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Then for studying wave propagation on branching strings we must consider the system
of equations

�
���������

���������

…y��
� (x� , � ) + [� � p� (x� ) + q� (x� )]y� (x� , � ) = � � y� (x� , � ),

…y��
� (x� , � ) + [� � p� (x� ) + q� (x� )]y� (x� , � ) = � � y� (x� , � ),

…y��
� (x� , � ) + [� � p� (x� ) + q� (x� )]y� (x� , � ) = � � y� (x� , � ),

· · ·

…y��
n(xn, � ) + [� � pn(xn) + qn(xn)]yn(xn, � ) = � � yn(xn, � ),

(�)

with the following boundary conditions at the initial points of the positive half axis satis-
“ed:

y� (�, � ) = y� (�, � ) = y� (�, � ) = · · · = yn(�, � ), (�)

y�
� (�, � ) + y�

� (�, � ) + y�
� (�, � ) + · · · + y�

n(�, � ) = �, (�)

in the space

L� (G) =
n�

k=�

L� [ok, � ),

where the notationok with subscript k to denote the initial point � of the kth positive
half axis is used and the direct sum of the spaces is denoted by

	
. The prime denotes the

derivative with respect to space coordinate and� is a complex number.
We assume that the potentialspk(xk) andqk(xk), k = �, �, �, are of the form

pk(xk) =
�


n=�

pkneinxk ,
�


n=�

n|pkn| < � ; (�)

qk(xk) =
�


n=�

qkneinxk ,
�


n=�

|qkn| < � . (�)

For simplicity in deriving the results, without any loss of generality, in the future we will
consider the casen = �.

In particular, spectral analyses of the operator with the periodic potential of the type
q(x) =

� �
n=� qne

inx in L� (…� ,+� ) have been studied by Gasymov [� ], Shin [	 ], Carlson [
 ,
� ], Guillemin and Uribe [� ], and Pastur and Tkachenko [�� ]. As a “nal remark we mention
[� , �� …�� ]. More information as regards the potentials can be found in [�� ].

Now we de“ne the spaceL� (G)

L� (G) =
��

k=�

L� (Nk),

with scalar product

(f ,g)L� (G) =
�


k=�

(fk,gk)L� (Nk ),
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and we consider the operatorLG

LG =
��

k=�

Lk,

where

Lk = …d� /dx�
k + � � pk(xk) + qk(xk) (	)

with domain

D(LG) =
�
y(x)|yk(x),y�

k(x) � AC[�, R] for all R > �, y� (�) = y� (�) = y� (�)

y�
� (�) + y�

� (�) + y�
� (�) = �, yk(x),y��

k (x) � L�


R

+�
,k = �, �, �

�
.

Then the considered problem (� )-(� ) can be interpreted as a study of the operator

LG =
��

k=�

Lk

on noncompact graph introduced as above.

The idea of investigation of quantum particles con“ned to a graph is rather old. The

“rst justi“cation of quasi-one-dimensional motion of electrons in aromatic compounds

was given by Pauling [�	 ] and worked out by Ruedenberg and Scherr [�
 ] in ����. Within

the framework of the proposed approach each chemical bound is replaced by a narrow

tube in which the electron moves and from which he cannot get away. Using honey graphs

with the - Kirchho� - boundary condition in combination with the Pauli principle, they

reproduced the actual spectra with �� percent accuracy.

As a result of that, the problem can be considered as a generalization of the classical

inverse spectral problem for the Schrödinger operator on the line.

For studying the wave propagation on the graph a second order (ordinary) di�erential

Hamiltonian is used. The Hamiltonian is a Schrödinger operator with zero Dirichlet con-

dition on its boundary. The Dirichlet condition is responsible for con“nement of electrons

to the vicinity of graph.

The Schrödinger operator is de“ned on a graph in the following way. On each edge

the wave function is a solution of the one-dimensional equation. At each vertex the wave

equation must be uniquely de“ned.

The spectral problems on graphs arise in the investigation of processes in various do-

mains of natural science; from complex molecules to neuron systems. Methods developed

by mathematicians make it possible to describe such problems in terms of the di�erential

equations by constructing for these problems an exact analogue of the Sturm-Liouville

theory.

Without a claim to completeness of the investigation of inverse problems on graphs we

list here the works of Carlson [� ], Freiling and Yurko [�� ], Gerasimenko [�� ], Kostrykin

and Schrader [�� ], Kuchment [�� ], and Pivovarchik [�� , �� ].
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The paper consists of three sections.

In Section� we introduce the main notions and give a formulation of the direct problem.

In Section� the properties of the spectrum are studied. It is proved that the continuous

spectrum of the operator “ll out the Im � = � axis on which there may exist spectral sin-

gularities coinciding with the numbersn/�, n = ± �, ± �, ± �, . . . . Moreover, there may be a

“nite number of eigenvalues outside the interval (…� ,+� ).

