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1 Introduction and main results
This paper is concerned with a boundary value problem associated to the conformal defor-
mation of metrics. Let Bn be the unit ball of Rn, n ≥ , equipped with its Euclidean metric
g. Its boundary S

n– is endowed with the standard metric, still denoted by g. Given a
function H : Sn– −→ R, we study the problem of finding a conformal metric g = u 

n– g

whose scalar curvature vanishes inB
n and the corresponding mean curvature on S

n– is H .
More precisely, we investigate the existence of solutions of the following nonlinear PDE
with the Sobolev trace critical exponent:

{
�u =  in B

n,
∂u
∂ν

+ n–
 u = n–

 Hu n
n– on S

n–,
(.)

where ν is the outward unit normal vector on S
n– with respect to the metric g.

Equation (.) has a variational structure. There is a correspondence between the solu-
tions of (.) and the positive critical points of the Euler-Lagrange functional J associated
to problem (.) defined in Section  of this paper. Due to the presence of the critical ex-
ponent in the second equation of (.), the functional J fails to satisfy the Palais-Smale
condition. From the variational view point, it is the occurrence of the loss of compact-
ness and blow-up phenomena. Such a fact follows from the noncompactness of the trace
Sobolev embedding H(Bn) ↪→ L

(n–)
n– (Sn–).

Besides the obvious necessary condition that H must be positive somewhere, there is
a Kazdan-Warner-type obstruction to solve the problem; see []. Many works where de-
voted to the problem trying to understand under what conditions on H equation (.) is

© The Author(s) 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13661-016-0727-z
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-016-0727-z&domain=pdf
mailto:kh_sharaf@yahoo.com


Sharaf Boundary Value Problems  (2016) 2016:221 Page 2 of 19

solvable. See [] and [] for n = , [] and [] for n = , and [–] for higher-dimensional
cases. For related problems, we refer to [, –].

Abdelhedi and Chtioui [] gave an existence result to problem (.) in dimension n ≥ 
through an Euler-Hopf criterium reminiscent to the one given by Li [] for the prescribed
scalar curvature problem on Sn, n ≥ . Their main assumption is the so-called β-flatness
condition. Namely, let H : Sn– → R be a C positive function. We say that H satisfies the
β-flatness condition (f )β : for each critical point y of H , there exists a real number β = β(y)
such that, in some geodesic normal coordinates centered at y, we have

H(x) = H(y) +
n–∑
i=

bi
∣∣(x – y)i

∣∣β + R(x – y), (.)

where bi = bi(y) ∈ R
∗,
∑n

i= bi �= , and
∑[β]

s= |∇sR(z)||z|–β+s = o() as z goes to zero. Here
∇s denotes all possible derivatives of order s, and [β] is the integer part of β .

Set

K =
{

y ∈ Sn–,∇H(y) = 
}

and, for any y ∈K, denote

ĩ(y) = �
{

bk(y),  ≤ k ≤ n – , s.t. bk(y) < 
}

.

Then, (.) has a solution, provided that

n –  < β < n –  and
∑

y∈K+

(–)̃i(y) �= (–)n–,

where K+ = {y ∈K,
∑n–

k= bk(y) < }; see [].
This result was extended in [] for n –  ≤ β < n – , in [] for  < β ≤ n – , and in

[] for  < β ≤ n –  with an additional assumption that H is close to .
Aiming to include a larger class of functions H in the existence results for (.), we con-

tinue in this paper our study of problem (.) under (f )β -condition. We are interested here
in the case of β > n – . We extend the computation of [] and [] to the order β > n – .
As an application, we describe the lack of compactness of the problem and provide some
existence results for some cases of β . More precisely, we prove the following theorems.

Theorem . Let H : Sn– → R, n ≥ , be a C-positive function satisfying (f )β -condition.
There exists a positive constant η such that if

n –  < β < (n – ) + η and
∑

y∈K+

(–)̃i(y) �= (–)n–,

then (.) has a solution. Moreover, for generic H , we have

N ≥
∣∣∣∣(–)n– –

∑
y∈K+

(–)̃i(y)
∣∣∣∣.

Here N denotes the number of solutions of (.).
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Theorem . Let H : Sn– →R, n ≥ , be a C-function satisfying (f )β -condition and close
to . There exists a positive constant η such that if

 < β < (n – ) + η and
∑

y∈K+

(–)̃i(y) �= (–)n–,

then (.) has a solution. Moreover, if we assume that β > n–
 , then for generic H , we get

N ≥
∣∣∣∣(–)n– –

∑
y∈K+

(–)̃i(y)
∣∣∣∣.

Our method to prove Theorems . and . is based on the techniques related to the
critical points at infinity theory of Bahri []. In Section , we state some preliminaries that
prepare the field to apply the approach of Bahri. In Section , we perform an expansion at
infinity of the gradient vector field of J extending that performed in [] and [] to any
order β > n – . In Section , we describe the concentration phenomenon of the problem
and characterize the critical points at infinity associated with (.). Lastly, in Section , we
provide the proofs of Theorems . and ..

