =
∫ T



∣∣u(t)
∣∣p(t) dt, ∀u ∈ Lp(t),

then
(i) |u|p(t) <  (= ; > ) ⇔ ρ(u) <  (= ; > );

(ii) |u|p(t) >  ⇒ |u|p–

p(t) ≤ ρ(u) ≤ |u|p+

p(t); |u|p(t) <  ⇒ |u|p+

p(t) ≤ ρ(u) ≤ |u|p–

p(t);
(iii) |u|p(t) →  ⇔ ρ(u) → ; |u|p(t) → ∞ ⇔ ρ(u) → ∞.

Applying Lemma ., one has the following.

Lemma . ([]) For all ũ ∈ W̃ ,p(t)
T , we have

‖ũ‖ >  ⇒ ‖ũ‖p– ≤
∫ T



∣∣u̇(t)
∣∣p(t) dt ≤ ‖ũ‖p+

;

‖ũ‖ <  ⇒ ‖ũ‖p+ ≤
∫ T



∣∣u̇(t)
∣∣p(t) dt ≤ ‖ũ‖p–

;

‖ũ‖ =  ⇒
∫ T



∣∣u̇(t)
∣∣p(t) dt = .

Lemma . ([]) For all ũ ∈ W̃ ,p(t)
T , there exist constants Ci > , i = , , , such that

‖ũ‖∞ := max
≤t≤T

∣∣u(t)
∣∣ ≤ C

(∫ T



∣∣u̇(t)
∣∣p(t) dt

) 
p–

+ C, (.)

‖ũ‖ ≤ C

[(∫ T



∣∣u̇(t)
∣∣p(t) dt

) 
p–

+ 
]

. (.)

Lemma . ([]) For all u ∈ W ,p(t)
T , ū = 

T
∫ T

 u(t) dt, then

‖u‖ → ∞ ⇒
∫ T



∣∣u̇(t)
∣∣p(t) dt + |ū| → +∞.

Lemma . ([]) There is a continuous embedding W ,p(t)
T ↪→ C([, T];RN ), when p– > ,

the embedding is compact.

By Lemma . and (.), there exists d > , such that

‖u‖∞ := max
≤t≤T

∣∣u(t)
∣∣ ≤ d‖u‖, ∀u ∈ W ,p(t)

T . (.)
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Lemma . ([]) J ′ is a bounded linear functional and a mapping of (S+) on W ,p(t)
T , that

is, if un ⇀ u weakly in W ,p(t)
T and lim supn→∞(J ′(un) – J ′(u), un – u) ≤ , then {un} has a

convergent subsequence, where J ′ is given by 〈J ′(u), v〉 =
∫ T

 (|u̇(t)|p(t)–u̇(t), v̇(t)) dt.

3 Main results
For our results, the following conditions are assumed for the function M(s).

(M) There exists a constant m >  such that infs∈R+ M(s) ≥ m.
(M) For all s ∈ [, +∞), let M̂(s) :=

∫ s
 M(σ ) dσ such that M̂(s) ≤ M(s)s.

We assume that F(t, x) = F(t, x) + F(x) satisfies the following hypotheses:

(H) There exist constants Ki > , i = , , , α ∈ [, p– – ) and a function h ∈ C([,∞),
[,∞)), with the properties:

(i) h(s) ≤ h(t), ∀s ≤ t, s, t ∈ [,∞).
(ii) h(s + t) ≤ K(h(s) + h(t)), ∀s, t ∈ [,∞).

(iii)  ≤ h(s) ≤ Ksα + K, ∀s, t ∈ [,∞).
(iv) h(s) → ∞ as s → ∞.

(H) There exist f ∈ L(, T ;R+) and g ∈ L(, T ;R+) such that

∣∣∇F(t, x)
∣∣ ≤ f (t)h

(|x|) + g(t)

for all x ∈R
N and a.e. t ∈ [, T].

(H) There exist constants r >  and γ ∈ [, p–) such that

(∇F(x) – ∇F(y), x – y
) ≥ –r|x – y|γ

for all x, y ∈R
N .

(H) There exists a constant θ >  such that

lim inf|x|→∞


hq+ (|x|)
∫ T


F(t, x) dt >


q+

(
KC

∫ T


f (t) dt

)q+(
θp+

mp–

) q+
p–

,

where 
p– + 

q+ =  and C is a positive constant which satisfies the inequality (.).

First, using the least action principle in critical point theory, we get the first main result.

Theorem . Suppose that assumption (A), conditions (M)-(M) and (H)-(H) hold,
then problem (.) has at least one T-periodic solution which minimizes the functional �

in W ,p(t)
T given by

�(u) = M̂
(∫ T



|u̇(t)|p(t)

p(t)
dt

)
+

∫ T


F
(
t, u(t)

)
dt

for u ∈ W ,p(t)
T .

Next, we obtain the second main result by using the saddle point theorem.
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(H) There exist constants β ∈ [, p–) and μ >  such that

(∇F(x) – ∇F(y), x – y
) ≤ μ|x – y|β

for all x, y ∈R
N .