In Section � we give a formulation of the inverse problem and provide a constructive

procedure for the solution of the inverse problem.

1.1 Formulation of the direct problem
The spectral problem can be described as follows:

Find the vectoryk(xk, � ) = (yk� (x� , � ),yk� (x� , � ),yk� (x� , � )) satisfying the Sturm-Liouville

equation

…y��
k (xk, � ) + � � pk(xk)yk(xk, � ) + qk(xk)yk(xk, � ) = � � yk(xk, � ), (
)

on Nk , k = �, �, �, coupled at zero by the usual Kirchho� conditions and complemented

with initial conditions for the functions yk(xk, � ), k = �, �, �.

(a) yk is continuous at the nodes of the graph, i.e., in particular for our graph

yk� (�, � ) = yk� (�, � ) = yk� (�, � ); (�)

(b) the sum of the derivatives over all the branches emanating from a node, calculated
for each node, is zero,

y�
k� (�, � ) + y�

k� (�, � ) + y�
k� (�, � ) = �. (�)

It is well known (see [� ]) that, for each “xed k = �, �, � on the edge Nk , there exists a

fundamental system of solutions of equations (
 ) f ±
k (xk, � ) for � �= ± n/�, n � N , and� �= �

with the properties:

f ±
k (xk, � ) = e± i� xk

�

� +
�


n=�

V (± k)
n einxk +

�


n=�

�


� =n

V (± k)
n�

n ± � �
ei� xk

�

, (��)

where the numbersV (± k)
n , V (± k)

n� are de“ned by the following recurrent formulas:

� � V (± k)
� + �

�


n=�

V (± k)
n� +

� …�


s=�

�

qk� …sV (± k)
s ± pk� …s

s


n=�

V (± k)
ns

�

+ qk� = �, (��)

� (� …n)V (± k)
n� +

� …�


s=n

(qk� …s � n · pk� …s)V (± k)
ns = �, (��)

� V (± k)
� ±

� …�


s=�

V (± k)
s pk� …s ± pk� = �, (��)



Efendiev et al. Boundary Value Problems  (2016) 2016:215 Page 5 of 18

and the series

�


n=�

n�
�
�V ±

n
�
�;

�


n=�

�
n

�


� =n+�

� (� …n)
�
�V ±

n�

�
�;

�


n=�

n ·
�
�V ±

nn
�
�

are convergent.

Let us introduce

f ±
nk(xk) = lim

� �� n
�

(n ± � � )f ±
k (xk, � )

=
�


� =n

V (± k)
n� ei� xk e…i n� xk . (��)

It follows from (�� ) that f ±
nk(xk) �= � is valid for V (± k)

n� �= �.

From (�� ) it follows that the linearly independent solutions of (
 ) according to� = ± n/�,

n � N can be determined as

�f ±
nk(xk) = lim

� �� n
�

�
f ±
k (xk, � ) +

V ± k
nn f

�
k (xk, � )

n ± � �

�
. (��)

According to the expressions forf ±
k (xk, � ) we can say that

�f ±
nk(xk) = e…i n� xk



� ±
kn(xk) + xk �� ±

kn(xk)
�
,

where� ±
kn(xk), �� ±

kn(xk) are periodic functions. Obviously�f ±
nk(xk) and f �

k (xk, � ) are linearly

independent solutions of (
 ) for � = ± n/�, n � N .

Linearly independent solutions of equation (
 ) corresponding to� = � are de“ned as

f +
k (xk, �), and

df +
k (xk, �)
d�

= (ixk)
�
f +
k (xk, �) + o(�)

�
, |xk | � � . (�	)

As a solution of the problem we will understand a matrix

Y (x, � ) =
�
yjk(xk, � )

�
k,j=�,�,�

on the noncompact graph on the basis of the following requirements:

.

LGY = � � Y ;

. yjk(xk, � ) is a solution on the ray Nk = [�, � ),k = �, �, � ;
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.

yjk(xk, � ) = Tjk(� )f +
k (xk, � ), k �= j; (�
)

and

ykk(xk, � ) = f …
k (xk, � ) + Rkk(� )f +

k (xk, � ), k = �, �, �. (��)

According to the physical meaning of the solutionsY (x, � ) = [yjk(xk, � )]k,j=�,�,� , it is natu-

ral to say thatTkj(� ) are the transmission coe
cients andRkk(� ) are the re”ection coe
-

cients for equation (
 ).

The coe
cients Tkj(� ) andRkk(� ) can be found by writing down the boundary conditions

(� ), (� ) for the solution yjk(xk, � ).

