
Lian et al. Boundary Value Problems  (2016) 2016:219 
DOI 10.1186/s13661-016-0724-2

R E S E A R C H Open Access

Mild solutions to fractional differential
inclusions with nonlocal conditions
Tingting Lian1, Changfeng Xue1 and Shaozhong Deng2*

*Correspondence:
shaodeng@uncc.edu
2Department of Mathematics and
Statistics, University of North
Carolina at Charlotte, Charlotte, NC
28223, United States
Full list of author information is
available at the end of the article

Abstract
This article is concerned with the existence of mild solutions for fractional differential
inclusions with nonlocal conditions in Banach spaces. The results are obtained by
using fractional calculus, Hausdorff measure of noncompactness, and the
multivalued fixed point theorem. The results obtained in the present paper extend
some related results on this topic.
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1 Introduction
Fractional differential equations and inclusions have gained considerable interest due to
their applications in various fields, such as physics, mechanics, and engineering, in part
because they have been found to be more realistic and practical to describe many natural
phenomena [–]. For more details about fractional calculus and fractional differential
equations, we refer the reader to the books by Podlubny [], Sabatier et al. [], Kilbas et
al. [], and the papers by Eidelman and Kochubei [], Lakshmikantham and Vatsala [],
and Agarwal et al. [].

The study of abstract nonlocal differential problems was initiated by Byszewski and Lak-
shmikantham [], who gave three theorems on the existence and uniqueness of the mild,
strong, and classical solutions of a semilinear evolution nonlocal Cauchy problem by us-
ing the method of semigroups and the Banach fixed point theorem and argued there that
a nonlocal condition can be applied in physics with better effects than classical initial con-
ditions. This work was then followed by a lot of other research, and some basic results on
nonlocal differential problems have been obtained [–]. Most results, however, were
obtained with the assumption that the involved semigroup is compact, and one of the
difficulties in these nonlocal problems is how to deal with the compactness of the solu-
tion operator at t = . Many methods and techniques have been developed to avoid this
difficulty. We refer the reader to papers [–] and the references therein.

From the mathematical point of view, it is natural to combine fractional differential
equations with nonlocal conditions. For example, Zhou and Jiao [] discussed the non-
local fractional evolution equations based on the Krasnoselskii fixed point theorem with
the assumption that the involved semigroup is compact and the nonlocal term is Lips-
chitz continuous. Li et al. [] studied the existence of mild solutions to fractional differ-
ential equations by using the Hausdorff measure of noncompactness when the semigroup
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is equicontinuous and the nonlocal term is compact. Ji and Li [] also studied nonlocal
fractional differential equations in general Banach spaces but without any compactness
assumptions to the operator semigroup. Recently, Ji [] studied the control system gov-
erned by a class of abstract nonlocal fractional differential equations. To the best of the
authors’ knowledge, however, few work has been reported on the existence of solutions
for fractional differential inclusions with nonlocal conditions governed by a linear closed
operator that generates an equicontinuous semigroup.

In this paper, we assume that X is a real Banach space with norm ‖ · ‖. Let J = [, b] with
b > . We denote by C(J , X) the Banach space of continuous functions from J into X with
the norm ‖x‖ = supt∈J{‖x(t)‖} for x ∈ C(J , X). We further denote by L(J , X) the space of
Bochner-integrable functions from J into X with the norm given by ‖f ‖L =

∫ b
 ‖f (t)‖dt

for f ∈ L(J , X).
Motivated by the aforementioned previous research, we study the existence of mild so-

lutions to the following fractional semilinear nonlocal differential inclusion:

CDq
t u(t) ∈ Au(t) + F

(
t, u(t)

)
, t ∈ J , (.)

u() = g(u), (.)

where  < q ≤ , CDq
t is the Caputo fractional differential operator of order q, u ∈ C(J , X),

A : D(A) → X is the infinitesimal generator of a strongly continuous semigroup {T(t)}t≥

on X with D(A) representing the domain of the linear operator (usually unbounded) A, F
is an upper-Carathéodory multifunction, and the nonlocal term g is a given function from
C(J , X) into X.

Using the technique of Hausdorff measure of noncompactness and the multivalued fixed
point theorem, we prove some existence results on the fractional semilinear nonlocal dif-
ferential inclusion (.)-(.). We assume that the semigroup {T(t)}t≥ is equicontinuous.
Note that the case of compact {T(t)}t≥ is just a particular case of our assumption. There-
fore, the results in the present paper extend to some extent those in [, ].

