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Abstract
In this paper the classical Hill problem with complex potentials are extended to the
star graph. The definition of the Hill operator on such graph is discussed. The operator
is defined with complex, periodic potentials and using special boundary conditions
connecting values of the functions at the vertices. An explicit description of the
resolvent is given and the spectrum is described exactly, the inverse problem with
respect to the reflection coefficients is solved.
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1 Introduction
The purpose of the present paper is the spectral analysis of a wave propagation in a layered,
inhomogeneous medium, such as a branching tube or a system of joined strings.

It is well known [–] that wave propagation in a one-dimensional non-conservative
medium in a frequency domain is described by the Schrödinger equation,

–y′′(x,λ) +
[
iλp(x) + q(x)

]
y(x,λ) = λy(x,λ), x ∈ R,

where R is the real axis, λ is the wave number (known as the momentum), λ is the energy,
p(x) describes the joint effect of absorption and generation of energy, and q(x) describes
the regeneration of the force density.

As a model of layered, inhomogeneous medium we will use a special type of noncompact
graph, star graph, that is, a flexible mathematical construction with single vertex in which
a finite number of edges Nk = [,∞), k = , , , . . . , n, are joined. The models which can
be obtained by investigating differential operators on the graphs have both features of
ordinary and partial differential operators.

In the problem of spectral analysis of a system of branching strings, we have the following
correspondence: the strings correspond to the edges of the graphs and the points of the
junctions of the strings correspond to the interior vertices.
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Then for studying wave propagation on branching strings we must consider the system
of equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

–y′′
 (x,λ) + [λp(x) + q(x)]y(x,λ) = λy(x,λ),

–y′′
(x,λ) + [λp(x) + q(x)]y(x,λ) = λy(x,λ),

–y′′
(x,λ) + [λp(x) + q(x)]y(x,λ) = λy(x,λ),

· · ·
–y′′

n(xn,λ) + [λpn(xn) + qn(xn)]yn(xn,λ) = λyn(xn,λ),

()

with the following boundary conditions at the initial points of the positive half axis satis-
fied:

y(,λ) = y(,λ) = y(,λ) = · · · = yn(,λ), ()

y′
(,λ) + y′

(,λ) + y′
(,λ) + · · · + y′

n(,λ) = , ()

in the space

L(G) =
n⊕

k=

L[ok ,∞),

where the notation ok with subscript k to denote the initial point  of the kth positive
half axis is used and the direct sum of the spaces is denoted by

⊕
. The prime denotes the

derivative with respect to space coordinate and λ is a complex number.
We assume that the potentials pk(xk) and qk(xk), k = , , , are of the form

pk(xk) =
∞∑

n=

pkneinxk ,
∞∑

n=

n|pkn| < ∞; ()

qk(xk) =
∞∑

n=

qkneinxk ,
∞∑

n=

|qkn| < ∞. ()

For simplicity in deriving the results, without any loss of generality, in the future we will
consider the case n = .

In particular, spectral analyses of the operator with the periodic potential of the type
q(x) =

∑∞
n= qneinx in L(–∞, +∞) have been studied by Gasymov [], Shin [], Carlson [,

], Guillemin and Uribe [], and Pastur and Tkachenko []. As a final remark we mention
[, –]. More information as regards the potentials can be found in [].

Now we define the space L(G)

L(G) =
⊕

k=

L(Nk),

with scalar product

(f , g)L(G) =
∑

k=

(fk , gk)L(Nk ),
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and we consider the operator LG

LG =
⊕

k=

Lk ,

where

Lk = –d/dx
k + λpk(xk) + qk(xk) ()

with domain

D(LG) =
{

y(x)|yk(x), y′
k(x) ∈ AC[, R] for all R > , y() = y() = y()

y′
() + y′

() + y′
() = , yk(x), y′′

k (x) ∈ L
(
R

+)
, k = , , 

}
.

Then the considered problem ()-() can be interpreted as a study of the operator

LG =
⊕

k=

Lk

on noncompact graph introduced as above.
The idea of investigation of quantum particles confined to a graph is rather old. The

first justification of quasi-one-dimensional motion of electrons in aromatic compounds
was given by Pauling [] and worked out by Ruedenberg and Scherr [] in . Within
the framework of the proposed approach each chemical bound is replaced by a narrow
tube in which the electron moves and from which he cannot get away. Using honey graphs
with the - Kirchhoff - boundary condition in combination with the Pauli principle, they
reproduced the actual spectra with  percent accuracy.

As a result of that, the problem can be considered as a generalization of the classical
inverse spectral problem for the Schrödinger operator on the line.

For studying the wave propagation on the graph a second order (ordinary) differential
Hamiltonian is used. The Hamiltonian is a Schrödinger operator with zero Dirichlet con-
dition on its boundary. The Dirichlet condition is responsible for confinement of electrons
to the vicinity of graph.