(H) There exists a constant θ > , let

K =


q+

(


p– + 
)

θp+ + 
θp+ – 

(
KC

∫ T


f (t) dt

)q+(
θp+

mp–

) q+
p–

,

such that

lim sup
|x|→∞


hq+ (|x|)

∫ T


F(t, x) dt < –K .

Theorem . Suppose that assumption (A), conditions (M)-(M), (H)-(H), (H), and
(H) hold, then problem (.) has at least one T-periodic solution in W ,p(t)

T .

Remark . The nonlocal coefficient M(
∫ T


|u̇(t)|p(t)

p(t) dt) represent Kirchhoff dissipative
terms. A typical example is the following:

M(s) =  + ksm

for all s ∈ [, +∞), where k and m are positive constants. Then M(t) satisfies (M)-(M).
In fact,

M(s) =  + ksm ≥  > 

and

M̂(s) =
∫ s


M(σ ) dσ =

∫ s



(
 + kσ m)

dσ ≤
∫ s



(
 + ksm)

dσ = M(s)s.

Remark . When M(s) ≡ , p(t) ≡ , condition (H) and (H) were introduced in [],
which is an extension of the usual sublinear growth condition, i.e. there exist α ∈ [, ),
f ∈ L(, T ;R+) and g ∈ L(, T ;R+), such that

∣∣∇F(t, x)
∣∣ ≤ f (t)|x|α + g(t)

for all x ∈R
N and a.e. t ∈ [, T]. From condition (H) and (H), we can see that the nonlin-

earity ∇F(t, x) grows sightly slower that |x|α . If M(s) ≡  and p(t) = sin π t
T + , then m = ,

p+ = , p– = , and q+ = 
 . Consider the functions

F(t, x) =
(




T – t
)

ln


(
 + |x|) +

(



T – t
)

ln
(
 + |x|),

then

∣∣∇F(t, x)
∣∣ ≤ 



∣∣∣∣ 


T – t
∣∣∣∣ ln



(
 + |x|) +

∣∣∣∣


T – t
∣∣∣∣,



Zhang Boundary Value Problems  (2016) 2016:211 Page 7 of 20

by some simple computations, we can show that the conditions (H) and (H) of Theo-
rem . hold with control function h(|x|) = ln


 ( + |x|). Let F(x) = – d

 |x| 
 , where d > ,

then the conditions (H) and (H) of Theorem . holds.

Remark . In the case M(s) ≡  and p(t) ≡ , we note that in [], the Ahmad-Lazer-Paul-
type coercive condition was assumed:

lim|x|→∞


|x|α

∫ T


F(t, x) dt = +∞ (or – ∞). (.)

In [], Wang and Zhang use the following condition instead of condition (.):

lim|x|→∞


h(|x|)
∫ T


F(t, x) dt = +∞ (or – ∞). (.)

In this paper, we generalized (.) to the condition (H) or (H), and it is easy to see that

lim inf|x|→∞


hq+ (|x|)
∫ T


F(t, x) dt or lim sup

|x|→∞


hq+ (|x|)
∫ T


F(t, x) dt

has appropriate lower and upper bounds.

Remark . Theorem . and Theorem . extend some classical results for second order
Hamiltonian systems to the nonlocal and variable exponent space setting:

(a) When M(s) ≡ , p(t) ≡  and F = , Theorems . and . in [] are direct
corollaries of our Theorems . and ., respectively.

(b) When M(s) ≡ , p(t) ≡ , Theorems . and . in [], Theorems  and  in [],
Theorems . and . in [] and Theorems  and  in [] are special cases of our
Theorems . and . with F =  or h(t) = tα , α ∈ [, ), t ∈ [, +∞), respectively.

Finally, we shall obtain the existence of multiple periodic solutions for systems (.). For
our result, we further assume that the following conditions hold:

(M) There exists a constant η ≥  such that

ηM̂(s) = η

∫ s


M(σ ) dσ ≥ M(s)s

for all s ∈ [, +∞).
(H) lim sup|x|→

|F(t,x)|
|x|p+ ≤ m

p+Tdp+


, uniformly for a.e. t ∈ [, T], where d is a positive con-

stant which satisfies (.).
(H) There exists δ >  such that F(t, x) ≤  for x ∈R

N with |x| ≤ δ and a.e. t ∈ [, T].
(H) F(t, x) is even in x and F(t, ) = .
(H) lim|x|→

F(t,x)
|x|ηp– = –∞.

Theorem . Suppose that assumption (A), conditions (M), (M), (H)-(H), (H), and
(H) hold, then problem (.) has at least two distinct T-periodic solutions.

Theorem . Suppose that assumption (A), conditions (M)-(M), (H)-(H), (H), (H),
(H), and (H) hold, then problem (.) has infinitely many nontrivial T-periodic solutions.
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4 Proofs of Theorem 3.1 and Theorem 3.2
The Euler-Lagrange functional associated to problem (.) is given by

�(u) = M̂
(∫ T



|u̇(t)|p(t)

p(t)
dt

)
+

∫ T


F
(
t, u(t)

)
dt

for all u ∈ W ,p(t)
T , where we recall that

M̂(s) =
∫ s


M(σ ) dσ .