This paper is organized as follows. In Section , we present some relevant definitions and
facts about fractional derivative and integral, the Hausdorff measure of noncompactness,
and the set-valued analysis. In Section , we give the existence results of mild solutions for
problem (.)-(.). In Section , an example is given to briefly show a potential application
of our results.

2 Preliminaries
Let N, R, and R

+ be the sets of positive integers, real numbers, and positive real numbers,
respectively. Also, we define the following sets of subsets of X:

P(X) = {B ⊆ X : B is nonempty and bounded},
Pcl(X) = {B ⊆ X : B is nonempty and closed},
Pcp(X) = {B ⊆ X : B is nonempty and compact},
Pcl,cv(X) = {B ⊆ X : B is nonempty, closed, and convex}, and
Pcp,cv(X) = {B ⊆ X : B is nonempty, compact, and convex}.

Now let us recall the definitions of fractional derivative and integral.
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Definition  The Riemann-Liouville fractional integral of order q >  with the lower limit
zero for a function f is defined as

Iqf (t) =


�(q)

∫ t


(t – s)q–f (s) ds, t > , (.)

provided that the right-hand side of (.) is pointwise defined on [,∞), where � is the
gamma function.

Definition  The Caputo fractional derivative of order q >  with the lower limit zero for
a function f is defined as

CDq
t f (t) =


�(n – q)

∫ t


(t – s)n–q–f (n)(s) ds, t > , (.)

where n ∈N is such that q ∈ (n – , n).

If f is an abstract function with values in X, then the integrals in the Definitions  and 
are taken in the Bochner sense. In particular, when  < q < , we have

CDq
t f (t) =


�( – q)

∫ t



f ′(s)
(t – s)q ds, t > .

Now using the probability density function and its Laplace transform developed in [],
we give the following definition of mild solutions to problem (.)-(.).

Definition  A function u ∈ C(J , X) is said to be a mild solution of (.)-(.) if u() = g(u)
and there exists f ∈ L(J , X) such that f (t) ∈ F(t, u(t)) and

u(t) = Tq(t)g(u) +
∫ t


(t – s)q–Sq(t – s)f (s) ds (.)

for t ∈ J , where

Tq(t) =
∫ ∞


hq(θ )T

(
tqθ

)
dθ , (.)

Sq(t) = q
∫ ∞


θhq(θ )T

(
tqθ

)
dθ . (.)

Here hq is the probability density function on (,∞) given by

hq(θ ) =

q
θ––/qωq

(
θ–/q), (.)

where

ωq(θ ) =

π

∞∑

n=

(–)n–θ–nq– �(nq + )
n!

sin(πnq), θ ∈ (,∞). (.)
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Note that hq(θ ) ≥  for θ ∈ (,∞) and it satisfies

∫ ∞


hq(θ ) dθ = , (.)

∫ ∞


θ vhq(θ ) dθ =

�( + v)
�( + qv)

, v ∈ [, ]. (.)

It should be pointed out that Definition  can be regarded as a generalization of many
previous definitions of mild solutions for various differential equations [–, –], in
particular, the definitions used by Zhou and Jiao [], Li et al. [], and Ji and Li [] for
the following nonlocal fractional semilinear differential equation:

CDq
t u(t) = Au(t) + f

(
t, u(t)

)
, t ∈ J ,

u() = g(u),

and the definition introduced by Wang and Zhou [] for the following local fractional
semilinear differential inclusion:

CDq
t u(t) ∈ Au(t) + F

(
t, u(t)

)
, t ∈ J ,

u() = u.

Lemma  The linear operators Tq(t) and Sq(t) have the following properties:
() For any fixed t ≥ , both Tq(t) and Sq(t) are bounded operators, that is, for any

x ∈ X , we have []

∥
∥Tq(t)x

∥
∥ ≤ M‖x‖, (.)

∥
∥Sq(t)x

∥
∥ ≤ Mq

�( + q)
‖x‖, (.)

where M = supt∈J ‖T(t)‖.
() Both Tq(t) and Sq(t) are equicontinuous for t ∈ J if {T(t)}t≥ is equicontinuous.