The Schrödinger operator is defined on a graph in the following way. On each edge
the wave function is a solution of the one-dimensional equation. At each vertex the wave
equation must be uniquely defined.

The spectral problems on graphs arise in the investigation of processes in various do-
mains of natural science; from complex molecules to neuron systems. Methods developed
by mathematicians make it possible to describe such problems in terms of the differential
equations by constructing for these problems an exact analogue of the Sturm-Liouville
theory.

Without a claim to completeness of the investigation of inverse problems on graphs we
list here the works of Carlson [], Freiling and Yurko [], Gerasimenko [], Kostrykin
and Schrader [], Kuchment [], and Pivovarchik [, ].
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The paper consists of three sections.
In Section  we introduce the main notions and give a formulation of the direct problem.
In Section  the properties of the spectrum are studied. It is proved that the continuous

spectrum of the operator fill out the Imλ =  axis on which there may exist spectral sin-
gularities coinciding with the numbers n/, n = ±,±,±, . . . . Moreover, there may be a
finite number of eigenvalues outside the interval (–∞, +∞).

In Section  we give a formulation of the inverse problem and provide a constructive
procedure for the solution of the inverse problem.

1.1 Formulation of the direct problem
The spectral problem can be described as follows:

Find the vector yk(xk ,λ) = (yk(x,λ), yk(x,λ), yk(x,λ)) satisfying the Sturm-Liouville
equation

–y′′
k (xk ,λ) + λpk(xk)yk(xk ,λ) + qk(xk)yk(xk ,λ) = λyk(xk ,λ), ()

on Nk , k = , , , coupled at zero by the usual Kirchhoff conditions and complemented
with initial conditions for the functions yk(xk ,λ), k = , , .

(a) yk is continuous at the nodes of the graph, i.e., in particular for our graph

yk(,λ) = yk(,λ) = yk(,λ); ()

(b) the sum of the derivatives over all the branches emanating from a node, calculated
for each node, is zero,

y′
k(,λ) + y′

k(,λ) + y′
k(,λ) = . ()

It is well known (see []) that, for each fixed k = , ,  on the edge Nk , there exists a
fundamental system of solutions of equations () f ±

k (xk ,λ) for λ �= ±n/, n ∈ N , and λ �= 
with the properties:

f ±
k (xk ,λ) = e±iλxk

(

 +
∞∑

n=

V (±k)
n einxk +

∞∑

n=

∞∑

α=n

V (±k)
nα

n ± λ
eiαxk

)

, ()

where the numbers V (±k)
n , V (±k)

nα are defined by the following recurrent formulas:

αV (±k)
α + α

α∑

n=

V (±k)
nα +

α–∑

s=

(

qkα–sV (±k)
s ± pkα–s

s∑

n=

V (±k)
ns

)

+ qkα = , ()

α(α – n)V (±k)
nα +

α–∑

s=n
(qkα–s ∓ n · pkα–s)V (±k)

ns = , ()

αV (±k)
α ±

α–∑

s=

V (±k)
s pkα–s ± pkα = , ()
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and the series

∞∑

n=

n∣∣V ±
n

∣∣;

∞∑

n=


n

∞∑

α=n+

α(α – n)
∣∣V ±

nα

∣∣;

∞∑

n=

n · ∣∣V ±
nn

∣
∣

are convergent.
Let us introduce

f ±
nk(xk) = lim

λ→∓ n

(n ± λ)f ±

k (xk ,λ)

=
∞∑

α=n
V (±k)

nα eiαxk e–i n
 xk . ()

It follows from () that f ±
nk(xk) �=  is valid for V (±k)

nα �= .
From () it follows that the linearly independent solutions of () according to λ = ±n/,

n ∈ N can be determined as

f̃ ±
nk(xk) = lim

λ→∓ n


[
f ±
k (xk ,λ) +

V ±k
nn f ∓

k (xk ,λ)
n ± λ

]
. ()

According to the expressions for f ±
k (xk ,λ) we can say that

f̃ ±
nk(xk) = e–i n

 xk
(
ϕ±

kn(xk) + xkϕ̃
±
kn(xk)

)
,

where ϕ±
kn(xk), ϕ̃±

kn(xk) are periodic functions. Obviously f̃ ±
nk(xk) and f ∓

k (xk ,λ) are linearly
independent solutions of () for λ = ±n/, n ∈ N .

Linearly independent solutions of equation () corresponding to λ =  are defined as

f +
k (xk , ), and

df +
k (xk , )

dλ
= (ixk)

[
f +
k (xk , ) + o()

]
, |xk| → ∞. ()

As a solution of the problem we will understand a matrix

Y (x,λ) =
[
yjk(xk ,λ)

]
k,j=,,

on the noncompact graph on the basis of the following requirements:
.