From the assumptions on M and F , it is standard to check that � is continuously differ-
entiable and weakly semicontinuous on W ,p(t)

T . Moreover, we have

〈
�′(u), v

〉
= M

(∫ T



|u̇(t)|p(t)

p(t)
dt

)∫ T



(∣∣u̇(t)
∣∣p(t)–u̇(t), v̇(t)

)
dt

+
∫ T



(∇F
(
t, u(t)

)
, v(t)

)
dt

for all u, v ∈ W ,p(t)
T .

A critical point of � is a solution ω of 〈�′(ω), v〉 =  for all v ∈ W ,p(t)
T . Let 〈�′(ω), v〉 = 

for all ω ∈ W ,p(t)
T , if and only if

M
(∫ T



|ω̇(t)|p(t)

p(t)
dt

)∫ T



(∣∣ω̇(t)
∣∣p(t)–u̇(t), v̇(t)

)
dt +

∫ T



(∇F
(
t,ω(t)

)
, v(t)

)
dt = .

Since ω ∈ W ,p(t)
T , the T-periodic solutions of problem (.) correspond to the critical

points of the functional � in W ,p()
T .

In the sequel, we denote Ci (i = , , , , . . .), which are various positive constants. Now
we begin to prove our main results.

For u ∈ W ,p(t)
T , let ū = 

T
∫ T

 u(t) dt and ũ(t) = u(t) – ū.

Proof of Theorem . From (M), we obtain

M̂
(∫ T



|u̇(t)|p(t)

p(t)
dt

)
=

∫ ∫ T


|u̇(t)|p(t)
p(t) dt


M(s) ds

≥ m

∫ T



|u̇(t)|p(t)

p(t)
dt

≥ m

p+

∫ T



∣∣u̇(t)
∣∣p(t) dt. (.)

By Young’s inequality, we obtain

KC

∫ T


f (t) dt h

(|ū|)(∫ T



∣∣u̇(t)
∣∣p(t) dt

) 
p–

= KC

∫ T


f (t) dt h

(|ū|)( θp+

mp–

) 
p– (

mp–

θp+

) 
p– (∫ T



∣∣u̇(t)
∣∣p(t) dt

) 
p–
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≤ 
q+

(
θp+

mp–

) q+
p– (

KC

∫ T


f (t) dt

)q+

hq+(|ū|)

+
m

θp+

∫ T



∣∣u̇(t)
∣∣p(t) dt, (.)

where 
p– + 

q+ = .
It follows from (H), (H), (.), and (.) that

∣∣∣∣
∫ T



[
F

(
t, u(t)

)
– F(t, ū)

]
dt

∣∣∣∣
=

∣∣∣∣
∫ T



∫ 



(∇F
(
t, ū + sũ(t)

)
, ũ(t)

)
ds dt

∣∣∣∣
≤

∫ T



∫ 


f (t)h

(∣∣ū + sũ(t)
∣∣)∣∣ũ(t)

∣∣ds dt +
∫ T



∫ 


g(t)

∣∣ũ(t)
∣∣ds dt

≤
∫ T



∫ 


f (t)K

[
h
(|ū|) + h

(∣∣ũ(t)
∣∣)]∣∣ũ(t)

∣∣ds dt

+
∫ T



∫ 


g(t)

∣∣ũ(t)
∣∣ds dt

≤ K

∫ T



∫ 


f (t)

[
h
(|ū|) + K

∣∣ũ(t)
∣∣α + K

]∣∣ũ(t)
∣∣ds dt

+
∫ T



∫ 


g(t)

∣∣ũ(t)
∣∣ds dt

≤ h
(|ū|)‖ũ‖∞K

∫ T


f (t) dt + ‖ũ‖α+

∞ KK

∫ T


f (t) dt

+ ‖ũ‖∞
[

KK

∫ T


f (t) dt +

∫ T


g(t) dt

]

≤ h
(|ū|)[C

(∫ T



∣∣u̇(t)
∣∣p(t) dt

) 
p–

+ C

]
K

∫ T


f (t) dt

+
[

C

(∫ T



∣∣u̇(t)
∣∣p(t) dt

) 
p–

+ C

]α+

KK

∫ T


f (t) dt

+
[

C

(∫ T



∣∣u̇(t)
∣∣p(t) dt

) 
p–

+ C

][
KK

∫ T


f (t) dt +

∫ T


g(t) dt

]

≤ KC

∫ T


f (t) dth

(|ū|)(∫ T



∣∣u̇(t)
∣∣p(t) dt

) 
p–

+ C

(∫ T



∣∣u̇(t)
∣∣p(t) dt

) α+
p–

+ C

(∫ T



∣∣u̇(t)
∣∣p(t) dt

) 
p–

+ Ch
(|ū|) + C

≤ m

θp+

∫ T



∣∣u̇(t)
∣∣p(t) dt + C

(∫ T



∣∣u̇(t)
∣∣p(t) dt

) α+
p–

+ C

(∫ T



∣∣u̇(t)
∣∣p(t) dt

) 
p–

+


q+

(
KC

∫ T


f (t) dt

)q+(
θp+

mp–

) q+
p–

hq+(|ū|) + Ch
(|ū|) + C. (.)