2 Preliminary tools
The Euler-Lagrange functional associated with (.) is

J(u) =
(∫

Sn–
Hu

(n–)
n– dσg

) –n
n–

,

defined on 
, the unit sphere of H(Bn) equipped with the norm

‖u‖ =
∫
Bn

|∇u| dvg +
n – 



∫
Sn–

u dσg .

Problem (.) is equivalent to finding critical points of J subjected to the constraint u ∈

+ = {u ∈ 
, u ≥ }. The functional J does not satisfy the Palais-Smale condition on 
+.
The next proposition characterizes the sequences failing the Palais-Smale condition. By a
stereographic projection through an appropriate point in Sn– we can reduce the problem
to R

n
+ = {x = (x′, xn) ∈ R

n, xn > }. Therefore, we will next identify the function H and its
composition with the stereographic projection π , and we will also identify a point x ∈ B

n

by its image by π . See [], p., for the expansion of π . For a ∈ ∂Rn
+ and λ > , let

δ̃(a,λ)(x) = c
λ

n–


(( + λxn) + λ|x′ – a|) n–


,

where x ∈ R
n
+, and c is chosen such that δ̃(a,λ) satisfies

{
�u =  and u >  on R

n
+,

– ∂u
∂xn

= u
n

n– on ∂Rn
+.

(.)
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Let δ(a,λ) be the pull-back of δ̃(a,λ) by the stereographic projection. For ε >  and p ∈ N
∗, let

us define

V (p, ε) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u ∈ 
/∃ a, . . . , ap ∈ Sn–,∃λ, . . . ,λp > ε–,

∃α, . . . ,αp >  satisfying ‖u –
∑p

i= αiδ(ai ,λi)‖ < ε,

| α


n–

i H(ai)

α


n–

j H(aj)
– | < ε ∀i and εij < ε ∀i �= j,

where εij = [ λi
λj

+ λj
λi

+λiλj|ai –aj|] –n
 . If w is a solution of (.), then we also define V (p, ε, w)

as

V (p, ε, w) =
{

u ∈ 
, s.t. ∃α >  satisfying u – αw ∈ V (p, ε) and
∣∣αJ(u)

n–
 – 

∣∣ < ε
}

.

Proposition . ([, ]) Let (uk) be a sequence in 
+ such that J(uk) is bounded and
∂J(uk) goes to zero. Then there exist an integer p ∈N

∗, a sequence (εk) >  such that εk tends
to zero, and an extracted subsequence of (uk), again denoted (uk), such that uk ∈ V (p, εk , w)
for all k ∈N.

Here w is a solution of (.) or zero with V (p, ε, ) = V (p, ε).

For u ∈ V (p, ε, w), we can find an optimal representation. Namely, we have the following:

Proposition . ([, ]) For any p ∈ N
∗, there is εp >  such that if ε ≤ εp and u ∈

V (p, ε, w), then the minimization problem

min
αi>,λi>,ai∈Sn–

h∈Tw(Wu(w))

∥∥∥∥∥u –
p∑

i=

αiδ(ai ,λi) – α(w + h)

∥∥∥∥∥,

has a unique solution (α,λ, a, h), up to a permutation.

In particular, we can write u as follows:

u =
p∑

i=

αiδ(ai ,λi) + α(w + h) + v,

where v belongs to H(Bn) ∩ Tw(Ws(w)) and satisfies (V), Tw(Wu(w)) and Tw(Ws(w)) are
the tangent spaces at w of the unstable and stable manifolds of w for a decreasing pseudo-
gradient of J (see [] for the definitions), and (V) is the following:

(V) :

⎧⎪⎪⎨
⎪⎪⎩

〈v,ψ〉 =  for ψ ∈ {δi, ∂δi
∂λi

, ∂δi
∂ai

, i = , . . . , p},
〈v, w〉 = ,

〈v, h〉 =  for all h ∈ TwWu(w),

where δi = δ(ai ,λi), and 〈·, ·〉 denotes the scalar product defined on H(Bn) by

〈u, v〉 =
∫
Bn

∇u∇v dvg +
n – 



∫
Sn–

uv dσg .
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Notice that Proposition . is also true if we take w =  and, therefore, h =  and u is in
V (p, ε).

We also have the following Morse lemma, which completely gets rid of the v-contri-
butions and shows that they can be neglected with respect to the concentration phe-
nomenon.

Proposition . ([]) There is a C-map that to each (αi, ai,λi, h) such that
∑p

i= αiδ(ai ,λi) +
α(w + h) belongs to V (p, ε, w) associates v = v(α, a,λ, h) such that v is unique and satisfies

J

( p∑
i=

αiδ(ai ,λi) + α(w + h) + v

)
= min

v∈(V)

{
J

( p∑
i=

αiδ(ai ,λi) + α(w + h) + v

)}
.

Moreover,there exists a change of variables v – v → V such that

J

( p∑
i=

αiδ(ai ,λi) + α(w + h) + v

)
= J

( p∑
i=

αiδ(ai ,λi) + α(w + h) + v

)
+ ‖V‖.

At the end of this section, we give the definition of critical point at infinity.