LGY = λY ;

. yjk(xk ,λ) is a solution on the ray Nk = [,∞), k = , , ;
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.

yjk(xk ,λ) = Tjk(λ)f +
k (xk ,λ), k �= j; ()

and

ykk(xk ,λ) = f –
k (xk ,λ) + Rkk(λ)f +

k (xk ,λ), k = , , . ()

According to the physical meaning of the solutions Y (x,λ) = [yjk(xk ,λ)]k,j=,,, it is natu-
ral to say that Tkj(λ) are the transmission coefficients and Rkk(λ) are the reflection coeffi-
cients for equation ().

The coefficients Tkj(λ) and Rkk(λ) can be found by writing down the boundary conditions
(), () for the solution yjk(xk ,λ).

To be specific, suppose k = , then

f –
 (,λ) + R(λ)f +

 (,λ) = T(λ)f +
 (,λ) = T(λ)f +

 (,λ),

f –′
 (,λ) + R(λ)f +′

 (,λ) + T(λ)f +′
 (,λ) + T(λ)f +′

 (,λ) = .

We solve these equations for R(λ), T(λ) and T(λ). We note that, for the Wronskian
of the solutions, W [f +

 (,λ), f –
 (,λ)] = iλ, we obtain

R(λ) =

∣∣
∣∣∣

–f –
 (,λ) –f +

 (,λ) 
–f –

 (,λ)  –f +
 (,λ)

–f –′
 (,λ) f +′

 (,λ) f +′
 (,λ)

∣∣
∣∣∣

∣∣∣
∣∣

f +
 (,λ) –f +

 (,λ) 
f +
 (,λ)  –f +

 (,λ)
f +′
 (,λ) f +′

 (,λ) f +′
 (,λ)

∣∣∣
∣∣

=
[f –

 (,λ)f +
 (,λ)f +

 (,λ)]′

[f +
 (,λ)f +

 (,λ)f +
 (,λ)]′

= –
f –
 (,λ)

f +
 (,λ)

+
iλ

f +
 (,λ)f +

 (,λ)G(λ)
,

T(λ) =

∣
∣∣
∣∣

f +
 (,λ) –f –

 (,λ) 
f +
 (,λ) –f –

 (,λ) –f +
 (,λ)

f +′
 (,λ) –f –′

 (,λ) f +′
 (,λ)

∣
∣∣
∣∣

∣
∣∣∣
∣

f +
 (,λ) –f +

 (,λ) 
f +
 (,λ)  –f +

 (,λ)
f +′
 (,λ) f +′

 (,λ) f +′
 (,λ)

∣
∣∣∣
∣

=
iλ

f +
 (,λ)f +

 (,λ)G(λ)
,

T(λ) =

∣∣
∣∣
∣

f +
 (,λ) –f +

 (,λ) –f –
 (,λ)

f +
 (,λ)  –f –

 (,λ)
f +′
 (,λ) f +′

 (,λ) –f –′
 (,λ)

∣∣
∣∣
∣

∣∣
∣∣∣

f +
 (,λ) –f +

 (,λ) 
f +
 (,λ)  –f +

 (,λ)
f +′
 (,λ) f +′

 (,λ) f +′
 (,λ)

∣∣
∣∣∣

=
iλ

f +
 (,λ)f +

 (,λ)G(λ)
,

where

G(λ) =
f +′
 (,λ)
f +
 (,λ)

+
f +′
 (,λ)
f +
 (,λ)

+
f +′
 (,λ)
f +
 (,λ)

.
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2 The properties of the spectrum
To study the spectrum of the operator LG at first we calculate the kernel of the resolvent
of the operator (LG – λE). Note that every solution �k(xk ,λ) of the problem on the edge
Nk = [,∞), k = , , , is a linear combination of the functions ykk(xk ,λ), yjk(xk ,λ), j �= k,
j, k = , , , and can be written in the form

�k(xk ,λ) = C(k)
j (xk)ykk(xk ,λ) + C(k)

j (xk)yjk(xk ,λ), j �= k, j, k = , , ,

where C(k)
j (xk) and C(k)

j (xk) are such that conditions ()-() hold for �k(xk ,λ).
We will construct the resolvent of the operator LG for Imλ > .
To this aim, we solve the problem

–y′′
k (xk ,λ) + λpk(xk)yk(xk ,λ) + qk(xk)yk(xk ,λ) = λyk(xk ,λ) + ϕk(xk),

k = , , , ()

in the space L[k ,∞). Here ϕk(xk) is an arbitrary function belonging to the space
L[k ,∞), k = , , .