Zhang Boundary Value Problems  (2016) 2016:211 Page 10 of 20

Similarly, by (H) and (.), for any u ∈ W ,p(t)
T , we get

∫ T



[
F

(
u(t)

)
– F(ū)

]
dt =

∫ T



∫ 




s
(∇F

(
ū + sũ(t)

)
– ∇F(ū), sũ(t)

)
ds dt

≥ –
∫ T



∫ 


rsγ –∣∣ũ(t)

∣∣γ ds dt

≥ –
rT
γ

‖ũ‖γ
∞

≥ –
rT
γ

[
C

(∫ T



∣∣u̇(t)
∣∣p(t) dt

) 
p–

+ C

]γ

≥ –C

(∫ T



∣∣u̇(t)
∣∣p(t) dt

) γ
p–

– C. (.)

Taking into account (.), (.), and (.) we obtain

�(u) = M̂
(∫ T



|u̇(t)|p(t)

p(t)
dt

)
+

∫ T


F
(
t, u(t)

)
dt

≥ m

p+

∫ T



∣∣u̇(t)
∣∣p(t) dt +

∫ T



[
F

(
t, u(t)

)
– F(t, ū)

]
dt

+
∫ T



[
F

(
u(t)

)
– F(ū)

]
dt +

∫ T


F(t, ū) dt

≥ m

p+

(
 –


θ

)∫ T



∣∣u̇(t)
∣∣p(t) dt – C

(∫ T



∣∣u̇(t)
∣∣p(t) dt

) α+
p–

– C

(∫ T



∣∣u̇(t)
∣∣p(t) dt

) γ
p–

– C

(∫ T



∣∣u̇(t)
∣∣p(t) dt

) 
p–

+
[


hq+ (|ū|)

∫ T


F(t, ū) dt –


q+

(
KC

∫ T


f (t) dt

)q+(
θp+

mp–

) q+
p– ]

hq+(|ū|)
– Ch

(|ū|) – C.

It follows from Lemma . that

‖u‖ → ∞ ⇒
∫ T



∣∣u̇(t)
∣∣p(t) dt + |ū| → +∞.

Combining with the above inequality, condition (H) and θ >  imply that

�(u) → +∞ as ‖u‖ → ∞.

Note that W ,p(t)
T is reflexive Banach space, and the functional � is weakly lower semicon-

tinuous, applying the least action principle (see [], Theorem . and Corollary .), � has
a minimum point on W ,p(t)

T , which is a critical point of �. The proof is complete. �

Proof of Theorem . Step : We prove that � satisfies the (PS) condition. Suppose that
{un} ⊂ W ,p(t)

T is a (PS) sequence of �, that is, �′(un) → , as n → ∞, and {�(un)} is
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bounded. In a way similar to the proof of Theorem ., we have

∣∣∣∣
∫ T



(∇F
(
t, un(t)

)
, ũn(t)

)
dt

∣∣∣∣
≤ m

θp+

∫ T



∣∣u̇n(t)
∣∣p(t) dt + C

(∫ T



∣∣u̇n(t)
∣∣p(t) dt

) α+
p–

+ C

(∫ T



∣∣u̇n(t)
∣∣p(t) dt

) 
p–

+ Ch
(|ūn|

)
+ C

+


q+

(
KC

∫ T


f (t) dt

)q+(
θp+

mp–

) q+
p–

hq+(|ūn|
)

(.)

and

∫ T



(∇F
(
un(t)

)
, ũn(t)

)
dt ≥ –C

(∫ T



∣∣u̇n(t)
∣∣p(t) dt

) γ
p–

– C. (.)

It follows from (M), (.), and (.) that

‖ũn‖ ≥ 〈
�′(un), ũn

〉
= M

(∫ T



|u̇n(t)|p(t)

p(t)
dt

)∫ T



∣∣u̇n(t)
∣∣p(t) dt +

∫ T



(∇F
(
t, un(t)

)
, ũn(t)

)
dt

≥ m

∫ T



∣∣u̇n(t)
∣∣p(t) dt +

∫ T



(∇F
(
t, un(t)

)
, ũn(t)

)
dt

+
∫ T



(∇F
(
un(t)

)
, ũn(t)

)
dt

≥ m

(
 –


θp+

)∫ T



∣∣u̇n(t)
∣∣p(t) dt – C

(∫ T



∣∣u̇n(t)
∣∣p(t) dt

) α+
p–

– C

(∫ T



∣∣u̇n(t)
∣∣p(t) dt

) 
p–

– C

(∫ T



∣∣u̇n(t)
∣∣p(t) dt

) γ
p–

–


q+

[
KC

∫ T


f (t) dt

(
θp+

mp–

) 
p– ]q+

hq+(|ūn|
)

– Ch
(|ūn|

)
– C (.)

for large n. By (.) we have

‖ũn‖ ≤ C

[(∫ T



∣∣u̇n(t)
∣∣p(t) dt

) 
p–

+ 
]

. (.)