To be speci“c, supposek = �, then

f …
� (�, � ) + R�� (� )f +

� (�, � ) = T�� (� )f +
� (�, � ) = T�� (� )f +

� (�, � ),

f …�
� (�, � ) + R�� (� )f +�

� (�, � ) + T�� (� )f +�
� (�, � ) + T�� (� )f +�

� (�, � ) = �.

We solve these equations forR�� (� ),T�� (� ) andT�� (� ). We note that, for the Wronskian

of the solutions,W [f +
� (�, � ), f …

� (�, � )] = � i� , we obtain

R�� (� ) =

�
�
�
�
�

…f …
� (�, � ) …f +

� (�, � ) �

…f …
� (�, � ) � …f +

� (�, � )

…f …�
� (�, � ) f +�

� (�, � ) f +�
� (�, � )

�
�
�
�
�

�
�
�
�
�

f +
� (�, � ) …f +

� (�, � ) �

f +
� (�, � ) � …f +

� (�, � )

f +�
� (�, � ) f +�

� (�, � ) f +�
� (�, � )

�
�
�
�
�

=
[f …

� (�, � )f +
� (�, � )f +

� (�, � )]�

[f +
� (�, � )f +

� (�, � )f +
� (�, � )]�

= …
f …
� (�, � )
f +
� (�, � )

+
� i�

f +
� (�, � )f +

� (�, � )G(� )
,

T�� (� ) =

�
�
�
�
�

f +
� (�, � ) …f …

� (�, � ) �

f +
� (�, � ) …f …

� (�, � ) …f +
� (�, � )

f +�
� (�, � ) …f …�

� (�, � ) f +�
� (�, � )

�
�
�
�
�

�
�
�
�
�

f +
� (�, � ) …f +

� (�, � ) �

f +
� (�, � ) � …f +

� (�, � )

f +�
� (�, � ) f +�

� (�, � ) f +�
� (�, � )

�
�
�
�
�

=
� i�

f +
� (�, � )f +

� (�, � )G(� )
,

T�� (� ) =

�
�
�
�
�

f +
� (�, � ) …f +

� (�, � ) …f …
� (�, � )

f +
� (�, � ) � …f …

� (�, � )

f +�
� (�, � ) f +�

� (�, � ) …f …�
� (�, � )

�
�
�
�
�

�
�
�
�
�

f +
� (�, � ) …f +

� (�, � ) �

f +
� (�, � ) � …f +

� (�, � )

f +�
� (�, � ) f +�

� (�, � ) f +�
� (�, � )

�
�
�
�
�

=
� i�

f +
� (�, � )f +

� (�, � )G(� )
,

where

G(� ) =
f +�

� (�, � )
f +
� (�, � )

+
f +�

� (�, � )
f +
� (�, � )

+
f +�

� (�, � )
f +
� (�, � )

.
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2 The properties of the spectrum
To study the spectrum of the operatorLG at “rst we calculate the kernel of the resolvent
of the operator (LG …� � E). Note that every solution� k(xk, � ) of the problem on the edge
Nk = [�, � ), k = �, �, �, is a linear combination of the functions ykk(xk, � ), yjk(xk, � ), j �= k,
j,k = �, �, �, and can be written in the form

� k(xk, � ) = C(k)
� j (xk)ykk(xk, � ) +C(k)

� j (xk)yjk(xk, � ), j �= k, j,k = �, �, �,

whereC(k)
� j (xk) andC(k)

� j (xk) are such that conditions (� )-(� ) hold for � k(xk, � ).
We will construct the resolvent of the operatorLG for Im � > �.
To this aim, we solve the problem

…y��
k (xk, � ) + � � pk(xk)yk(xk, � ) + qk(xk)yk(xk, � ) = � � yk(xk, � ) + � k(xk),

k = �, �, �, (��)

in the spaceL� [� k, � ). Here � k(xk) is an arbitrary function belonging to the space
L� [� k, � ), k = �, �, �.

By taking into account the relation

W
�
ykk(xk, � ),yjk(xk, � )

�
= � i� Tjk(� )

to “nd C(k)
� j (xk) andC(k)

� j (xk) we have

C(k)
� j (xk) =

�
� i� Tjk(� )

� �

xk
yjk(tk, � )� k(tk)dtk + C(k)

� j (� ),

C(k)
� j (xk) =

�
� i� Tjk(� )

� xk

� k

ykk(tk, � )� k(tk)dtk + C(k)
� j (ok),

wherexk � [� k, � ) = Nk andC(k)
� j (� ),C(k)

� j (ok) are arbitrary numbers.
Then

� k(xk, � ) =
�

� i� Tjk(� )

� �

xk
ykk(xk, � )yjk(tk, � )� k(tk)dtk + C(k)

� j (� )ykk(xk, � )

+
�

� i� Tjk(� )

� xk

� k

yjk(xk, � )ykk(tk, � )� k(tk)dtk

+ C(k)
� j (ok)yjk(xk, � ), j �= k, j,k = �, �, �.