By taking into account the relation

W
[
ykk(xk ,λ), yjk(xk ,λ)

]
= iλTjk(λ)

to find C(k)
j (xk) and C(k)

j (xk) we have

C(k)
j (xk) =


iλTjk(λ)

∫ ∞

xk

yjk(tk ,λ)ϕk(tk) dtk + C(k)
j (∞),

C(k)
j (xk) =


iλTjk(λ)

∫ xk

k

ykk(tk ,λ)ϕk(tk) dtk + C(k)
j (ok),

where xk ∈ [k ,∞) = Nk and C(k)
j (∞), C(k)

j (ok) are arbitrary numbers.
Then

�k(xk ,λ) =


iλTjk(λ)

∫ ∞

xk

ykk(xk ,λ)yjk(tk ,λ)ϕk(tk) dtk + C(k)
j (∞)ykk(xk ,λ)

+


iλTjk(λ)

∫ xk

k

yjk(xk ,λ)ykk(tk ,λ)ϕk(tk) dtk

+ C(k)
j (ok)yjk(xk ,λ), j �= k, j, k = , , .

By virtue of the condition �k(•,λ) ∈ L[k ,∞), ykk(xk ,λ) /∈ L[ok ,∞), yjk(xk ,λ) ∈ L[ok ,
∞) we find that C(k)

j (∞) = .
Then

�k(xk ,λ) =


iλTjk(λ)

[∫ ∞

xk

ykk(xk ,λ)yjk(tk ,λ)ϕk(tk) dtk

+
∫ xk

ok

yjk(xk ,λ)ykk(tk ,λ)ϕk(tk) dtk

]

+ C(k)
j (ok)yjk(xk ,λ), j �= k, j, k = , , , ()
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and

�k(ok ,λ) =


iλTjk(λ)

∫ ∞

k

ykk(ok ,λ)yjk(tk ,λ)ϕk(tk) dtk + C(k)
j (ok)yjk(ok ,λ),

j �= k, j, k = , , .

Let us denote

Ik(λ) =


iλTjk(λ)

∫ ∞

k

yjk(tk ,λ)ϕk(tk) dtk ,

C(k)
 (λ) = C(k)

j (ok)Tjk(λ);

then by taking into account () we have

�k(ok ,λ) = ykk(ok ,λ)Ik(λ) + C(k)
 (λ)f +

k (ok ,λ).

For finding the constants C(k)
 (λ), k = , , , we will use the boundary conditions ()-()

and obtain

C
 (λ)f +

 (o,λ) – C
 (λ)f +

 (o,λ) = y(o,λ)I(λ) – y(o,λ)I(λ),

C
 (λ)f +

 (o,λ) – C
 (λ)f +

 (o,λ) = y(o,λ)I(λ) – y(o,λ)I(λ),

C
 (λ)f ′+

 (o,λ) + C
 (λ)f ′+

 (o,λ) + C
 (λ)f ′+

 (o,λ)

= –y′
(o,λ)I(λ) – y′

(o,λ)I(λ) – y′
(o,λ)I(λ).

The system of equations can be written as

F(λ) · C(λ) = Y (λ)

where for f +
k = f +

k (ok ,λ), ykk = ykk(ok ,λ)

F(λ) =

⎛

⎜
⎝

f +
 –f +

 
f +
  –f +



f ′+
 f ′+

 f ′+


⎞

⎟
⎠ ,

C(λ) =

⎛

⎜
⎝

C
 (λ)

C
 (λ)

C
 (λ)

⎞

⎟
⎠ ,

and

Y (λ) = –

⎛

⎜
⎝

yI(λ) – yI(λ)
yI(λ) – yI(λ)

y′
I(λ) + y′

I(λ) + y′
I(λ)

⎞

⎟
⎠ .

From this we find that

C(λ) = F–(λ) · Y (λ)
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with

F–(λ) =

(
f ′+
 f +

 –f +
 f ′+

 f +
 f +


f ′+
 f +

 –f +
 f ′+

 f +
 f ′+

 f +
 f +


f +
 f +

 f ′+
 f +

 –f +
 f ′+

 –f +
 f +



)

�

and

� = det F(λ) =
[
f +
 · f +

 · f +

]′.

By using the last relation we can find the coefficients C(k)
 (λ), k = , , , as

Ck
 (λ) = βk

 (λ)I(λ) + βk
 (λ)I(λ) + βk

 (λ)I(λ).

To be specific, suppose k = , then

β
 (λ) =

–yf +′
 f +

 + yf +
 f +′

 – y′
f +

 f +


�
,

β
(λ) =

yf +′
 f +

 – y′
f +

 f +


�
,

β
(λ) =

yf +
 f +′

 – y′
f +

 f +


�
.

By taking into account () we can rewrite equation () as

�k(xk ,λ) =


iλ

[∫ ∞

xk

ykk(xk ,λ)f +
k (tk ,λ)ϕk(tk) dtk +

∫ xk

ok

f +
k (xk ,λ)ykk(tk ,λ)ϕk(tk) dtk

]

+
∑

j=

βk
j (λ)
iλ

∫ ∞

oj

f +
j (tj,λ)f +

k (xk ,λ)ϕ(tj) dtj, k = , , .