Combining (.) and (.), we have


q+

[
KC

∫ T


f (t) dt

(
θp+

mp–

) 
p– ]q+

hq+(|ūn|
)

+ Ch
(|ūn|

)

≥ m

(
 –


θp+

)∫ T



∣∣u̇n(t)
∣∣p(t) dt – C

(∫ T



∣∣u̇n(t)
∣∣p(t) dt

) α+
p–
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– C

(∫ T



∣∣u̇n(t)
∣∣p(t) dt

) γ
p–

– C

(∫ T



∣∣u̇n(t)
∣∣p(t) dt

) 
p–

– C

≥ m



(
 –


θp+

)∫ T



∣∣u̇n(t)
∣∣p(t) dt – C, (.)

where θ > , γ ∈ [, p–), α ∈ [, p– – ), and

C = – min
s∈[,+∞)

{
m



(
 –


θp+

)
sp–

– Csα+ – Csγ – Cs – C

}
> .

Then equation (.) implies that

∫ T



∣∣u̇n(t)
∣∣p(t) dt ≤ 

m
 ( – 

θp+ )


q+

(
KC

∫ T


f (t) dt

)q+(
θp+

mp–

) q+
p–

hq+(|ūn|
)

+ Ch
(|ūn|

)
+ C. (.)

From (M), we have


p– ‖ũn‖ ≥ 

p–

〈
�′(un), ũn

〉

=


p– M
(∫ T



|u̇n(t)|p(t)

p(t)
dt

)∫ T



∣∣u̇n(t)
∣∣p(t) dt

+


p–

∫ T



(∇F
(
t, un(t)

)
, ũn(t)

)
dt

≥ M
(∫ T



|u̇n(t)|p(t)

p(t)
dt

)∫ T



|u̇n(t)|p(t)

p(t)
dt

+


p–

∫ T



(∇F
(
t, un(t)

)
, ũn(t)

)
dt

≥ M̂
(∫ T



|u̇n(t)|p(t)

p(t)
dt

)
+


p–

∫ T



(∇F
(
t, un(t)

)
, ũn(t)

)
dt

+


p–

∫ T



(∇F
(
un(t)

)
, ũn(t)

)
dt. (.)

Combining (.), (.) (.), (.), and (.), we have

M̂
(∫ T



|u̇n(t)|p(t)

p(t)
dt

)
≤ 

p– ‖ũn‖ –


p–

∫ T



(∇F
(
un(t)

)
, ũn(t)

)
dt

–


p–

∫ T



(∇F
(
t, un(t)

)
, ũn(t)

)
dt

≤ C

p–

[(∫ T



∣∣u̇n(t)
∣∣p(t) dt

) 
p–

+ 
]

–


p–

∫ T



(∇F
(
un(t)

)
, ũn(t)

)
dt

–


p–

∫ T



(∇F
(
t, un(t)

)
, ũn(t)

)
dt
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≤ 
p–

m

θp+

∫ T



∣∣u̇n(t)
∣∣p(t) dt + C

(∫ T



∣∣u̇n(t)
∣∣p(t) dt

) α+
p–

+ C

(∫ T



∣∣u̇n(t)
∣∣p(t) dt

) γ
p–

+ C

(∫ T



∣∣u̇(t)
∣∣p(t) dt

) 
p–

+


p–


q+

(
KC

∫ T


f (t) dt

)q+(
θp+

mp–

) q+
p–

hq+(|ūn|
)

+ Ch
(|ūn|

)
+ C

≤ θp+ + 
p–q+(θp+ – )

(
KC

∫ T


f (t) dt

)q+(
ηp+

mp–

) q+
p–

hq+(|ūn|
)

+ Ch
(α+)q+

p– (|ūn|
)

+ Ch
q+
p– (|ūn|

)
+ Ch

γ q+
p– (|ūn|

)
+ Ch

(|ūn|
)

+ Ch
α+
p– (|ūn|

)
+ Ch

γ
p– (|ūn|

)
+ Ch


p– (|ūn|

)
+ C. (.)

By (H) and (.), similar to the proof of (.), one has

∫ T



[
F

(
u(t)

)
– F(ū)

]
dt ≤ C

(∫ T



∣∣u̇(t)
∣∣p(t) dt

) β
p–

+ C. (.)