By virtue of the condition � k(€,� ) � L� [� k, � ),ykk(xk, � ) /� L� [ok, � ), yjk(xk, � ) � L� [ok,
� ) we “nd that C(k)

� j (� ) = �.
Then

� k(xk, � ) =
�

� i� Tjk(� )

� � �

xk
ykk(xk, � )yjk(tk, � )� k(tk)dtk

+
� xk

ok
yjk(xk, � )ykk(tk, � )� k(tk)dtk

�

+ C(k)
� j (ok)yjk(xk, � ), j �= k, j,k = �, �, �, (��)
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and

� k(ok, � ) =
�

� i� Tjk(� )

� �

� k

ykk(ok, � )yjk(tk, � )� k(tk)dtk + C(k)
� j (ok)yjk(ok, � ),

j �= k, j,k = �, �, �.

Let us denote

Ik(� ) =
�

� i� Tjk(� )

� �

� k

yjk(tk, � )� k(tk)dtk,

C(k)
� (� ) = C(k)

� j (ok)Tjk(� );

then by taking into account (�
 ) we have

� k(ok, � ) = ykk(ok, � )Ik(� ) +C(k)
� (� )f +

k (ok, � ).

For “nding the constantsC(k)
� (� ), k = �, �, �, we will use the boundary conditions (� )-(� )

and obtain

C�
� (� )f +

� (o� , � ) …C�
� (� )f +

� (o� , � ) = y�� (o� , � )I� (� ) …y�� (o� , � )I� (� ),

C�
� (� )f +

� (o� , � ) …C�
� (� )f +

� (o� , � ) = y�� (o� , � )I� (� ) …y�� (o� , � )I� (� ),

C�
� (� )f �+

� (o� , � ) +C�
� (� )f �+

� (o� , � ) +C�
� (� )f �+

� (o� , � )

= …y�
�� (o� , � )I� (� ) …y�

�� (o� , � )I� (� ) …y�
�� (o� , � )I� (� ).

The system of equations can be written as

F(� ) ·C(� ) = Y (� )

where for f +
k = f +

k (ok , � ), ykk = ykk(ok , � )

F(� ) =

�

�
�

f +
� …f +

� �

f +
� � …f +

�

f �+
� f �+

� f �+
�

�

�
� ,

C(� ) =

�

�
�

C�
� (� )

C�
� (� )

C�
� (� )

�

�
� ,

and

Y (� ) = …

�

�
�

y�� I� (� ) …y�� I� (� )

y�� I� (� ) …y�� I� (� )

y�
�� I� (� ) + y�

�� I� (� ) + y�
�� I� (� )

�

�
� .

From this we “nd that

C(� ) = F…�(� ) · Y (� )
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with

F…�(� ) =

�
f �+
� f +

� …f +
� f �+

� f +
� f +

�
f �+
� f +

� …f +
� f �+

� f +
� f �+

� f +
� f +

�
f +
� f +

� f �+
� f +

� …f +
� f �+

� …f +
� f +

�

�

�

and

� = detF(� ) =
�
f +
� · f +

� · f +
�

� �
.

By using the last relation we can “nd the coe
cientsC(k)
� (� ), k = �, �, �, as

Ck
� (� ) = � k

� (� )I� (� ) + � k
� (� )I� (� ) + � k

� (� )I� (� ).

To be speci“c, supposek = �, then

� �
� (� ) =

…y�� f +�
� f +

� + y�� f +
� f +�

� …y�
�� f +

� f +
�

�
,

� �
� (� ) =

y�� f +�
� f +

� …y�
�� f +

� f +
�

�
,

� �
� (� ) =

y�� f +
� f +�

� …y�
�� f +

� f +
�

�
.

By taking into account (�
 ) we can rewrite equation (�� ) as

� k(xk, � ) =
�

� i�

� � �

xk
ykk(xk, � )f +

k (tk, � )� k(tk)dtk +
� xk

ok
f +
k (xk, � )ykk(tk, � )� k(tk)dtk

�

+
�


j=�

� k
j (� )

� i�

� �

oj
f +
j (tj, � )f +

k (xk, � )� (tj)dtj, k = �, �, �.