Definition . ([]) A critical point at infinity of Jon 
+ is a limit of a flow line u(s) of
the equation

⎧⎨
⎩

∂u
∂s = –∂J(u(s)),

u() = u,

such that u(s) remains in V (p, ε(s), w) for s ≥ s. Here w is either zero or a solution of (.),
and ε(s) is a positive function tending to zero as s → +∞. Using Proposition ., we can
write u(s) as

u(s) =
p∑

i=

αi(s)δ(ai(s),λi(s)) + α(s)
(
w + h(s)

)
+ v(s).

Denoting α̃i := lims−→+∞ αi(s) and ỹi := lims−→+∞ ai(s), we denote by

p∑
i=

α̃iδ(̃yi ,∞) + α̃w or (̃y, . . . , ỹp, w)∞

such a critical point at infinity. If w �= , then it is said to be of w-type.

3 Asymptotic expansions
In this section, we expand the gradient of J near infinity under the assumption that H
satisfies (f )β -condition. We provide precise estimates of this expansion for any flatness
order β > n –  and improve the previous estimates given in [] and [] for β ≤ n – .
These estimates will be useful to describe the lack of compactness of the problem and so
to characterize the critical points at infinity of J . Next, we will write δi instead of δ(ai ,λi).
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Proposition . Let u =
∑p

j= αjδj ∈ V (p, ε). For any i,  ≤ i ≤ p such that ai ∈ B(y�i ,ρ),
y�i ∈K with β(y�i ) > n – , we have the following two expansions:

(i)
〈
∂J(u),λi

∂δi

∂λi

〉
= –cJ(u)

∑
j �=i

αjλi
∂εij

∂λi
+ O

( n–∑
j=

|ai – y�i |β–j

λ
j
i

)

+ O
(

logλi

λn–
i

)
+ o

(∑
j �=i

εij

)
. (.)

Moreover, if λn–
i |ai – y�i |β < δ, where δ is a fixed very small positive constant, then

(ii)
〈
∂J(u),λi

∂δi

∂λi

〉
= –cJ(u)

∑
j �=i

αjλi
∂εij

∂λi

+ cα
n

n–
i J(u)

n–
n–

[
(
∑n–

k= bk)
(β – (n – ))λn–

i
+ O

(


λn–
i

)]
. (.)

Here c and c are two positive constants.

Proof Let u =
∑p

j= αjδj ∈ V (p, ε). Using (.), (.), and (.) of [], we have

〈
∂J(u),λi

∂δi

∂λi

〉
= J(u)

[
–c

∑
j �=i

αjλi
∂εij

∂λi
– α

n
n–
i J(u)

n–
n–

∫
Sn–

H(x)δ
n

n–
i λi

∂δi

∂λi
dσg

]

+ o
(∑

j �=i

εij

)
. (.)

It remains to expand

I =
∫

Sn–
H(x)δ

n
n–
i λi

∂δi

∂λi
=
∫

Sn–

(
H(x) – H(ai)

)
δ

n
n–
i λi

∂δi

∂λi

since
∫

Sn– δ
n

n–
i λi

∂δi
∂λi

= . Let μ >  be such that B(ai,μ) ⊂ B(y�i ,ρ). Then

I =
∫

B(ai ,μ)

(
H(x) – H(ai)

)
δ

n
n–
i λi

∂δi

∂λi
+ O

(


λn–
i

)
.

Expanding H around ai, we get

H(x) – H(ai) =
n–∑
j=

DjH(ai)(x – ai)j

j!
+ O

(|x – ai|min{β ,n}). (.)

We then have

H(x) – H(ai) =
n–∑
j=

DjH(ai)(x – ai)j

j!
+ O

(|x – ai|n–).
Observe that, after stereographic projection,

δ
n

n–
i λi

∂δi

∂λi
=

n – 


c
(n–)

n–
 λn–

i
 – λ

i |x – ai|
( + λ

i |x – ai|)n .
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The change of variables z = λi(x – ai) yields

I =
n – 


c

(n–)
n–



n–∑
j=

∫
B(,λiμ)

DjH(ai)(z)j

j!λj
i

 – |z|
( + |z|)n dz

+ O
(∫

B(,λiμ)

|z|n–

λn–
i

| – |z||
( + |z|)n dz

)
+ O

(


λn–
i

)
.

Observe that
∫

B(,λiμ)
DH(ai)(z)

 – |z|
( + |z|)n dz = ,

and, under (f )β -condition, for any j = , , . . . , n – ,

∣∣DjH(ai)
∣∣ = O

(|ai – y�i |β–j). (.)

Therefore,

I = O

( n–∑
j=

|ai – y�i |β–j

λ
j
i

)
+ O

(
logλi

λn–
i

)
+ O

(


λn–
i

)
.

Hence, claim (i) of Proposition . follows. To prove (ii), we expand the integral I as follows:

I =
∫

Sn–

(
H(x) – H(y�i )

)
δ

n
n–
i λi

∂δi

∂λi

=
∫

B(ai ,μ)

(
H(x) – H(y�i )

)
δ

n
n–
i λi

∂δi

∂λi
+ O

(
sup
Sn–

∣∣H(x) – H(y�i )
∣∣ ∫

cB(ai ,μ)

∣∣∣∣δ n
n–
i λi

∂δi

∂λi

∣∣∣∣
)

.