In view of (.), (.), and (.), we obtain

∫ T



[
F
(
t, u(t)

)
– F(t, ū)

]
dt

=
∫ T



[
F

(
t, u(t)

)
– F(t, ū)

]
dt +

∫ T



[
F

(
u(t)

)
– F(ū)

]
dt

≤ 
q+

θp+ + 
θp+ – 

[
KC

∫ T


f (t) dt

(
θp+

mp–

) 
p– ]q+

hq+(|ūn|
)

+ Ch
(α+)q+

p– (|ūn|
)

+ Ch
q+
p– (|ūn|

)
+ Ch

βq+
p– (|ūn|

)
+ Ch

α+
p– (|ūn|

)
+ Ch

(|ūn|
)

+ Ch
β

p– (|ūn|
)

+ Ch


p– (|ūn|
)

+ C. (.)

Hence, combining (.) and (.), a direct calculation yields

�(un) = M̂
(∫ T



|u̇n(t)|p(t)

p(t)
dt

)
+

∫ T



[
F
(
t, un(t)

)
– F(t, ūn)

]
dt

+
∫ T


F(t, ūn) dt

≤
[∫ T

 F(t, ūn) dt
hq+ (|ūn|) + K

]
hq+(|ūn|

)
+ Ch

(α+)q+
p– (|ūn|

)
+ Ch

q+
p– (|ūn|

)

+ Ch
α+
p– (|ūn|

)
+ Ch

(|ūn|
)

+ Ch


p– (|ūn|
)

+ Ch
γ q+
p– (|ūn|

)
+ Ch

γ
p– (|ūn|

)
+ Ch

βq+
p– (|ūn|

)
+ Ch

β
p– (|ūn|

)
+ C, (.)



Zhang Boundary Value Problems  (2016) 2016:211 Page 14 of 20

where K is defined as (H). We claim that the sequence {un} is bounded in W ,p(t)
T . Suppose

that is not the case, passing to a subsequence if necessary, we may assume that

‖un‖ → +∞ as n → ∞.

Applying Lemma ., we obtain

‖un‖ → ∞ ⇒
∫ T



∣∣u̇n(t)
∣∣p(t) dt + |ūn| → +∞ as n → ∞.

If |ūn| → +∞ as n → ∞. By (H), we obtain h(|ūn|) → +∞ as n → ∞. Exploiting the facts
γ ∈ [, p–), β ∈ [, p–), α ∈ [, p– – ), p– >  and q+ > , using condition (H) and (.),
we can see that �(un) → –∞ as n → ∞. If

∫ T
 |u̇n(t)|p(t) dt → +∞ as n → ∞. By (.), we

obtain h(|ūn|) → +∞ as n → ∞. From (H) and (.), we deduce that �(un) → –∞ as
n → ∞, which is contrary to the boundedness of {�(un)}. Thus, {un} is bounded in W ,p(t)

T .
Next, we show that the energy functional � satisfies (PS) condition. The sequence {un} ⊂

W ,p(t)
T has a subsequence, also denoted by {un}, such that

un ⇀ u weakly in W ,p(t)
T and un → u strongly in C

(
[, T];RN)

.

Consequently, we get

∣∣∣∣
∫ T



(∇F
(
t, un(t)

)
, un(t) – u(t)

)
dt

∣∣∣∣ ≤ T‖un – u‖∞ max
≤t≤T

∣∣∇F
(
t, un(t)

)∣∣
→  as n → ∞.

Note that {un} ⊂ W ,p(t)
T is a (PS) sequence of � and we have 〈�′(un), un – u〉 →  as n →

∞, and we have

M
(∫ T



∣∣u̇n(t)
∣∣p(t) dt

)∫ T



(∣∣u̇n(t)
∣∣p(t)–u̇n(t), u̇n(t) – u̇(t)

)
dt →  as n → ∞.

Using (M), we have

(
J ′(un), un – u

)
=

∫ T



(∣∣u̇n(t)
∣∣p(t)–u̇n(t), u̇n(t) – u̇(t)

)
dt →  as n → ∞.

Furthermore, since J ′(u) is a bounded linear function, we get (J ′(u), un – u) →  as n → ∞.
Thus limn→∞(J ′(un)– J ′(u), un –u) = . By Lemma ., we see that {un} admits a convergent
sequence. Thus functional � satisfies condition (PS).

Step : We prove that � satisfies the other conditions of the saddle point theorem.
On one hand, for u ∈ W̃ ,p(t)

T , similar to the proof of (.), we have

∣∣∣∣
∫ T



[
F

(
t, u(t)

)
– F(t, )

]
dt

∣∣∣∣
=

∣∣∣∣
∫ T



∫ 



(∇F
(
t, su(t)

)
, u(t)

)
ds dt

∣∣∣∣
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≤
∫ T


f (t)h

(∣∣u(t)
∣∣)∣∣u(t)

∣∣dt +
∫ T


g(t)

∣∣u(t)
∣∣dt

≤
∫ T


f (t)

(
K

∣∣u(t)
∣∣α + K

)∣∣u(t)
∣∣dt +

∫ T


g(t)

∣∣u(t)
∣∣dt

≤ K

∫ T


f (t) dt‖u‖α+

∞ +
[

K

∫ T


f (t) dt +

∫ T


g(t) dt

]
‖u‖∞

≤ C

(∫ T



∣∣u̇(t)
∣∣p(t) dt

) α+
p–

+ C

(∫ T



∣∣u̇(t)
∣∣p(t) dt

) 
p–

+ C. (.)