It is readily seen that the function� (x, � ) = (� � (x� , � ), � � (x� , � ), � � (x� , � )) where

� k(xk, � ) =
�


j=�

� �

oj
Gkj(xk,tj, � )� (tj)dtj, k = �, �, �,

with

Gkk(xk,tk, � ) =
�

� i�

�
�

�
[ykk(xk, � ) + � k

k (� )f +
k (xk, � )]f +

k (tk, � ), ok < xk < tk < � ,

[ykk(tk, � ) + � k
k (� )f +

k (tk, � )]f +
k (xk, � ), ok < tk < xk < � ,

(��)

and

Gjk(xk,tj, � ) =
� k
j (� )

� i�
f +
k (xk, � )f +

j (tj, � ), ok < xk < � ,oj < tj < � , j �= k, j,k = �, �, �, (��)

are su
ciently smooth and satisfy the boundary conditions (� ) and (� ), i.e. they are con-
tained in the domain of the operatorLG. Thus, the constructed •spectral• Green•s function

G(x,t, � ) =

�
�

�
Gkk(xk,tk, � ),

Gjk(xk,tj, � ),
j �= k, j,k = �, �, �,
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is the kernel of the resolvent (LG …� � E)…�, which is an integral operator. The poles of the

resolvent (poles of the Green•s function) are eigenvalues of the operatorLG and can be

found as zeros of the determinants of the matrices that participate in the construction of

the Green•s function.

A point � � � � (LG) where � (LG) is the set of spectrum of the operatorLG we call a

spectral singularity of the operatorLG, in the sense of Naimark [�� ], if it is not an isolated

eigenvalue ofLG, but G(x,t, � ) � � as� � 	 (� ) (	 (� ) is the set of all regular points of the

operatorLG) and � � � � .

Note that self-adjoint operators have no spectral singularities and for non-self-adjoint

operators the spectral singularities correspond to resonance states with vanishing spectral

width [ �� ].

Thus, the procedure described above makes it possible to obtain explicitly the resolvent

and calculate its poles.

So, we proved the following theorem.

Theorem  Assume F(� ) is nonsingular i.e. F…�(� ) exists, then for any

� = {� � , � � , � � }, � k � L� (Nk), k = �, �, �,

the unique solution � (x, � ) = (� � (x� , � ), � � (x� , � ), � � (x� , � )) of (
 ), (� )-(� ) is given by

� k(xk, � ) =
�


j=�

� �

oj
Gkj(xk,tj, � )� (tj)dtj, k = �, �, �,

where Gjk(xk,tj, � ), j,k = �, �, �, are determined by (�� )-(�� ).

Theorem  The operator LG has no real eigenvalue.

Proof We recall that equation (
 ) has fundamental solutionsf ±
k (xk, � ) in the case� �=

�, ± n/�. Then for the case � �= �, ± n/� the solution of equation (
 ) on the edgeNk ,

k = �, �, �, can be written in the form

yk(xk, � ) = C� f +
k (xk, � ) +C� f …

k (xk, � ).

So, the solution of equation (
 ) belonging toL� (G) =
	 �

k=� L� [ok, � ) and satisfying the

conditions (� )-(� ) is necessarily hasC� = � and C� = �, yk(xk, � ) = �. That shows that equa-

tion (
 ) has only a trivial solution belonging toL� (G) =
	 �

k=� L� [ok, � ) for � � (…� ,+� ),

� �= �, ± n/�.

If as linearly independent solutions (�� ) and (�	 ) of (
 ) according to� = ± n/� or � = �

are taken instead off ±
k (xk, � ) then a similar result also will be valid. So we proved thatLG

has no real eigenvalue. �

Theorem  The eigenvalues of operator LG are finite and coincide with the zeros of the
function � (� ).
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Proof From equation (�� ) it is easy to see that forj = �, �, �

�
�f +
j (�, � )

�
� = � +

�


n=�

�
�V (+j)

n
�
� +

�


n=�

�


� =n

�
�
�
�
V (+j)

� n

n + � �

�
�
�
�

< � +
�


n=�

�
�V (+j)

n
�
� +

�


n=�

�


� =n

|V (+j)
� n |

�
(n + � Re � )� + � Im� �

< � +
�


n=�

�
�V (+j)

n
�
� +

�
|Im � |

�


n=�

�


� =n

�
n

�
�V (+j)

� n
�
�.

Therefore, as|� | � � we obtainf +
j (�, � ) = Cj + o(�), j = �, �, �. Then for � = detF(� ) we

get the following asymptotic equalities:

� (� ) = � i� C + o(�),

whereC is a constant.

This asymptotic equality shows that the eigenvalues of the operatorLG are “nite and

coincide with the zeros of the function� (� ).

The theorem is proved. �

Theorem  The spectrum of the operator LG consists of the continuum spectrum filling
the axis …� < � < +� on which there may exist spectral singularities coinciding with the
numbers ± n/�, n � N .

Proof In order for all numbers� � (…� ,+� ) to belong to the continuous spectra it suf-

“ces to show that the operator has no real eigenvalue, the domain ofRLG…� � I (the resolvent

set) of the operator (LG …� � I) is dense inL� (G), and the range ofRLG…� � I is not equal to

L� (G).