Proof Property () follows directly from the definitions of Tq(t) and Sq(t), the definition of
the constant M, and properties (.) and (.) of the probability density function. To show
property (), we shall show that both {Tq(t)x : x ∈ B} and {Sq(t)x : x ∈ B} are equicontinu-
ous for any bounded subset B of X. To this end, let  ≤ t < t + h ≤ b, and let ε >  be small
enough. We then have

∥
∥Tq(t + h)x – Tq(t)x

∥
∥ =

∥
∥
∥
∥

∫ ∞


hq(θ )T

(
(t + h)qθ

)
x dθ –

∫ ∞


hq(θ )T

(
tqθ

)
x dθ

∥
∥
∥
∥

≤
∫ ∞


hq(θ )

∥
∥T

(
(t + h)qθ

)
x – T

(
tqθ

)
x
∥
∥dθ

≤
∫ ε


hq(θ )

∥
∥T

(
(t + h)qθ

)
x – T

(
tqθ

)
x
∥
∥dθ

+
∫ ∞

ε

hq(θ )
∥
∥T

(
(t + h)qθ

)
x – T

(
tqθ

)
x
∥
∥dθ
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≤ M‖x‖
∫ ε


hq(θ ) dθ

+
∫ ∞

ε

hq(θ )
∥
∥T

(
(t + h)qθ

)
x – T

(
tqθ

)
x
∥
∥dθ .

By using (.) and the absolute continuity of the integral it is easy to see that the term
M‖x‖ ∫ ε

 hq(θ ) dθ can be made arbitrarily small by choosing ε sufficiently small. On
the other hand, it follows from the Lebesgue dominated convergence theorem and the
equicontinuity of T(t) for t >  that, as h → , we have

∫ ∞

ε

hq(θ )
∥
∥T

(
(t + h)qθ

)
x – T

(
tqθ

)
x
∥
∥dθ → .

Therefore, ‖Tq(t + h)x – Tq(t)x‖ →  as h → . So Tq(t) is equicontinuous.
In the same way we can prove that ‖Sq(t + h)x –Sq(t)x‖ →  as h → , uniformly for all

x ∈ B, and thus Sq(t) is also equicontinuous. �

We recall that for a bounded subset B of the Banach space X, its Hausdorff measure of
noncompactness is defined as

β(B) = inf{ε >  : B has a finite ε-net in X}. (.)

Some basic properties of the Hausdorff measure are presented in the following lemmas.

Lemma  ([]) Let X be a real Banach space. Let B ⊆ X and C ⊆ X be bounded. Then
() B is relatively compact if and only if β(B) = ;
() β(B) = β(B) = β(conv B), where B and conv B represent the closure and the convex

hull of B, respectively;
() β(B) ≤ β(C) when B ⊆ C;
() β(B + C) ≤ β(B) + β(C), where B + C = {x + y : x ∈ B, y ∈ C};
() β(B ∪ C) ≤ max{β(B),β(C)};
() β(λ(B)) ≤ |λ|β(B) for any λ ∈R;
() If the map Q : D(Q) ⊆ X → Z is Lipschitz continuous with constant k, then

βZ(QB) ≤ kβ(B) for any bounded subset B ⊆ D(Q), where Z is a Banach space. and
βZ(·) is the Hausdorff measure of noncompactness associated with Z;

() If {Wn}∞n= is a decreasing sequence of bounded and closed nonempty subsets of X and
limn→∞ β(Wn) = , then

⋂∞
n= Wn is nonempty and compact in X .

Lemma  ([]) If W ⊆ C(J , X) is bounded and equicontinuous, then β(W (t)) is continu-
ous on J , and

β(W ) = sup
t∈J

β
(
W (t)

)
. (.)

Lemma  ([]) If {un}∞n= ⊂ L(J , X) is uniformly integrable, then β({un(t)}∞n=) is measur-
able, and

β

({∫ t


un(s) ds

}∞

n=

)

≤ 
∫ t


β
({

un(s)
}∞

n=

)
ds. (.)
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Lemma  ([]) If B ⊆ X is bounded, then for each ε > , there is a sequence {un}∞n= in B
such that

β(B) ≤ β
({un}∞n=

)
+ ε. (.)

In addition, for completeness, we further include some basic definitions and results on
multivalued maps. For more details about the multivalued maps, see the books by Deim-
ling [] and Hu and Papageorgiou [].

Definition  Let X and Y be two topological spaces.
() A multivalued map F : X → P(Y ) is said to be convex (closed) valued if F(x) is

convex (closed) in Y for all x ∈ X . Recall that P(Y ) represents the set of all nonempty
and bounded subsets of Y .

() F is said to be completely continuous if F(B) is relatively compact for every bounded
subset B of X .