Because of condition (H) together with (.), for any u ∈ W̃ ,p(t)
T , we have

∫ T



[
F

(
u(t)

)
– F()

]
dt

=
∫ T



∫ 




s
(∇F

(
su(t)

)
– ∇F(), sũ(t)

)
ds dt

≥ –
∫ T



∫ 


rsγ –∣∣u(t)

∣∣γ ds dt

≥ –
rT
γ

‖u‖γ
∞

≥ –C

(∫ T



∣∣u̇(t)
∣∣p(t) dt

) γ
p–

– C. (.)

Therefore, using (.), (.), and (.), we obtain

�(u) = M̂
(∫ T



|u̇(t)|p(t)

p(t)
dt

)
+

∫ T



[
F
(
t, u(t)

)
– F(t, )

]
dt

+
∫ T


F(t, ) dt

≥ m

p+

∫ T



∣∣u̇(t)
∣∣p(t) dt +

∫ T



[
F

(
t, u(t)

)
– F(t, )

]
dt

+
∫ T



[
F

(
u(t)

)
– F()

]
dt +

∫ T


F(t, ) dt

≥ m

p+

∫ T



∣∣u̇(t)
∣∣p(t) dt – C

(∫ T



∣∣u̇(t)
∣∣p(t) dt

) α+
p–

– C

(∫ T



∣∣u̇(t)
∣∣p(t) dt

) 
p–

– C

(∫ T



∣∣u̇(t)
∣∣p(t) dt

) γ
p–

– C

for u ∈ W̃ ,p(t)
T . Applying Lemma ., one has

∫ T



∣∣u̇(t)
∣∣p(t) dt → +∞ as ‖u‖ → +∞.

So we can conclude that

�(u) → +∞ as ‖u‖ → +∞.

Thus, there exists a positive constant η, such that �(u) ≥ η.
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On the other hand, by condition (H), for y ∈R
N and ∀ε > , we have

�(y) =
∫ T


F(t, y) dt ≤ (–K + ε)hq+(|y|).

Note that h(|y|) → +∞ as |y| → +∞. Choosing ε small enough, we obtain

�(y) → –∞ as |y| → +∞.

Consequently, there exists a positive constant ρ , such that �|∂Bρ∩RN ≤ η –  = σ .
Now, the functional � satisfies all hypotheses of the saddle point theorem (see [],

Theorem .), so � has at least a critical point. Therefore, problem (.) possesses at least
one T-periodic solution in W ,p(t)

T . The proof of Theorem . is completed. �

5 Proof of Theorem 3.7
Now we state the abstract critical point theorem found in [].

Lemma . ([]) Let X be a Banach space with a direct sum decomposition X ⊕ X with
dim X < ∞. Let � be a C function on X with I() = , satisfying P.S. condition and assume
that, for some δ > ,

�(u) ≥ , ∀u ∈ X,‖u‖ ≤ δ,

and

�(u) ≤ , ∀u ∈ X,‖u‖ ≤ δ,

Assume also that � is bounded below and infX � < . Then � has at least two nonzero
critical points.

Proof of Theorem . According to Lemma ., we claim that system (.) has at least two
nontrivial distinct solutions in W ,p(t)

T .
From the proof of Theorem ., we know that � is coercive and bounded below. Suppose

that there exists {un} ⊂ W ,p(t)
T such that �′(un) →  as n → ∞, and �(un) is bounded. In

a way similar to the proof of Theorem ., we can see that {un} is a bounded sequence
and {un} has a convergent subsequence in W ,p(t)

T , which implies that � satisfies the PS
condition.

Now, we claim that � has a local linking at zero. On the one hand, in view of condition
(H), there exist two constants ε and ρ such that

 < ε < min

{
d,

m

p+Tdp+


}
and  < ρ < ε, (.)

where d is the same as in (.), and

∣∣F(t, u)
∣∣ ≤

(
m

p+Tdp+


+ ε

)
|u|p+

(.)

for a.e. t ∈ [, T] and |u| ≤ ρ .
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Let δ := ρ/d, if ‖u‖ ≤ δ, by (.), we can see that δ < .
By virtue of condition (M), (.), (.), and Lemma ., for ‖u‖ ≤ δ, one has

�(u) = M̂
(∫ T



|u̇(t)|p(t)

p(t)
dt

)
+

∫ T


F
(
t, u(t)

)
dt

≥
∫ ∫ T


|u̇(t)|p(t)

p(t) dt


M(s) ds –

(
m

p+Tdp+


+ ε

)∫ T



∣∣u(t)
∣∣p+

dt

≥ m

p+

∫ T



∣∣u̇(t)
∣∣p(t) dt –

(
m

p+Tdp+


+ ε

)
T‖u‖p+

∞

≥ m

p+ ‖u‖p+
–

(
m

p+Tdp+


+ ε

)
Tdp+

 ‖u‖p+

=
(

m

p+ – Tdp+

 ε

)
‖u‖p+

. (.)