Observe that

O
(

sup
Sn–

∣∣H(x) – H(y�i )
∣∣ ∫

cB(ai ,μ)

∣∣∣∣δ n
n–
i λi

∂δi

∂λi

∣∣∣∣
)

= O
(

supSn– |H(x) – H(y�i )|
λn–

i

)

= o
(


λn–

i

)
(.)

as H is close to a constant. Moreover, by (f )β-condition we get

I =
n – 


c

(n–)
n–



∫
B(ai ,μ)

n–∑
k=

bk
∣∣(x – y�i )k

∣∣β  – λ
i |x – ai|

( + λ
i |x – ai|)n λn–

i dx

+ o
(∫

B(ai ,μ)
|x – y�i |β

 – λ
i |x – ai|

( + λ
i |x – ai|)n λn–

i dx
)

+ o
(


λn–

i

)
.

After the change of variables z = λi(x – ai),

I =
n – 


c

(n–)
n–



λ

β

i

n–∑
k=

∫
B(,λiμ)

bk
∣∣zk + λi(ai – y�i )k

∣∣β  – |z|
( + |z|)n dz

+ o
(


λ

β

i

∫
B(,λiμ)

|z|β | – |z||
( + |z|)n dz

)
+ o

(
|ai – y�i |β

∫
Rn

| – |z||
( + |z|)n dz

)
+ o

(


λn–
i

)
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=
n – 


c

(n–)
n–



λ

β

i

n–∑
k=

bk

∫
B(,λiμ)

|zk|β  – |z|
( + |z|)n dz

+ O
( |ai – y�i |

λ
β–
i

∫
B(,λiμ)

|z|β– | – |z||
( + |z|)n dz

)
+ O

(
|ai – y�i |β

∫
Rn

| – |z||
( + |z|)n dz

)

+ o
(


λ

β

i

∫
B(,λiμ)

|z|β | – |z||
( + |z|)n dz

)
+ o

(


λn–
i

)
.

Elementary computation shows that

∫
B(,λiμ)

|zk|β  – |z|
( + |z|)n dz = –

c
(β – (n – ))λn––β

i
+ O(),

where c is a positive constant (since β > n – ) independent of k, and thus

∫
B(,λiμ)

|z|β– | – |z||
( + |z|)n dz =

{
O( 

λ
n–β
i

) + O() if β �= n,

O(logλi) if β = n.

Hence,

I = –c

∑n–
k= bk

(β – (n – ))λn–
i

+ O
( |ai – y�i |

λn–
i

+
|ai – y�i |

λ
β–
i

)

+ O
( |ai – y�i | logλi

λ
β–
i

, if β = n
)

+ O
(|ai – y�i |β

)
+ o

(


λn–
i

)
.

In the case where λn–
i |ai – y�i |β < δ, δ very small, we have

O
(|ai – y�i |β

)
= o

(


λn–
i

)
, taking δ small enough,

O
( |ai – y�i |

λn–
i

)
= o

(


λ
n–+ n–

β

i

)
= o

(


λn–
i

)
,

O
( |ai – y�i |

λ
β–
i

)
= o

(


λ
β–+ n–

β

i

)
= o

(


λn–
i

)
since β > n – ,

O
( |ai – y�i | logλi

λ
β–
i

)
= o

(
logλi

λ
n–+ n–

β

i

)
= o

(


λn–
i

)
.

This concludes the proof of Proposition .. �

Proposition . Let u =
∑p

j= αjδj ∈ V (p, ε). For any i,  ≤ i ≤ p, such that ai ∈ B(y�i ,ρ),
y�i ∈K with β(y�i ) > n – , we have the following expansion:

〈
∂J(u),


λi

∂δi

∂(ai)k

〉

= –
c

λi
α

n
n–
i J(u)

n–
n– bk sign(ai – y�i )k

∣∣(ai – y�i )k
∣∣β– + o

( |ai – y�i |β–

λi

)

+ O

( n–∑
j=

|ai – y�i |β–j

λ
j
i

)
+ o

(

λ

γ

i

)
+ O

(∑
j �=i

εij

)
(.)
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for any γ ∈ (n – , min{β , n}). Here c is a positive constant, and aik , k = , . . . , n – , is the
kth component of ai in some geodesic coordinate system.

Proof The proof follows from the following expansion:

I =
∫

Sn–
H(x)δ

n
n–
i


λi

∂δi

∂(ai)k
dσg

=
∫

B(ai ,μ)

(
H(x) – H(ai)

)
δ

n
n–
i


λi

∂δi

∂(ai)k
+
∫

cB(ai ,μ)

(
H(x) – H(ai)

) 
λi

δ
n

n–
i

∂δi

∂(ai)k
.

After stereographic projection,

δ
n

n–
i


λi

∂δi

∂(ai)k
= (n – )c

(n–)
n–


λn

i (x – ai)k

( + λ
i |x – ai|)n .