It is readily seen that the function �(x,λ) = (�(x,λ),�(x,λ),�(x,λ)) where

�k(xk ,λ) =
∑

j=

∫ ∞

oj

Gkj(xk , tj,λ)ϕ(tj) dtj, k = , , ,

with

Gkk(xk , tk ,λ) =


iλ

⎧
⎨

⎩
[ykk(xk ,λ) + βk

k (λ)f +
k (xk ,λ)]f +

k (tk ,λ), ok < xk < tk < ∞,

[ykk(tk ,λ) + βk
k (λ)f +

k (tk ,λ)]f +
k (xk ,λ), ok < tk < xk < ∞,

()

and

Gjk(xk , tj,λ) =
βk

j (λ)
iλ

f +
k (xk ,λ)f +

j (tj,λ), ok < xk < ∞, oj < tj < ∞, j �= k, j, k = , , , ()

are sufficiently smooth and satisfy the boundary conditions () and (), i.e. they are con-
tained in the domain of the operator LG. Thus, the constructed ‘spectral’ Green’s function

G(x, t,λ) =

⎧
⎨

⎩
Gkk(xk , tk ,λ),

Gjk(xk , tj,λ),
j �= k, j, k = , , ,
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is the kernel of the resolvent (LG – λE)–, which is an integral operator. The poles of the
resolvent (poles of the Green’s function) are eigenvalues of the operator LG and can be
found as zeros of the determinants of the matrices that participate in the construction of
the Green’s function.

A point λ ∈ σ (LG) where σ (LG) is the set of spectrum of the operator LG we call a
spectral singularity of the operator LG, in the sense of Naimark [], if it is not an isolated
eigenvalue of LG, but G(x, t,λ) → ∞ as λ ∈ ρ(λ) (ρ(λ) is the set of all regular points of the
operator LG) and λ → λ.

Note that self-adjoint operators have no spectral singularities and for non-self-adjoint
operators the spectral singularities correspond to resonance states with vanishing spectral
width [].

Thus, the procedure described above makes it possible to obtain explicitly the resolvent
and calculate its poles.

So, we proved the following theorem.

Theorem  Assume F(λ) is nonsingular i.e. F–(λ) exists, then for any

ϕ = {ϕ,ϕ,ϕ}, ϕk ∈ L(Nk), k = , , ,

the unique solution �(x,λ) = (�(x,λ),�(x,λ),�(x,λ)) of (), ()-() is given by

�k(xk ,λ) =
∑

j=

∫ ∞

oj

Gkj(xk , tj,λ)ϕ(tj) dtj, k = , , ,

where Gjk(xk , tj,λ), j, k = , , , are determined by ()-().

Theorem  The operator LG has no real eigenvalue.

Proof We recall that equation () has fundamental solutions f ±
k (xk ,λ) in the case λ �=

,±n/. Then for the case λ �= ,±n/ the solution of equation () on the edge Nk ,
k = , , , can be written in the form

yk(xk ,λ) = Cf +
k (xk ,λ) + Cf –

k (xk ,λ).

So, the solution of equation () belonging to L(G) =
⊕

k= L[ok ,∞) and satisfying the
conditions ()-() is necessarily has C =  and C = , yk(xk ,λ) = . That shows that equa-
tion () has only a trivial solution belonging to L(G) =

⊕
k= L[ok ,∞) for λ ∈ (–∞, +∞),

λ �= ,±n/.
If as linearly independent solutions () and () of () according to λ = ±n/ or λ = 

are taken instead of f ±
k (xk ,λ) then a similar result also will be valid. So we proved that LG

has no real eigenvalue. �

Theorem  The eigenvalues of operator LG are finite and coincide with the zeros of the
function �(λ).
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Proof From equation () it is easy to see that for j = , , 

∣
∣f +

j (,λ)
∣
∣ =  +

∞∑

n=

∣
∣V (+j)

n
∣
∣ +

∞∑

n=

∞∑

α=n

∣∣
∣∣

V (+j)
αn

n + λ

∣∣
∣∣

<  +
∞∑

n=

∣∣V (+j)
n

∣∣ +
∞∑

n=

∞∑

α=n

|V (+j)
αn |

√
(n +  Reλ) +  Im λ

<  +
∞∑

n=

∣∣V (+j)
n

∣∣ +


|Imλ|
∞∑

n=

∞∑

α=n

α

n
∣∣V (+j)

αn
∣∣.