() F is said to have a fixed point if there is x ∈ X such that x ∈ F(x).
() F is said to be upper semicontinuous (u.s.c.) on X if F–(V ) = {x ∈ X : F(x) ⊆ V } is

an open subset of X for every open subset V of Y .
() F is said to be closed if its graph GF = {(x, y) ∈ X × Y : y ∈ F(x)} is a closed subset of

the topological space X × Y , that is, xn → x, yn → y, and yn ∈ F(xn) imply y ∈ F(x).

Remark  Note that if D ⊂ X is closed, F(x) is closed for all x ∈ D, and F(D) is compact,
then F is u.s.c. if and only if F is closed.

Definition  A sequence {fn}∞n= ⊂ L(J , X) is said to be semicompact if
() It is integrably bounded, that is, there is ω ∈ L(J ,R+) such that

∥
∥fn(t)

∥
∥ ≤ ω(t) for a.e. t ∈ J .

() The set {fn(t) : n ∈N} is relatively compact in X for a.e. t ∈ J .

Lemma  ([]) Every semicompact sequence in L(J , X) is weakly compact in the space
L(J , X).

Lemma  ([]) For θ ∈ (, ] and  < a ≤ b, we have

∣
∣aθ – bθ

∣
∣ ≤ (b – a)θ .

3 Main results
Using the Hausdorff measure of noncompactness and the multivalued fixed point theo-
rem, we shall give existence results for the nonlocal initial value problem (.)-(.). First,
we list the hypotheses of our first main result.

(HA) The C semigroup {T(t)}t≥ generated by the linear operator A is equicontinuous.
We denote

M = sup
t∈J

{∥∥T(t)
∥
∥}

.
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(Hg) The nonlocal term g : C(J , X) → X is continuous and compact, and there exists a
constant N >  such that ‖g(u)‖ ≤ N for all u ∈ C(J , X).

(HF) The multivalued operator F : J × X → Pcp,cv(X) satisfies the following hypotheses:
() F is measurable to t for every x ∈ X and u.s.c. to x for a.e. t ∈ J . For every

u ∈ C(J , X), the set

SF (u) =
{

f ∈ L(J , X) : f (t) ∈ F
(
t, u(t)

)
, a.e. t ∈ J

}

is nonempty.
() There exists a function m ∈ L/q (J ,R+) with q ∈ (, q) such that, for any

x ∈ X ,

∥
∥F(t, x)

∥
∥ = sup

{‖y‖ : y ∈ F(t, x)
} ≤ m(t) (.)

for a.e. t ∈ J .
() There exists a constant L >  such that, for any bounded subset D of X , we

have

β
(
F(t, D)

) ≤ Lβ(D) (.)

for a.e. t ∈ J .
(Hη) There exists a function η ∈ C(J ,R+) such that, for each constant λ ∈ (–, ), we have

η(t) ≥ MN +
qM

�( + q)
t(+λ)(–q)

( + λ)(–q) ‖m‖L/q [,t], t ∈ J , (.)

where M, N , q, and m are from (HA), (Hg), and (HF)().

In the proof of the existence results, we also need the following lemmas.

Lemma  ([]) Let X be a Banach space, and F be a multivalued mapping satisfying
(HF)(). Let F : L(J , X) → C(J , X) be a linear continuous mapping. Then the operator

F ◦ SF : C(J , X) → Pcl,cv
(
C(J , X)

)
,

where (F ◦ SF )(u) = F (SF (u)), is a closed graph operator in C(J , X) × C(J , X).

Lemma  ([] (Fixed point theorem)) If W is a bounded, closed, convex, and compact
nonempty subset of X and the map F : W → W is upper semicontinuous with F(x) being
a closed and convex nonempty subset of W for each x ∈ W , then F has at least one fixed
point in W .

Lemma  ([]) Suppose that b ≥ , σ > , and a(t) is a nonnegative function locally
integrable on  ≤ t < b, and suppose that c(t) is nonnegative and locally integrable on  ≤
t < b with

c(t) ≤ a(t) + b
∫ t


(t – s)σ–c(s) ds, t ∈ [, b).
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Then

c(t) ≤ a(t) + μ

∫ t


E′

σ

(
μ(t – s)

)
a(s) ds, t ∈ [, b),

where

μ =
(
b�(σ )

)/σ , Eσ (z) =
∞∑

n=

znσ

�(nσ + )
, E′

σ (z) =
d
dz

Eσ (z).

Now we are ready to prove the following existence result for the nonlocal fractional
differential inclusion (.)-(.).

Theorem  If hypotheses (HA), (Hg), (HF)()()(), and (Hη) are satisfied, then the frac-
tional differential inclusion (.)-(.) has at least one mild solution on J .