The absence of real spectra ofLG was proved above in Theorem� .

To show that the domain ofRLG…� � I (the resolvent set) of the operator (LG …� � I) is dense

in L� (G) we must prove that the orthogonal complement of the setRLG…� � E consists of only

the zero element.

It is well known that the orthogonal complement of the setRLG…� � E coincides with the

space of the solutions of the equationL�
Gf = � � f where the operatorL�

G is adjoint to the

operatorLG.

Let 
 k(xk) � L� [ok , +� ), 
 k(xk) �= � and

� +�

� k



LGfk …� � fk

�

 k(xk)dxk = �, k = �, �, �, (��)

be satis“ed for anyfk(xk) � D(LG).

From (�� ) it follows that 
 k(xk) � D(L�
G) and 
 k(xk) are eigenfunctions of the operator

L�
G corresponding to the eigenvalues� .

In fact 
 k(xk) is the solution of the equation

…z��
k +

�
i� pk(xk) + qk(xk)

�
zk = � � zk (��)
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belonging toL� (G). We found that 
 k(xk) = �, since the operator generated by the expres-

sion standing at the left hand side of (�� ) is an operator of typeLG.

This contradiction shows that the domain ofRLG…� � I of the operator (LG …� � I) is every-

where dense inL� (G).

Now let us prove that the range ofRLG…� � I is not equal toL� (G). For this purpose we

have to show that there is a functionf (x) from the spaceL� (G) for which the equation

LGy = f (��)

has no solution.

Indeed for the compact supported functionf (x) = (f� (x� ), f� (x� ), f� (x� )) de“ned on L� (G)

by

f (x) =

�
�

�
� (x) if � 	 x 	 a,

� if x > a,

where

� (x) =


� � (x� ), � � (x� ), � � (x� )

�

is a solution of the following problem:

LG� = �,

� (�, � ) = �, � �(�, � ) = �

on L� (�, � ) equation (�� ) has no solution. To prove this fact we assume the contrary. Let

equation (�� ) have a solution belonging toL� (G). Then from Theorem� it follows that for

x > a the function y(x, � ) will be a solution of (�� ) only under the condition

y(x, � ) = y�(x, � ) = �.

Then from (�� ) we obtain

(f , �̄ ) = (LGy, �̄ )

=
� +�

�
L� y� (x� )� � (x� )dx� +

� +�

�
L� y� (x� )� � (x� )dx� +

� +�

�
L� y� (x� )� � (x� )dx�

=
�
y�

� (x� )� � (x� ) …y� (x� )� �
� (x� )

�
|ax� =� +

�
y�

� (x� )� � (x� ) …y� (x� )� �
� (x� )

�
|ax� =�

+
�
y�

� (x� )� � (x� ) …y� (x� )� �
� (x� )

�
|ax� =� +

� a

�
y� (x� )L� � � (x� )dx�

+
� a

�
y� (x� )L� � � (x� )dx� +

� a

�
y� (x� )L� � � (x� )dx�

=
�
y� (�) � �

� (�) + y� (�) � �
� (�) + y� (�) � �

� (�)
�

…
�
y�

� (�) � � (�) + y�
� (�) � � (�) + y�

� (�) � � (�)
�

=
�
y� (�) · � + y� (�) · � + y� (�) · �

�
…

�
y�

� (�) + y�
� (�) + y�

� (�)
�

= �;
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on the other hand it is easy to see that

(f , �̄ ) =
�


k=�

� +�

�
�̄ k(xk)� k(xk)dxk =

�


k=�

� a

�

�
� � k(xk)

�
� � dxk > �.

This contradiction shows that equation (�� ) has no solution belonging toL� (G). So it is

proved that the range ofRLG…� � I is not equal toL� (G).

From (�� ) we “nd that the functions

f ±
k (xk, � ) =

f ±
nk(xk)
n ± � �

+ � ±
k (xk, � ),

where� ±
k (xk, � ), have no poles at the points� n/�, n � N .

By using this fact it is easy to show that the Green•s functionG(x,t, � ) has poles of “rst

order at the points� � = ± n
� ,n � N . Therefore� = ± n

� ,n � N is a spectral singularity of the

operatorLG.

The theorem is proved. �

3 The inverse spectral problem on star graph
We will consider recovering the di�erential operator on each “xed edge.

Since the coe
cientsRkk(� ) may be found by the using matching conditions (� )-(� ) at a

central vertex, it is natural to formulate the inverse problem as: recovering of the potentials

pk(xk) andqk(xk) at each edge by the re”ection coe
cientsRkk(� ).

Inverse problem: Given the spectral data, the re”ection coe
cientsRkk(� ) on each edge

Nk , construct the potentialspk(xk) andqk(xk) wherek = �, �, �.