Therefore, as |λ| → ∞ we obtain f +
j (,λ) = Cj + o(), j = , , . Then for � = det F(λ) we

get the following asymptotic equalities:

�(λ) = iλC + o(),

where C is a constant.
This asymptotic equality shows that the eigenvalues of the operator LG are finite and

coincide with the zeros of the function �(λ).
The theorem is proved. �

Theorem  The spectrum of the operator LG consists of the continuum spectrum filling
the axis –∞ < λ < +∞ on which there may exist spectral singularities coinciding with the
numbers ±n/, n ∈ N .

Proof In order for all numbers λ ∈ (–∞, +∞) to belong to the continuous spectra it suf-
fices to show that the operator has no real eigenvalue, the domain of RLG–λI (the resolvent
set) of the operator (LG – λI) is dense in L(G), and the range of RLG–λI is not equal to
L(G).

The absence of real spectra of LG was proved above in Theorem .
To show that the domain of RLG–λI (the resolvent set) of the operator (LG –λI) is dense

in L(G) we must prove that the orthogonal complement of the set RLG–λE consists of only
the zero element.

It is well known that the orthogonal complement of the set RLG–λE coincides with the
space of the solutions of the equation L∗

Gf = λf where the operator L∗
G is adjoint to the

operator LG.
Let ψk(xk) ∈ L[ok , +∞), ψk(xk) �=  and

∫ +∞

k

(
LGfk – λfk

)
ψk(xk) dxk = , k = , , , ()

be satisfied for any fk(xk) ∈ D(LG).
From () it follows that ψk(xk) ∈ D(L∗

G) and ψk(xk) are eigenfunctions of the operator
L∗

G corresponding to the eigenvalues λ.
In fact ψk(xk) is the solution of the equation

–z′′
k +

[
iλpk(xk) + qk(xk)

]
zk = λzk ()
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belonging to L(G). We found that ψk(xk) = , since the operator generated by the expres-
sion standing at the left hand side of () is an operator of type LG.

This contradiction shows that the domain of RLG–λI of the operator (LG – λI) is every-
where dense in L(G).

Now let us prove that the range of RLG–λI is not equal to L(G). For this purpose we
have to show that there is a function f (x) from the space L(G) for which the equation

LGy = f ()

has no solution.
Indeed for the compact supported function f (x) = (f(x), f(x), f(x)) defined on L(G)

by

f (x) =

⎧
⎨

⎩
ϕ(x) if  ≤ x ≤ a,

 if x > a,

where

ϕ(x) =
(
ϕ(x),ϕ(x),ϕ(x)

)

is a solution of the following problem:

LGϕ = ,

ϕ(,λ) = , ϕ′(,λ) = 

on L(,∞) equation () has no solution. To prove this fact we assume the contrary. Let
equation () have a solution belonging to L(G). Then from Theorem  it follows that for
x > a the function y(x,λ) will be a solution of () only under the condition

y(x,λ) = y′(x,λ) = .

Then from () we obtain

(f , ϕ̄) = (LGy, ϕ̄)

=
∫ +∞


Ly(x)ϕ(x) dx +

∫ +∞


Ly(x)ϕ(x) dx +

∫ +∞


Ly(x)ϕ(x) dx

=
[
y′

(x)ϕ(x) – y(x)ϕ′
(x)

]|ax= +
[
y′

(x)ϕ(x) – y(x)ϕ′
(x)

]|ax=

+
[
y′

(x)ϕ(x) – y(x)ϕ′
(x)

]|ax= +
∫ a


y(x)Lϕ(x) dx

+
∫ a


y(x)Lϕ(x) dx +

∫ a


y(x)Lϕ(x) dx

=
[
y()ϕ′

() + y()ϕ′
() + y()ϕ′

()
]

–
[
y′

()ϕ() + y′
()ϕ() + y′

()ϕ()
]

=
[
y() ·  + y() ·  + y() · 

]
–

[
y′

() + y′
() + y′

()
]

= ;
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on the other hand it is easy to see that

(f , ϕ̄) =
∑

k=

∫ +∞


ϕ̄k(xk)ϕk(xk) dxk =

∑

k=

∫ a



∣
∣ϕk(xk)

∣
∣ dxk > .

This contradiction shows that equation () has no solution belonging to L(G). So it is
proved that the range of RLG–λI is not equal to L(G).

From () we find that the functions

f ±
k (xk ,λ) =

f ±
nk(xk)

n ± λ
+ �±

k (xk ,λ),

where �±
k (xk ,λ), have no poles at the points ∓n/, n ∈ N .

By using this fact it is easy to show that the Green’s function G(x, t,λ) has poles of first
order at the points λ = ± n

 , n ∈ N . Therefore λ = ± n
 , n ∈ N is a spectral singularity of the

operator LG.
The theorem is proved. �

3 The inverse spectral problem on star graph
We will consider recovering the differential operator on each fixed edge.

Since the coefficients Rkk(λ) may be found by the using matching conditions ()-() at a
central vertex, it is natural to formulate the inverse problem as: recovering of the potentials
pk(xk) and qk(xk) at each edge by the reflection coefficients Rkk(λ).