Thus,

∫
cB(ai ,μ)

(
H(x) – H(ai)

) 
λi

δ
n

n–
i

∂δi

∂(ai)k
= O

(

λn

i

)
= o

(

λ

γ

i

)
, ∀γ < n.

Using now expansion (.) of H around ai, we obtain

H(x) – H(ai) =
n–∑
j=

DjH(ai)(x – ai)j

j!
+ o

(|x – ai|γ
)

for any n –  < γ < min{n,β}. Therefore,

I = (n – )c
(n–)

n–


n–∑
j=

∫
B(,λiμ)

DjH(ai)(z)j

j!λj
i

zk

( + |z|)n dz

+ o
(∫

Rn

|z|γ +

λ
γ

i ( + |z|)n dz
)

+ o
(


λ

γ

i

)

by taking z = λi(x – ai). Observe now that

∫
B(,λiμ)

DH(ai)(z)zk

( + |z|)n dz =
n–∑
j=

∂H
∂xj

(ai)
∫

B(,λiμ)

zjzk

( + |z|)n dz

=
∂H
∂xk

(ai)
[∫

Rn–

z
k

( + |z|)n dz + O
(


λn–

i

)]

= c
∂H
∂xk

(ai) + O
(


λn–

i

)
.

Using (f )β-condition, we have

∂H
∂xk

(ai) = bkβ sign(ai – y�i )k
∣∣(ai – y�i )k

∣∣β– + o
(|ai – y�i |β–). (.)
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Using (.) and (.), we obtain

I = cbk sign(ai – y�i )k
|(ai – y�i )k|β–

λi

+ o
( |ai – y�i |β–

λi

)
+ O

( n–∑
j=

|ai – y�i |β–j

λ
j
i

)
+ o

(

λ

γ

i

)
.

Hence, Proposition . follows. �

The next propositions deal with the case of β ≤ n – . We improve here the expansions
given in [] and [].

Proposition . Let u =
∑p

j= αjδj ∈ V (p, ε). For any i,  ≤ i ≤ p, such that ai ∈ B(y�i ,ρ),
y�i ∈K with β(y�i ) = n – , we have the following two expansions:

(i)
〈
∂J(u),λi

∂δi

∂λi

〉
= –cJ(u)

∑
j �=i

αjλi
∂εij

∂λi
+ O

( n–∑
j=

|ai – y�i |β–j

λ
j
i

)

+ O
(

logλi

λn–
i

)
+ o

(∑
j �=i

εij

)
. (.)

Moreover, if λi|ai – y�i | is bounded, then we have

(ii)
〈
∂J(u),λi

∂δi

∂λi

〉
= –cJ(u)

∑
j �=i

αjλi
∂εij

∂λi

+ cα
n

n–
i J(u)

n–
n–

(
∑n–

k= bk) logλi

λ
β

i
+ o

(
logλi

λ
β

i

)
. (.)

Proof The proof follows from the previous arguments and []. �

Proposition . Let u =
∑p

j= αjδj ∈ V (p, ε). For any i,  ≤ i ≤ p, such that ai ∈ B(y�i ,ρ),
y�i ∈K with β(y�i ) = n – , we have the following expansion:

〈
∂J(u),


λi

∂δi

∂(ai)k

〉

= –
c

λi
α

n
n–
i J(u)

n–
n– bk sign(ai – y�i )k

∣∣(ai – y�i )k
∣∣β– + o

( |ai – y�i |β–

λi

)

+ O

( n–∑
j=

|ai – y�i |β–j

λ
j
i

)
+ O

(


λn–
i

)
+ O

(∑
j �=i

εij

)
. (.)

Proof The proof proceeds as that of Proposition .. �
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Proposition . Let u =
∑p

j= αjδj ∈ V (p, ε). For any i,  ≤ i ≤ p, such that ai ∈ B(y�i ,ρ),
y�i ∈K with β(y�i ) < n – , we have:

(i)
〈
∂J(u),λi

∂δi

∂λi

〉
= –cJ(u)

∑
j �=i

αjλi
∂εij

∂λi
+ O

( [β]∑
j=

|ai – y�i |β–j

λ
j
i

)

+ O
(


λ

β

i

)
+ o

(∑
j �=i

εij

)
. (.)

Moreover, if λi|ai – y�i | < δ, where δ is a fixed very small positive constant, then

(ii)
〈
∂J(u),λi

∂δi

∂λi

〉
= –cJ(u)

∑
j �=i

αjλi
∂εij

∂λi

+ cα
n

n–
i J(u)

n–
n–

(
∑n–

k= bk)
λ

β

i
+ o

(

λ

β

i

)
+ o

(∑
j �=i

εij

)
. (.)

Proof The proof follows from the proof of Proposition . and []. �

Proposition . Under the assumption of Proposition ., we have:

(i)
〈
∂J(u),


λi

∂δi

∂(ai)k

〉
= –

c

λi
α

n
n–
i J(u)

n–
n– bk sign(ai – y�i )k

∣∣(ai – y�i )k
∣∣β–

+ O

( [β]∑
j=

|ai – y�i |β–j

λ
j
i

)
+ O

(

λ

β

i

)
+ O

(∑
j �=i

εij

)
. (.)