Theorem  In each fixed edge k = �, �, �, n � N ,

lim
� � n/�

(n … �� )Rkk(� ) = V (…k)
nn ,

lim
� � …n

�

(n + � � )
�

Rkk(� )
= V (k)

nn ,

are satisfied.

Proof It is well known that the functions f +
k (xk, � ), f …

k (xk, � ) are linearly independent and

their Wronskian is equal to �i� .

Then from (�� ) it follows that the Wronskian of the functions f ±
nk(xk), f

�
k (xk, � n/�) is

equal to zero, and therefore they are linearly dependent. Thus

f ±
nk(xk) = S±

nkf
�
k (xk, � n/�).

Comparing the formulas for these functions we see thatS±
nk = V (± k)

nn .

Therefore

f ±
nk(xk) = V (± k)

nn f �
k (xk, � n/�). (�	)
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Taking into account (�	 ) it is easy to verify that

lim
� �± n

�

(n � � � )
f �
k (�, � )

f ±
k (�, � )

=
V (� k)
nn f ±

k (�, ± n/�)

f ±
k (�, ± n/�)

= V (� k)
nn

and

lim
� �± n

�

(n � � � )
� i�

f ±
� (�, � )f ±

� (�, � )[ f
± �
� (�, � )

f ±
� (�, � )

+ f +�
� (�, � )
f +
� (�, � ) +

f +�
� (�, � )
f +
� (�, � ) ]

= �.

Consequently we can “nd all numbersV (± k)
nn from the relations

lim
� � n

�

(n… �� )Rkk(� ) = lim
� � n

�

(n … �� )
f …
k (�, � )
f +
k (�, � )

+ lim
� � n

�

(n… �� )
� i�

f +
� (�, � )f +

� (�, � )[ f
+�
� (�, � )
f +
� (�, � ) + f +�

� (�, � )
f +
� (�, � ) +

f +�
� (�, � )
f +
� (�, � ) ]

= V (…k)
nn

and

lim
� � …n

�

(n + � � )
�

Rkk(� )
= lim

� � …n
�

(n + � � )
[f +

� (�, � )f +
� (�, � )f +

� (�, � )]�

[f …
� (�, � )f +

� (�, � )f +
� (�, � )]�

= lim
� � …n

�

(n + � � )
f +
k (�, � )
f …
k (�, � )

+ lim
� � …n

�

(n + � � )
� i�

f …
� (�, � )f …

� (�, � )[ f
…�
� (�, � )
f …
� (�, � ) + f +�

� (�, � )
f +
� (�, � ) +

f +�
� (�, � )
f +
� (�, � ) ]

= V (k)
nn .

The theorem is proved. �

Now to reconstruct of the potentialspk(xk) andqk(xk) for givenRkk(� ), we “rst attempt
to “nd explicit connections between the sequencesV (± k)

n,n , V (± k)
n,� andV (� k)

� .
Taking into account (�� ) we get

�


� =n

V (± k)
n� ei� xk e…i n� xk =V (± k)

nn ei
n
� xk

�

� +
�


n=�

V (� k)
n einxk +

�


n=�

�


� =n

V (� k)
n�

n + n

�

or

V (± k)
m� +m = V (± k)

mm

�

V (� k)
� +

�


n=�

V (� k)
n�

n + m

�

, m, � = �, �, �, . . . . (�
)

These relations are the fundamental equations for the reconstruction ofpnk(xk) and
qnk(xk) from the knownV ± k

n� , V ± k
n .

We propose to make the dependence ofV ± k
n� , onV ± k

� explicit.
The method applied in this paper is the synthesis of methods presented by Pastur and

Tkachenko [�� ] and Jaulent [�	 ], and for the bene“t of the reader we reintroduce it here.
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Let �V ± k
m� +m,m, � = �, �, �, . . . , be a solution of equation (�
 ) corresponding toV ± k

� = � and
�V ± k
m� +m corresponding toV ± k

� = ± i,

�V ± k
m� +m = V ± k

mm

�

� +
�


n=�

�V � k
n�

n + m

�

,

�V ± k
m� +m = V ± k

mm

�

± i +
�


n=�

�V � k
n�

n + m

�

.

(��)

Let � ± k
m� and � � k

m� be functions de“ned as

� ± k
m� =

�
�

�
�V � k
m� +m � i �V � k

m� +m
�
,

� � k
m� =

�
�

�
�V � k
m� +m ± i �V � k

m� +m
�
.

Note that the quantities� ± k
m� and� � k

m� are uniquely determined by the recurrent equation

(�� ) from the knownV ± k
nn .

Then we easily obtain the following:

V ± k
m� +m = V � k

� · � ± k
m� + V ± k

� · � � k
m� . (��)

Equation (�� ) shows that, if we can de“ne the sequencesV (± k)
n,� andV (� k)

� from the known

V ± k
nn then the potentialspk(xk) and qk(xk) may be reconstructed uniquely and e�ectively

from (�� )-(�� ).