Proof In view of (HF)(), for each u ∈ C(J , X), the set SF (u) is nonempty. So we can define
the operator R : C(J , X) → C(J ,X) by

R(u) =
{

v ∈ C(J , X) : v(t) = Tq(t)g(u) +
∫ t


(t – s)q–Sq(t – s)f (s) ds, f ∈ SF (u)

}

.

Then, obviously, the fixed point of the operator R is a mild solution of (.)-(.). So we
shall show that R satisfies all the conditions of Lemma . For convenience, we subdivide
the proof into four steps.

Step . We show that the values of R are convex and closed subsets in C(J , X).
We first prove that R(u) is convex for arbitrary u ∈ C(J , X). Indeed, if v and v belong to

R(u), then there exist f and f belonging to SF (u) such that, for every t ∈ J and i = , ,

vi(t) = Tq(t)g(u) +
∫ t


(t – s)q–Sq(t – s)fi(s) ds.

Let λ ∈ [, ]. Then, for every t ∈ J and i = , , we have

λv(t) + ( – λ)v(t) = Tq(t)g(u) +
∫ t


(t – s)q–Sq(t – s)

(
λf(s) + ( – λ)f(s)

)
ds.

It is easy to see that SF (u) is convex since F has convex values. So λf + ( – λ)f ∈ SF (u),
and thus λv + ( – λ)v ∈ R(u). Therefore, R(u) is convex.

We now prove that R(u) is closed for every u ∈ C(J , X). To this end, suppose that {vn}∞n=

is a sequence in R(u) such that vn → v as n → ∞. Then we need to show that v ∈ R(u).
According to the definition of R, there exists a sequence {fn}∞n= ⊂ SF (u) such that, for every
t ∈ J , we have

vn(t) = Tq(t)g(u) +
∫ t


(t – s)q–Sq(t – s)fn(s) ds. (.)

For any n ≥  and almost all s ∈ (, t], using assumption (HF)(), we obtain

∥
∥fn(s)

∥
∥ ≤ m(s).
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This shows that {fn : n ≥ } is integrably bounded. Moreover, {fn(t) : n ≥ } ⊂ F(t, u(t))
implies that {fn(t) : n ≥ } is relatively compact in X for a.e. t ∈ J . Therefore, the set {fn :
n ≥ } is semicompact. By Lemma  it is weakly compact in L(J , X). We can assume that
fn converges weakly to a function f ∈ L(J , X). Then by Mazur’s lemma there is a sequence
{gn}∞n= ⊆ conv{fn : n ≥ } such that gn converges strongly to f . Since the values of F are
convex and compact, we have that the set SF (u) is convex and compact. So {gn}∞n= ⊆ SF (u),
and f ∈ SF (u).

Moreover, for all t ∈ J , s ∈ (, t] and n ≥ , we have

∥
∥(t – s)q–Sq(t – s)fn(s)

∥
∥ ≤ (t – s)q– Mq

�( + q)
m(s).

Let λ = (q – )/( – q) ∈ (–, ). Using Hölder’s inequality, we get

∫ t


(t – s)q–m(s) ds ≤

(∫ t


(t – s)

q–
–q ds

)–q(∫ t



(
m(s)

) 
q ds

)q

≤ b(+λ)(–q)

( + λ)(–q) ‖m‖L/q [,b] < +∞.

Therefore, according to the Lebesgue dominated convergence theorem, taking n → ∞ on
both sides of (.), we get

v(t) = Tq(t)g(u) +
∫ t


(t – s)q–Sq(t – s)f (s) ds, (.)

which means that v ∈ R(u).
Step . We construct a bounded, convex, closed, and compact nonempty subset W ⊆

C(J , X) such that R maps W into itself.
Let W = {u ∈ C(J , X) : ‖u(t)‖ ≤ η(t), t ∈ J}. It is obvious that W ⊆ C(J , X) is bounded,

closed, and convex. We claim that R(W) ⊆ W. To prove this, let u ∈ W and v ∈ R(u).
Then there exists f ∈ SF (u) such that

v(t) = Tq(t)g(u) +
∫ t


(t – s)q–Sq(t – s)f (s) ds.