Moreover, if λi|ai – y�i | is bounded, then we have

(ii)
〈
∂J(u),


λi

∂δi

∂(ai)k

〉
= –cα

n
n–
i J(u)

n–
n–

bk

λi

∫
Rn–

∣∣zk + λi(ai – y�i )k
∣∣β

× zk

( + |z|)n dz + o
(


λ

β

i

)
+ O

(∑
j �=i

εij

)
. (.)

Proof The proof follows from that of Proposition . and []. �

4 Critical points at infinity
Using the estimates of the gradient vector field (∂J) obtained in Section , we character-
ize in this section the critical points at infinity associated with problem (.) under (f )β -
condition. First, we rule out the existence of critical points at infinity in V (p, ε), p ≥ .

Theorem . Let H be a positive C-function on Sn–, n ≥ , satisfying (f )β -condition.
There exists η >  such that if

n –  < β < (n – ) + η,

then the potential sets V (p, ε), p ≥ , do not contain any critical points at infinity.

Proof The proof is an immediate consequence of the following proposition. �
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Proposition . Let H be a positive C-function on Sn–, n ≥ , satisfying (f )β -condition.
There exists η >  such that if n –  < β < (n – ) + η, then there exists a pseudo-gradient W

in V (p, ε), p ≥ , such that, for any u =
∑p

i= αiδi ∈ V (p, ε), we have:

(i)
〈
∂J(u), W(u)

〉≤ –c

( p∑
i=


λ

β

i
+

p∑
i=

|∇H(ai)|
λi

+
∑
j �=i

εij

)
,

(ii)
〈
∂J(u + v), W(u) +

∂v
∂(αi, ai,λi)

(
W(u)

)〉≤ –c

( p∑
i=


λ

β

i
+

p∑
i=

|∇H(ai)|
λi

+
∑
j �=i

εij

)
.

Here c is a positive constant independent of u. Moreover, |W| is bounded, and the maxi-
mum of λi,  ≤ i ≤ p, decreases along the flow-lines of W.

Proof Let u =
∑p

i= αiδi ∈ V (p, ε), p ≥ . We order the λi. Without loss of generality, we
can assume that λ ≤ λ ≤ · · · ≤ λp and ai ∈ B(y�i ,ρ), y�i ∈ K, ∀i = , . . . , p. For each index
i, we denote by Zi(u) and Xi(u) the vector fields

Zi(u) = λi
∂δi

∂λi
and Xi(u) =

n–∑
k=

bk sign(ai – y�i )k

λi

∂δi

∂(ai)k
.

We then have the following lemmas.

Lemma . For any i = , . . . , p,

〈
∂J(u), Zi(u)

〉
= –cJ(u)

∑
j �=i

αjλi
∂εij

∂λi
+ o

(∑
j �=i

εij

)
+ o

( |ai – y�i |β–

λi

)
.

Proof Using the expansions of Propositions ., ., and ., for all i = , . . . , p and any
β > n – , we have


λ

β

i
= o(εi) as λi → +∞. (.)

Indeed,


λ

β

i
ε–

i =

λ

β

i

(
λi

λ
+

λ

λi
+ λλi|ai – a|

) n–
 ≤ c

λn–
i

λ
β

i
.

Concerning logλi
λn–

i
, which appears in the case β ≥ n – , we have

logλi

λn–
i

= o(εi) as λi → +∞. (.)

Indeed,

logλi

λn–
i

ε–
i ≤ c

logλi

λi
.
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Last, we discuss the term O(
∑

j≥
|ai–y�i |β–j

λ
j
i

), which appears in all the cases of β > , in three
cases.

• If β > n –  and λn–
i |ai – y�i |β ≥ δ, then we have

O

( n–∑
j=

|ai – y�i |β–j

λ
j
i

)
= o

( |ai – y�i |β–

λi

)
as λ → +∞. (.)

Indeed,

|ai – y�i |β–j

λ
j
i

λi

|ai – y�i |β– =


(λi|ai – y�i |)j–

≤
(


δ

) j–
β 

(λi)(j–)(β–(n–)) .

• If β = n –  and λi|ai – y�i | ≥ 
δ
, then we have

O

( n–∑
j=

|ai – y�i |β–j

λ
j
i

)
= o

( |ai – y�i |β–

λi

)
as δ is small. (.)

• If β < n –  and λi|ai – y�i | ≥ δ, then it is easy to see that if λi|ai – y�i | ≥ 
δ
, then we have

O

( [β]∑
j=

|ai – y�i |β–j

λ
j
i

)
= o

( |ai – y�i |β–

λi

)
as δ is small, (.)

and if δ ≤ λi|ai – y�i | ≤ 
δ
, then we have

O

( [β]∑
j=

|ai – y�i |β–j

λ
j
i

)
= O

(

λ

β

i

)
= o(εi) by (.). (.)