Inverse problem: Given the spectral data, the reflection coefficients Rkk(λ) on each edge
Nk , construct the potentials pk(xk) and qk(xk) where k = , , .

Theorem  In each fixed edge k = , , , n ∈ N ,

lim
λ→n/

(n – λ)Rkk(λ) = V (–k)
nn ,

lim
λ→– n


(n + λ)


Rkk(λ)

= V (k)
nn ,

are satisfied.

Proof It is well known that the functions f +
k (xk ,λ), f –

k (xk ,λ) are linearly independent and
their Wronskian is equal to iλ.

Then from () it follows that the Wronskian of the functions f ±
nk(xk), f ∓

k (xk ,∓n/) is
equal to zero, and therefore they are linearly dependent. Thus

f ±
nk(xk) = S±

nkf ∓
k (xk ,∓n/).

Comparing the formulas for these functions we see that S±
nk = V (±k)

nn .
Therefore

f ±
nk(xk) = V (±k)

nn f ∓
k (xk ,∓n/). ()
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Taking into account () it is easy to verify that

lim
λ→± n


(n ∓ λ)

f ∓
k (,λ)

f ±
k (,λ)

=
V (∓k)

nn f ±
k (,±n/)

f ±
k (,±n/)

= V (∓k)
nn

and

lim
λ→± n


(n ∓ λ)

iλ

f ±
 (,λ)f ±

 (,λ)[ f ±′
 (,λ)
f ±
 (,λ)

+ f +′
 (,λ)
f +
 (,λ) + f +′

 (,λ)
f +
 (,λ) ]

= .

Consequently we can find all numbers V (±k)
nn from the relations

lim
λ→ n


(n – λ)Rkk(λ) = lim

λ→ n

(n – λ)

f –
k (,λ)

f +
k (,λ)

+ lim
λ→ n


(n – λ)

iλ

f +
 (,λ)f +

 (,λ)[ f +′
 (,λ)
f +
 (,λ) + f +′

 (,λ)
f +
 (,λ) + f +′

 (,λ)
f +
 (,λ) ]

= V (–k)
nn

and

lim
λ→– n


(n + λ)


Rkk(λ)

= lim
λ→– n


(n + λ)

[f +
 (,λ)f +

 (,λ)f +
 (,λ)]′

[f –
 (,λ)f +

 (,λ)f +
 (,λ)]′

= lim
λ→– n


(n + λ)

f +
k (,λ)

f –
k (,λ)

+ lim
λ→– n


(n + λ)

iλ

f –
 (,λ)f –

 (,λ)[ f –′
 (,λ)
f –
 (,λ) + f +′

 (,λ)
f +
 (,λ) + f +′

 (,λ)
f +
 (,λ) ]

= V (k)
nn .

The theorem is proved. �

Now to reconstruct of the potentials pk(xk) and qk(xk) for given Rkk(λ), we first attempt
to find explicit connections between the sequences V (±k)

n,n , V (±k)
n,α and V (∓k)

α .
Taking into account () we get

∞∑

α=n
V (±k)

nα eiαxk e–i n
 xk =V (±k)

nn ei n
 xk

(

 +
∞∑

n=

V (∓k)
n einxk +

∞∑

n=

∞∑

α=n

V (∓k)
nα

n + n

)

or

V (±k)
mα+m = V (±k)

mm

(

V (∓k)
α +

α∑

n=

V (∓k)
nα

n + m

)

, m,α = , , , . . . . ()

These relations are the fundamental equations for the reconstruction of pnk(xk) and
qnk(xk) from the known V ±k

nα , V ±k
n .

We propose to make the dependence of V ±k
nα , on V ±k

α explicit.
The method applied in this paper is the synthesis of methods presented by Pastur and

Tkachenko [] and Jaulent [], and for the benefit of the reader we reintroduce it here.
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Let Ṽ ±k
mα+m, m,α = , , , . . . , be a solution of equation () corresponding to V ±k

α =  and
V̂ ±k

mα+m corresponding to V ±k
α = ±i,

Ṽ ±k
mα+m = V ±k

mm

(

 +
α∑

n=

Ṽ ∓k
nα

n + m

)

,

V̂ ±k
mα+m = V ±k

mm

(

±i +
α∑

n=

V̂ ∓k
nα

n + m

)

.

()

Let γ ±k
mα and β∓k

mα be functions defined as

γ ±k
mα =



[
Ṽ ∓k

mα+m ∓ iV̂ ∓k
mα+m

]
,

β∓k
mα =



[
Ṽ ∓k

mα+m ± iV̂ ∓k
mα+m

]
.