According to (.) and assumptions (HF)() and (Hη), for every t ∈ J , we have

∥
∥v(t)

∥
∥ ≤ ∥

∥Tq(t)g(u)
∥
∥ +

∥
∥
∥
∥

∫ t


(t – s)q–Sq(t – s)f (s) ds

∥
∥
∥
∥

≤ MN +
qM

�( + q)

∫ t


(t – s)q–m(s) ds

≤ MN +
qM

�( + q)
t(+λ)(–q)

( + λ)(–q) ‖m‖L/q [,t]

≤ η(t),

which implies that R(W) ⊆ W.
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Moreover, we claim that R(W) is equicontinuous on J . For  ≤ t < t + h ≤ b and any
v ∈ R(W), there exist u ∈ W and f ∈ SF (u) such that

∥
∥v(t + h) – v(t)

∥
∥ ≤ ∥

∥Tq(t + h)g(u) – Tq(t)g(u)
∥
∥ +

∥
∥
∥
∥

∫ t+h


(t + h – s)q–Sq(t + h – s)f (s) ds

–
∫ t


(t – s)q–Sq(t – s)f (s) ds

∥
∥
∥
∥

≤ G + G + G + G,

where

G =
∥
∥Tq(t + h)g(u) – Tq(t)g(u)

∥
∥,

G =
∥
∥
∥
∥

∫ t



[
(t + h – s)q– – (t – s)q–]Sq(t + h – s)f (s) ds

∥
∥
∥
∥,

G =
∥
∥
∥
∥

∫ t


(t – s)q–[Sq(t + h – s) – Sq(t – s)

]
f (s) ds

∥
∥
∥
∥,

G =
∥
∥
∥
∥

∫ t+h

t
(t + h – s)q–Sq(t + h – s)f (s) ds

∥
∥
∥
∥.

We now show that Gi →  as h →  for i = , , , . First, by assumption (HA) and
Lemma () we know that {Tq(t) : t ∈ J} is equicontinuous. Combining this with the com-
pactness of g , we have that G →  as h → , uniformly for all u ∈ W.

Next, for G, from the equicontinuity of {Sq(t) : t ∈ J}, we can conclude that

∫ t



∥
∥(t – s)q–[Sq(t + h – s) – Sq(t – s)

]
f (s)

∥
∥ds → 

as h → , uniformly for all f ∈ SF (u) and u ∈ W. That is, G →  as h → .
Then for G, we note that λ = (q – )/( – q) ∈ (–, ). So for s < t ≤ t + h, we have (t –

s)λ ≥ (t + h – s)λ. Applying Lemma  and noting that  – q ∈ (, ), we get

∣
∣[(t + h – s)λ

]–q –
[
(t – s)λ

]–q ∣∣ ≤ [
(t – s)λ – (t + h – s)λ

]–q .

Accordingly, we have

∣
∣(t + h – s)q– – (t – s)q–∣∣ =

∣
∣
[
(t + h – s)λ

]–q –
[
(t – s)λ

]–q ∣∣

≤ [
(t – s)λ – (t + h – s)λ

]–q .

Therefore, by (.), Lemma (), and Lemma , we get

G ≤
∫ t



∣
∣(t + h – s)q– – (t – s)q–∣∣

∥
∥Sq(t + h – s)f (s)

∥
∥ds

≤ Mq
�( + q)

∫ t



∣
∣(t + h – s)q– – (t – s)q–∣∣m(s) ds

≤ Mq
�( + q)

(∫ t



∣
∣(t + h – s)q– – (t – s)q–∣∣


–q ds

)–q

‖m‖L/q [,b]
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≤ Mq
�( + q)

(∫ t



[
(t – s)λ – (t + h – s)λ

]
ds

)–q

‖m‖L/q [,b]

≤ Mq
( + λ)(–q)�( + q)

[
h+λ + t+λ – (t + h)+λ

]–q‖m‖L/q [,b]

≤ Mq
( + λ)(–q)�( + q)

h(+λ)(–q)‖m‖L/q [,b].

Therefore, G →  as h → .
Finally, for G, we have

G ≤
∫ t+h

t

∣
∣(t + h – s)q–∣∣

∥
∥Sq(t + h – s)f (s)

∥
∥ds

≤ Mq
�( + q)

∫ t+h

t
(t + h – s)q–m(s) ds

≤ Mq
�( + q)

(∫ t+h

t

[
(t + h – s)q–] 

–q ds
)–q

‖m‖L/q [t,t+h]

≤ Mq
�( + q)( + λ)(–q) h(+λ)(–q)‖m‖L/q [t,t+h].

So we also have that G →  as h → . Therefore, we get ‖v(t + h) – v(t)‖ →  as h → ,
implying that R(W) is equicontinuous on J .