This concludes the proof of Lemma .. �

Lemma . For any i = , . . . , p,

〈
∂J(u), Xi(u)

〉≤ –c
|ai – y�i |β–

λi
+ o

(


λn–
i

)
+ O

(∑
j �=i

εij

)
.

Proof It follows from the expansions of Propositions ., ., and . and from estimates
(.)-(.). �

Lemma . Let m >  be a small constant. Then

〈
∂J(u),

p∑
i=

(
–iZi(u) + mXi(u)

)〉≤ –c

( p∑
i=


λn–

i
+

p∑
i=

|∇H(ai)|
λi

+
∑
j �=i

εij

)
.
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Proof Using Lemmas . and . and (.), we get

〈
∂J(u),

p∑
i=

(
–iZi(u)+mXi(u)

)〉≤ c

[ p∑
i=

∑
j �=i

iλi
∂εij

∂λi
–

p∑
i=

|ai – y�i |β–

λi

]
+o
(∑

j �=i

εij

)
,

taking m small enough. Moreover, for  ≤ i < j ≤ p, we have

iλi
∂εij

∂λi
+ jλj

∂εij

∂λj
≤ –cεij.

Therefore,

〈
∂J(u),

p∑
i=

(
–iZi(u) + mXi(u)

)〉≤ –c

(∑
j �=i

εij +
p∑

i=

|ai – y�i |β–

λi

)
.

Now, using (.), we can replace –
∑

j �=i εij by –
∑p

i=


λ
β
i

. This concludes the proof of
Lemma . since

∣∣∇H(ai)
∣∣∼ |ai – y�i |β–. (.)

�

Now, we must add the index . Let ψ be the following cut-off function:

ψ : R −→R

t �−→ ψ(t) =

{
 if |t| < δ

 ,
 if |t| ≥ δ.

Lemma . There exists η >  such that, for any i = , . . . , p satisfying ai ∈ B(y�i ,ρ), y�i ∈K
with n –  < β < n –  + η, we have

〈
∂J(u),ψ

(
λn–

i |ai – y�i |β
)(

–
n–∑
k=

bk

)
Zi(u) + Xi(u)

〉

≤ –c
(


λ

β

i
+

|∇H(ai)|
λi

)
+ O

(∑
j �=i

εij

)
.

Proof If λn–
i |ai – y�i |β ≤ δ

 , then in the second expansion of Proposition ., we have

O
(


λn–

i

)
= o

( ∑n–
k= bk

(β – (n – ))λn–
i

)

by taking  < (β – (n – )) < η with η small enough. Therefore, we get

〈
∂J(u),

(
–

n–∑
k=

bk

)
Zi(u)

〉
≤ –

c
λn–

i
+ O

(∑
j �=i

εij

)
. (.)

Hence, Lemma . follows in this case from Lemma . and from (.) and (.).
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In the case where λn–
i |ai – y�i |β ≥ δ

 , using the expansion of Proposition . and (.),
we obtain

〈
∂J(u), Xi(u)

〉≤ –c
|ai – y�i |β–

λi
+ o

(

λ

γ

i

)
+ O

(∑
j �=i

εij

)
, (.)

where γ is any real in (n – , min{β , n}).
Choosing γ in ( nβ–(n–)

β
, min{β , n}), we then have


λ

γ

i

λi

|ai – y�i |β– ≤ c


λ
β(γ –n)+(n–)

β

i

= o().

Thus,

〈
∂J(u), Xi(u)

〉 ≤ –c
|ai – y�i |β–

λi
+ O

(∑
j �=i

εij

)

≤ –
c


( |ai – y�i |β–

λi
+


λ

β

i

)
+ O

(∑
j �=i

εij

)
(.)

since


λ

β

i
= o

( |ai – y�i |β–

λi

)
.

Hence, Lemma . follows from the first expansion of Proposition . and from (.), (.),
and (.). �

Lemma . For any i = , . . . , p such that ai ∈ B(y�i ,ρ), y�i ∈K with  < β ≤ n – , we have

〈
∂J(u),ψ

(
λi|ai – y�i |

)(
–

n–∑
k=

bk

)
Zi(u) + Xi(u)

〉
≤ –c

(

λ

β

i
+

|∇H(ai)|
λi

)
+ O

(∑
j �=i

εij

)
.

Proof We refer the reader to the proof of identity (.) in []. �

Corollary . For any i = , . . . , p such that ai ∈ B(y�i ,ρ), y�i ∈K with  < β(y�i ) < n –  + η,
denote

Yi(u) = ψ
(
λn–

i |ai – y�i |β
)(

–
n–∑
k=

bk

)
Zi(u) + Xi(u) if β(y�i ) ∈ (n – , n –  + η),

Yi(u) = ψ
(
λi|ai – y�i |

)(
–

n–∑
k=

bk

)
Zi(u) + Xi(u) if β(y�i ) ∈ (, n – ].

Then we have:

〈
∂J(u), Yi(u)

〉≤ –c
(


λ

β

i
+

|∇H(ai)|
λi

)
+ O

(∑
j �=i

εij

)
.
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Now, if λ << λ, then let

W(u) =
p∑

i=

(
Zi(u) + mXi(u)

)
+ m

(
Y(u)

)
.