Theorem  All numbers V ± k
n� ,n > � and V (� k)

� may be uniquely determined through the
known numbers V ± k

nn .

Proof In fact, if the givenV (± k)
n,n uniquely determine all numbersV (� k)

� then the numbers

V (� k)
n,� will be determined by (�� ).

Let us denote

xk = itk, � = …iµ , yk(x) = Yk(t), (��)

then from (
 ) we obtain the equation

…Yk
�� (t) + � µ p̄k(itk)Y (tk) + q̄k(itk)Yk(tk) = µ � Yk(t), (��)

in which

pk(tk) = ipk(itk) = i
�


n=�

pnke…ntk , qk(tk) = …qk(itk) = …
�


n=�

qnke…ntk . (��)

As a result we obtain equation (�� ), whose potentials exponentially decrease astk � � ,

k = �, �, �.

The procedure of analytic continuation allows one to get corresponding results for equa-

tion (
 ) from the result of equation (�� ).
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Equation (�� ) with potentials (�� ) has the solution

f± k(tk,µ ) = e± iµ tk

�

� +
�


n=�

V ± k
n e…ntk +

�


n=�

�


� =n

V ± k
n�

in ± � µ
e…� tk

�

(��)

and the numbersV ± k
n , V ± k

n� are de“ned by equations (�� )-(�� ).

Then with the help of the (�� ) we obtain

f± k(tk,µ ) = 
 ±
k (t)e± iµ tk +

� �

tk
K±
k (tk,uk)e± iµuk duk, (��)

whereK±
k (tk,uk), 
 ±

k (tk) have the form

K±
k (tk,uk) =

�
� i

�


n=�

�


� =n

V ± k
n� e…� tk · e…(uk…tk )n/� , 
 ±

k (tk) = � +
�


n=�

V ± k
n e…ntk . (��)

Rewriting the equality (�
 ) in the form

�


� =n

V ± k
n� e…� tk · entk /� = Vnk± e…ntk /�

�

� +
�


m=�

V � k
m e…mtk +

�


m=�

�


� =m

V � k
m�

i(m + n)
e…� tk

�

(�	)

and denoting

z±
k (tk + sk) =

�


m=�

V ± k
m e…(tk+sk )m/� , (�
)

we obtain the Marchenko type equation

K±
k (tk,sk) = 
 ±

k (tk)z±
k (tk + sk) +

� �

tk
K �
k (tk,uk)z±

k (uk + sk)duk. (��)

From the general theory of di�erential equations it is known that


 ±
k (tk) = e� i

� �
xk

pk (tk )dtk .

By using it we get


 +
k (tk) · 
 …

k (tk) = �. (��)

On the other hand, we easily derive the relation from (�� ),


 +
k (tk) …
 …

k (tk) =
� �

tk

�
K…(tk,u) …K+(tk,u)

�
du. (��)
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The last relations (�� )-(�� ) give us the following system of equations for “nding the

dependence ofV (± k)
n,� andV (� k)

� . We have

V (k)
� + V (…k)

� +
� …�


s=�

V (k)
s V (…k)

� …s = �,

V (k)
� …V (…k)

� +
�


n=�

V (k)
n� …V (…k)

n�

n
= �.

(��)

Then by using (�� ) we get

�


n=�

V (k)
n� …V (…k)

n�

n
=

�


n=�

V (…k)
� � +

n� …n + V (k)
� � …

n� …n …V (k)
� � …

n� …n …V (…k)
� � +

n� …n

n

= V (…k)
�

�


n=�

� +
n� …n …� +

n� …n

n
+ V (k)

�

�


n=�

� …
n� …n …� …

n� …n

n
.

Finally from (�� ) we obtain

V (k)
�

�

� …
�


n=�

� …
n� …n …� …

n� …n

n

�

…V (…k)
�

�

� …
�


n=�

� +
n� …n …� +

n� …n

n

�

= �. (��)

Let

� � =
� …

� �
n=�

� …
n� …n…� …

n� …n
n

� …
� �

n=�
� +
n� …n…� +

n� …n
n

;

then from (�� ) we obtain

V (k)
� = V (…k)

� � � (��)

and

V (…k)
� (� + � � ) +

� …�


s=�

V (…k)
s V (…k)

� …s � s = �. (��)

Equations (�� ) and (�� ) uniquely determined all numbersV (± k)
� . Then from (�� ) all

numbersV (± k)
n� are de“ned.

The theorem is proved. �

Theorem  The specification of the spectral data uniquely determines potentials pk(xk),
qk(xk) on each edge Nk , k = �, �, �.
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