Note that the quantities γ ±k
mα and β∓k

mα are uniquely determined by the recurrent equation
() from the known V ±k

nn .
Then we easily obtain the following:

V ±k
mα+m = V ∓k

α · γ ±k
mα + V ±k

α · β∓k
mα . ()

Equation () shows that, if we can define the sequences V (±k)
n,α and V (∓k)

α from the known
V ±k

nn then the potentials pk(xk) and qk(xk) may be reconstructed uniquely and effectively
from ()-().

Theorem  All numbers V ±k
nα , n > α and V (∓k)

α may be uniquely determined through the
known numbers V ±k

nn .

Proof In fact, if the given V (±k)
n,n uniquely determine all numbers V (∓k)

α then the numbers
V (∓k)

n,α will be determined by ().
Let us denote

xk = itk , λ = –iμ, yk(x) = Yk(t), ()

then from () we obtain the equation

–Yk
′′(t) + μp̄k(itk)Y (tk) + q̄k(itk)Yk(tk) = μYk(t), ()

in which

pk(tk) = ipk(itk) = i
∞∑

n=

pnke–ntk , qk(tk) = –qk(itk) = –
∞∑

n=

qnke–ntk . ()

As a result we obtain equation (), whose potentials exponentially decrease as tk → ∞,
k = , , .

The procedure of analytic continuation allows one to get corresponding results for equa-
tion () from the result of equation ().
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Equation () with potentials () has the solution

f±k(tk ,μ) = e±iμtk

(

 +
∞∑

n=

V ±k
n e–ntk +

∞∑

n=

∞∑

α=n

V ±k
nα

in ± μ
e–αtk

)

()

and the numbers V ±k
n , V ±k

nα are defined by equations ()-().
Then with the help of the () we obtain

f±k(tk ,μ) = ±
k (t)e±iμtk +

∫ ∞

tk

K±
k (tk , uk)e±iμuk duk , ()

where K±
k (tk , uk), ±

k (tk) have the form

K±
k (tk , uk) =


i

∞∑

n=

∞∑

α=n
V ±k

nα e–αtk · e–(uk –tk )n/, ±
k (tk) =  +

∞∑

n=

V ±k
n e–ntk . ()

Rewriting the equality () in the form

∞∑

α=n
V ±k

nα e–αtk · entk / = Vnk±e–ntk /

(

 +
∞∑

m=

V ∓k
m e–mtk +

∞∑

m=

∞∑

α=m

V ∓k
mα

i(m + n)
e–αtk

)

()

and denoting

z±
k (tk + sk) =

∞∑

m=

V ±k
m e–(tk +sk )m/, ()

we obtain the Marchenko type equation

K±
k (tk , sk) = ±

k (tk)z±
k (tk + sk) +

∫ ∞

tk

K∓
k (tk , uk)z±

k (uk + sk) duk . ()

From the general theory of differential equations it is known that

±
k (tk) = e∓i

∫ ∞
xk

pk (tk ) dtk .

By using it we get

+
k (tk) · –

k (tk) = . ()

On the other hand, we easily derive the relation from (),

+
k (tk) – –

k (tk) =
∫ ∞

tk

[
K–(tk , u) – K+(tk , u)

]
du. ()
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The last relations ()-() give us the following system of equations for finding the
dependence of V (±k)

n,α and V (∓k)
α . We have

V (k)
α + V (–k)

α +
α–∑

s=

V (k)
s V (–k)

α–s = ,

V (k)
α – V (–k)

α +
α∑

n=

V (k)
nα – V (–k)

nα

n
= .

()

Then by using () we get

α∑

n=

V (k)
nα – V (–k)

nα

n
=

α∑

n=

V (–k)
α γ +

nα–n + V (k)
α β–

nα–n – V (k)
α γ –

nα–n – V (–k)
α β+

nα–n
n

= V (–k)
α

α∑

n=

γ +
nα–n – β+

nα–n
n

+ V (k)
α

α∑

n=

β–
nα–n – γ –

nα–n
n

.

Finally from () we obtain

V (k)
α

(

 –
α∑

n=

β–
nα–n – γ –

nα–n
n

)

– V (–k)
α

(

 –
α∑

n=

γ +
nα–n – β+

nα–n
n

)

= . ()

Let

�α =
 –

∑α
n=

β–
nα–n–γ –

nα–n
n

 –
∑α

n=
γ +

nα–n–β+
nα–n

n

;

then from () we obtain

V (k)
α = V (–k)

α �α ()

and

V (–k)
α ( + �α) +

α–∑

s=

V (–k)
s V (–k)

α–s �s = . ()

Equations () and () uniquely determined all numbers V (±k)
α . Then from () all

numbers V (±k)
nα are defined.

The theorem is proved. �

Theorem  The specification of the spectral data uniquely determines potentials pk(xk),
qk(xk) on each edge Nk , k = , , .
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