By Lemmas . and Corollary ., for m small enough, we obtain

〈
∂J(u), W(u)

〉≤ –c

( p∑
i=


λ

β

i
+

p∑
i=

|∇H(ai)|
λi

+
∑
j �=i

εij

)
.

If λ ∼ λ, then let

W(u) =
p∑

i=

(
Zi(u) + mXi(u)

)
+ mX(u).

By Lemma ., Lemma ., and (.) we get

〈
∂J(u), W(u)

〉≤ –c

( p∑
i=


λ

β

i
+

p∑
i=

|∇H(ai)|
λi

+
∑
j �=i

εij

)
.

This concludes the proof of claim (i) of Proposition .. By the construction, W is
bounded, and the maximum of λi(s), i = , . . . , p, decreases along the flow lines of W. Claim
(ii) of Proposition . follows (as in the Appendix  of []) from (i) and the fact that ‖v̄‖

is small with respect to the absolute value of the upper bound of claim (i) (see Prop. . of
[], which is valid for any β > ). This completes the proof of Proposition .. �

In the following, we characterize the critical point at infinity in V (, ε).

Theorem . Let H be a positive C-function on Sn–, n ≥ , satisfying (f )β -condition.
There exists η >  such that if

 < β < (n – ) + η,

then the only critical points at infinity of J in V (, ε) are

(y)∞ :=


H(y) n–


δ(y,∞), y ∈K+.

The Morse index of (y)∞ is equal to i(y)∞ := (n – ) – ĩ(y).

Proof Let u = αδ(a,λ) ∈ V (, ε). We may assume that a ∈ B(y� ,ρ), y� ∈ K, ρ > . Using
the notation and the result of Corollary ., we obtain

(i)
〈
∂J(u), Y(u)

〉≤ –c
(


λ

β


+
|∇H(a)|

λ

)
,

(ii)
〈
∂J(u + v), Y(u) +

∂v
∂(α, a,λ)

(
W(u)

)〉≤ –c
(


λ

β


+
|∇H(a)|

λ

)
.
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In addition, from the construction of Y we observe that the Palais-Smale condition is
satisfied along each flow line of Y, until the concentration point of the flow a(s) does not
enter some neighborhood of y such that y ∈ K+ since λ(s) decreases on the flow line in
this set. On the other hand, if a(s) is near y� , y� ∈K+, then we observe that λ(s) increases
and goes to +∞. Thus, we obtain a critical point at infinity. In this region, the functional
J can be expanded after a suitable change of variables as

J(αδ(a,λ) + v̄) = J(α̃δ(ã,λ̃))

=
Sn

α̃


n– H(ã) n–


(
 +

(–
∑n–

k= bk)

λ̃
β

)
.

Thus, the index of such critical point at infinity is n –  – ĩ(y). Since J behaves in this region
as 

H
n–


, this finishes the proof of Theorem .. �

The next proposition is extracted from [], Lemma .. As mentioned in [], it is still
correct for any β > n–

 .

Proposition . Let w be a solution of (.). Assume that the function H satisfies condi-
tion (f )β with β > n–

 . Then, for each p ∈N
�, there is no critical point at infinity in V (p, ε, w).

5 Proof of the existence results
5.1 Proof of Theorem 1.1
By Theorems . and . there exists positive η such that if the order of flatness β(y) of
any critical point y of H lies in (n – , n –  + η), then the only critical points at infinity
are (y)∞ := 

H(y)
n–


δ(y,∞), y ∈ K+. For each y ∈ K+, we denote by W ∞

u (y)∞ the unstable

manifold of the critical points at infinity (y)∞. Recall that the index i(y)∞ of (y)∞ is equal
to the dimension of W ∞

u (y)∞. Using now the gradient flow of (–∂J) to deform 
+, by the
deformation lemma (see []) we get that


+ �
⋃

y∈K+

W ∞
u (y)∞ ∪

⋃
w;∂J(w)=

Wu(w), (.)

where � denotes retracts by deformation.
It follows from this deformation retract that problem (.) necessarily has a solution w.

Otherwise, it would follow from (.) that

 = χ
(

+) =

∑
y∈K+

(–)n––̃i(y),

where χ denotes the Euler-Poincaré characteristic, and such an equality contradicts the
assumption of Theorem ..

Now, for generic H , it follows from the Sard-Smale theorem that all the solutions of (.)
are nondegenerate. Thus, we derive from (.), taking the Euler-Poincaré characteristics
of both sides, that

 = χ
(

+) =

∑
y∈K+

(–)n––̃i(y) +
∑

w;∂J(w)=

(–)i(w),
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where i(w) is the Morse index of w. It follows then

∣∣∣∣ –
∑

y∈K+

(–)n––̃i(y)
∣∣∣∣≤ �

{
w, w > , ∂J(w) = 

}
.

5.2 Proof of Theorem 1.2
The proof follows from the description of the critical points at infinity given in Theo-
rem . and the proof of Theorem . of [].
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