This implies that �(u) ≥ , for u ∈ W̃ ,p(t)
T with ‖u‖ ≤ δ.

On the other hand, by (H), for u ∈R
N with |u| = ‖u‖ ≤ δ, we have

�(u) = M̂
(∫ T



|u̇(t)|p(t)

p(t)
dt

)
+

∫ T


F
(
t, u(t)

)
dt

=
∫ T


F
(
t, u(t)

)
dt

≤ . (.)

Let δ ≤ min{δ, δ}, hence � has a local linking at zero with respect to the space decom-
position W ,p(t)

T = W̃ ,p(t)
T ⊕R

N .
If infW ,p(t)

T
�(u) < , all conditions in Lemma . are fulfilled. Hence, it follows from

Lemma . that system (.) has at least two distinct solutions in W ,p(t)
T .

If infW ,p(t)
T

�(u) ≥ , according to (.) one has

�(x) = inf
W ,p(t)

T

� = 

for all x ∈ R
N with ‖x‖ ≤ δ, which implies that all x ∈ R

N with ‖x‖ ≤ δ are minima of �.
That is to say, system (.) has infinitely many solutions in W ,p(t)

T . �

6 Proof of Theorem 3.8
The proof relies on the following lemma.

Lemma . ([]) Let E be an infinite dimensional Banach space and let � ∈ C(E,R)
be even, satisfy (PS), and �() = . If E = E ⊕ E, where E is finite dimensional, and �

satisfies:

(�) � is bounded from above on E.
(�) For each finite dimensional subspace Ẽ ⊂ E, there are positive constants ρ = ρ (̃E) and

σ = σ (̃E) such that � ≥  on Bρ ∩ Ẽ and �|∂Bρ∩Ẽ ≥ σ where Bρ = {x ∈ E;‖x‖ ≤ ρ}.

Then � possesses infinitely many nontrivial critical points.
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Proof of Theorem . The proof relies on Lemma .. We will consider the functional

�(u) = –�(u) = –M̂
(∫ T



|u̇(t)|p(t)

p(t)
dt

)
–

∫ T


F
(
t, u(t)

)
dt.

Then it is easy to see that the critical point of � is still the solution of system (.). Con-
dition (H) implies �() =  and �(u) = �(–u). Similar to the argument of Theorem .,
we see that � is bounded from above on W̃ ,p(t)

T and � satisfies (PS) condition on W ,p(t)
T .

The above discussion shows that we only need to verify condition (�) of Lemma ..
For each finite dimensional subspace Ẽ ⊂ W ,p(t)

T , all norms on Ẽ are equivalent. Hence,
there exist positive constants d and d such that

d

∫ T



∣∣u̇(t)
∣∣p(t) dt ≤ ‖u‖p– ≤ d

(∫ T



∣∣u(t)
∣∣ηp–

dt
) 

η

. (.)

Let s is an arbitrary positive constant, by condition (M) we have

M(s)
M̂(s)

≤ η

s

for every s ∈ [s, +∞), where M̂(s) =
∫ s

 M(σ ) dσ . Integrating this inequality we obtain

∫ s

s

M(σ )
M̂(σ )

dσ = ln
M̂(s)
M̂(s)

≤
∫ s

s

η

σ
dσ = ln

(
s
s

)η

for every s ∈ [s, +∞). Therefore,

M̂(s) ≤ M̂(s)
sη


sη

for every s ∈ [s, +∞). Thus there exist constants m >  and m > , such that

M̂(s) ≤ msη + m (.)

for all s > , where m := M̂(s)
sη

and m := maxs∈[,s] M̂(s).
It follows from (H) that there exist positive constants ϑ and L, such that

[
–

m

(dp–)η
+

ϑ

(d)η

](
L

C

)ηp–

– m > 

and

F(t, u) ≤ –ϑ |u|ηp– (.)

for u ∈ W ,p(t)
T with |u| ≤ L and a.e. t ∈ [, T].

By (.), (.), and (.), for u ∈ Ẽ with ‖u‖ ≤ L
C

, we have

�(u) = –M̂
(∫ T



|u̇(t)|p(t)

p(t)
dt

)
–

∫ T


F
(
t, u(t)

)
dt

≥ –m

(∫ T



|u̇(t)|p(t)

p(t)
dt

)η

– m + ϑ

∫ T



∣∣u(t)
∣∣ηp–

dt
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≥ –
m

(p–)η

(∫ T



∣∣u̇(t)
∣∣p(t) dt

)η

– m + ϑ

∫ T



∣∣u(t)
∣∣ηp–

dt

≥
[

–
m

(dp–)η
+

ϑ

(d)η

]
‖u‖ηp–

– m.

Let ρ = L
C

and σ = [– m
(dp–)η + ϑ

(d)η ]( L
C

)ηp– – m. Thus, condition (�) holds.
Now, the functional � satisfies all hypotheses of Lemma ., so � possesses infinitely

many nontrivial critical points. Thus the proof is finished. �
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