Now, let us define a sequence {Wn}∞n= recursively by Wn = convR(Wn–) for all n ≥ .
From the above discussions we know that Wn ⊆ Wn– for all n ≥ . Thus, {Wn}∞n= is a
decreasing sequence of closed, bounded, convex, and equicontinuous subsets of C(J , X).
Set W =

⋂∞
n= Wn. Then W is a closed, bounded, convex, and equicontinuous subset of

C(J , X) and R(W ) ⊆ W . We claim that W is nonempty and compact in C(J , X). Indeed, by
Lemma  and (.), for arbitrary ε > , there exist sequences {uk}∞k= ⊂ Wn and {fk}∞k= ⊂
SF (uk) such that

β
(
Wn+(t)

)
= β

(
conv(RWn)(t)

)
= β

(
(RWn)(t)

)

≤ β
({

Ruk(t)
}∞

k=

)
+ ε

≤ β

(

Tq(t)g
({uk}∞k=

)
+

∫ t


(t – s)q–Sq(t – s)

{
fk(s)

}∞
k= ds

)

+ ε

≤ β
(
Tq(t)g

({uk}∞k=
))

+ β

(∫ t


(t – s)q–Sq(t – s)

{
fk(s)

}∞
k= ds

)

+ ε.

Since g is compact, by Lemma , (.), and (.) we have

β
(
Wn+(t)

) ≤ 
∫ t


(t – s)q–β

(
Sq(t – s)

{
fk(s)

}∞
k=

)
ds + ε

≤ qM
�( + q)

∫ t


(t – s)q–β

(
F
(
s, Wn(s)

))
ds + ε

≤ qML
�( + q)

∫ t


(t – s)q–β

(
Wn(s)

)
ds + ε. (.)



Lian et al. Boundary Value Problems  (2016) 2016:219 Page 12 of 16

Since (.) is true for arbitrary ε > , we must have

β
(
Wn+(t)

) ≤ qML
�( + q)

∫ t


(t – s)q–β

(
Wn(s)

)
ds. (.)

Because {Wn}∞n= is decreasing with respect to n, we define

μ(t) = lim
n→∞β

(
Wn(t)

)
, t ∈ J .

Taking n → ∞ on both sides of (.), we have

μ(t) ≤ qML
�( + q)

∫ t


(t – s)q–μ(s) ds.

By Lemma  we have that μ(t) = , t ∈ J . On the other hand, {Wn}∞n= is bounded and
equicontinuous. Hence, by Lemma  we get β(Wn) = supt∈J β(Wn(t)), which implies that
limn→∞ β(Wn) = . Then it follows from Lemma () that W =

⋂∞
n= Wn is nonempty and

compact in C(J , X).
Step . We show that the graph of R is closed.
Let {un}∞n= ⊂ W with un → u as n → ∞, vn ∈ R(un), and vn → v as n → ∞. We shall

show that v ∈ R(u). Since vn ∈ R(un), there exists fn ∈ SF (un) such that

vn(t) = Tq(t)g(un) +
∫ t


(t – s)q–Sq(t – s)fn(s) ds.

In the sequel, we must show that there exists f ∈ SF (u) such that

v(t) = Tq(t)g(u) +
∫ t


(t – s)q–Sq(t – s)f (s) ds.

Consider the linear operator F : L(J , X) → C(J , X) defined as

F (f )(t) =
∫ t


(t – s)q–Sq(t – s)f (s) ds.

Clearly, F is linear and continuous. Hence, it follows from Lemma  that F ◦SF is a closed
graph operator. Moreover, we have

vn(·) – Tq(·)g(un) ∈F
(
SF (un)

)
.

Since vn → v, un → u, and g is continuous, we obtain

v(·) – Tq(·)g(u) ∈F
(
SF (u)

)
,

that is,

v(t) – Tq(t)g(u) =
∫ t


(t – s)q–S(t – s)f (s) ds

for some f ∈ SF (u), and thus the graph of R is closed.
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Step . We show that R is u.s.c. on W .
As a consequence of the previous proof, we have that W is closed and R(u) is closed for

all u ∈ W . The set R(W ) ⊆ W is compact. Moreover, R is closed. According to Remark ,
we can come to the conclusion that R is u.s.c.

Finally, due to the fixed point of Lemma , R has at least one point u ∈ R(u), and u is
a mild solution to the fractional semilinear differential inclusion (.) with the nonlocal
condition (.). �

Remark  If A generates an analytic semigroup or a differential semigroup {T(t)}t≥,
then {T(t)}t≥ is equicontinuous []. In applications of partial differential equations, such
as parabolic equations and strongly damped wave equations, the corresponding solution
semigroups are analytic. Therefore, the results in this paper have wide applicability.

In Theorem , hypothesis (HF)() may be sometimes difficult to be verified, and also the
mapping g needs to be uniformly bounded. Indeed, if g is compact, then g is bounded on a
bounded subset. Next, we further give an existence result for the fractional differential in-
clusion (.)-(.) under a relatively weak condition of F when g is not uniformly bounded.
For this purpose, we introduce the following two hypotheses:

(Hg′) The nonlocal term g : C(J , X) → X is continuous and compact.
(HF)(′) There exist a function α ∈ L/q (J ,R+) for some given q ∈ (, q) and an increasing

function � : R+ →R
+ such that

∥
∥F(t, x)

∥
∥ ≤ α(t)�

(‖x‖)

for a.e. t ∈ J and all x ∈ X .

Theorem  Assume that hypotheses (HA), (Hg′), and (HF)()(′)() are satisfied. Suppose
that

lim
k→∞

sup

{
M
k

(

γ (k) +
Mq

( + λ)(–q)�( + q)
�(k)b(+λ)(–q)

)}

< , (.)

where γ (k) = sup{‖g(u)‖ : ‖u‖ ≤ k}, M = ‖α‖L/q [,b], and λ = (q – )/( – q) ∈ (–, ).
Then the fractional differential inclusion (.)-(.) has at least one mild solution on J .

Proof By (.) there exists a constant k >  such that

M
(

γ (k) +
Mq

( + λ)(–q)�( + q)
�(k)b(+λ)(–q)

)

< k.

Let W = {u ∈ C(J , X) : ‖u‖ ≤ k} and W = convR(W). Then for any v ∈ W, there exist
u ∈ W and f ∈ SF (u) such that

v(t) = Tq(t)g(u) +
∫ t


(t – s)q–Sq(t – s)f (s) ds.

From (.) and assumption (Hg′) we conclude that, for every t ∈ J , we have
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∥
∥v(t)

∥
∥ ≤ ∥

∥Tq(t)g(u)
∥
∥ +

∥
∥
∥
∥

∫ t


(t – s)q–Sq(t – s)f (s) ds

∥
∥
∥
∥

≤ M
(

γ (k) +
q

�( + q)
�(k)

∫ t


(t – s)q–α(s) ds

)

≤ M
(

γ (k) +
q

�( + q)
�(k)

(∫ t


(t – s)

q–
–q ds

)(–q)

‖α‖L/q [,b]

)

≤ M
(

γ (k) +
Mq

( + λ)(–q)�( + q)
�(k)b(+λ)(–q)

)

< k.

It follows that ‖v‖ = supt∈J{‖v(t)‖} < k. Then W ⊆ W. Set Wn = convR(Wn–) for all n ≥ .
Then we can complete the proof similarly to that of Theorem . �

4 An example
We consider the following fractional partial differential inclusion:

⎧
⎪⎨

⎪⎩

∂
q
t x(t, y) ∈ ∂

y x(t, y) + u(t, x(t, y)),
x(t, ) = x(t,π ) = ,
x(, y) =

∫ 
 h(s) sin( + |x(s, y)|) ds,

(.)

where X = L([,π ];R), ∂
q
t is the Caputo fractional partial derivative of order q with  <

q < , h ∈ L([, ];R), and u : [, ] × X → P(X).
We define the operator A by Az = z′′ with D(A) = {z ∈ X : z and z′ are absolutely

continuous, z′′ ∈ X, z() = z(π ) = }. Then

Az = –
∞∑

n=

n〈z, en〉en, z ∈ D(A),

where en(z) = (/π )/ sin nz,  ≤ z ≤ π , n = , , . . . . Clearly, A generates a strongly contin-
uous semigroup {T(t)}t≥ in X, which is compact and analytic, and it is given by

T(t)z =
∞∑

n=

e–nt〈z, en〉en, z ∈ X.

This implies that A satisfies assumption (HA).
Then system (.) can be reformulated as

{
CDq

t x(t) ∈ Ax(t) + F(t, x(t)),
x() = g(x),

(.)

where x(t)(y) = x(t, y), t ∈ [, ], y ∈ [,π ], and F(t, x(t))(y) = u(t, x(t, y)). The function g :
C([, ], X) → X is given by

g(x)(y) =
∫ 


h(s) sin

(
 +

∣
∣x(s, y)

∣
∣
)

ds.
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If we impose suitable conditions on the above-defined functions for verifying the assump-
tions in Theorem  or Theorem , then we can conclude that (.) admits at least one mild
solution on [, ].
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