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Abstract

In the paper, we are concerned with the system of Kirchhoff-Schrédinger-Poisson
system under certain assumptions on V4, V5, K and f. We are interested in the
existence of least energy sign-changing solutions to the system on R". Because two
kinds of nonlocal terms ¢, and f]RN |Vul? are involved in the system, the methods are
different from the Kirchhoff or the Schrédinger-Poisson system. The two nonlocal
terms fen |Vul? and ¢, make that the functional Ju* +u™) #J(u*) + J(u™). Moreover,
the nonlocal term ¢, does not have the convergence property because of the
assumption V5. In addition, the convergence of these two nonlocal terms are
different. In the present paper, we unify the increasing property conditions on
sign-changing solution in previous papers. We construct a new homotopy operator
and then weaken the assumption that f is C' to that of f being only continuous. We
prove that the system has a sign-changing solution via a constraint variational
method combining with Brouwer’s degree theory.

MSC: 47J30; 34B15

Keywords: Schrodinger-Poisson system; Kirchhoff; sign-changing solution;
Brouwer’s degree; constraint variational

1 Introduction
In this paper, we consider the nonlinear Kirchhoff-Schrodinger-Poisson system

—(L+b [ IVul)Au + Vi®)u + Va(x)pu = Kx)f (), xRN, @)
—A = Vo), xRN, '
for 3 < N < 5. System (1.1) with b = 0 has been introduced while looking for the exis-
tence of standing waves for the Schrodinger equation acting with an electrostatic field.
We refer to [1] and the references therein for more details as regards the physics aspects.
This problem is called the Schrédinger-Poisson system. If V; = 0, system (1.1) is the Kirch-
hoff equation, which is the stationary problem associated to the time-dependent problem,
which models small vertical vibrations of an elastic string [2].

In recent years, Schrodinger equations with nonlocal terms have attracted much at-
tention. There are several nonlocal Schrodinger equations such as the Kirchhoff and the
Schrédinger-Poisson system, and fractional order differential equations. Because of the
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nonlocal effect, the convergence and energy functional in a variational reduction are dif-
ferent from local ones. There have been papers studying fractional order differential equa-
tions; see [3—9]. When b = 0, (1.1) is the Schrodinger-Poisson system. While V, =0, (1.1)
is the famous Kirchhoff equation. There has been interest in studying problem (1.1) with
b =0 or V;, = 0 under various assumptions on K and V; or V;. For b = 0, K(x) = 1, the exis-
tence of positive solutions, ground state solutions, and multiple solutions for (1.1) has been
massively addressed in the mathematical literature [10-14]. When V; = 0, there have been
many papers to study the existence of positive solution and infinitely many solutions; see
[15-20]. Especially, [16] studied the existence of nonnegative solutions to critical Kirch-
hoff problem. In addition, the systems with two types of nonlocal terms has been studied;
see [8, 21]. In [8], fractional p-Kirchhoff equations was considered. The sign-changing
solutions to Kirchhoff problems are also considered. For example, in [22-24], the au-
thors proved the existence of sign-changing solutions for b = 0, V5(x) = K(x) = 1. When
V3 =0, [25] studied the existence of the least energy sign-changing solution to (1.1) with
Vi(x) = K(x) = 1. However, there have appeared few papers to study the case of b # 0 and
Va3 #0; see [21]. In [21], the authors considered infinitely many solutions to (1.1).
Motivated by the above work, the main aim of this paper is to study the existence of a
sign-change of (1.1) when the potentials V; and K decay to zero as |x| — o0o. Precisely, we

suppose:

(V) Vi:RN — R is a smooth function and there exist a,c¢ > 0 and t € (0, 2) such that

<Vilx)<¢, VxeRY,

1+ |x|°

and V3 € L®°(RN) U LE-N2N(RN) is nonnegative;
(K) K:RN — R is a smooth function and there exist £ > 7, d > 0 such that

0<K(x) < , VxeRN,

1+ |6

As regards the function f, we assume f € C(R, R) and we have the following hypotheses:

(f) £(2) = o(|t]) as £ — O;

(£2) limy—oo £ = +00, where F(¢) = [ f(¢) dt;

(f3) there existsa @ € [0,1) such that W
respectively;

(fa) 1f (O = C(I] + [21), p > 3.

is nondecreasing on (-00,0) and (0, 00),

The conditions (f;)-(f4) with 6 = 0 are usual for the Kirchhoff equation or the Schro-
dinger-Poisson system; see [22, 25]. The condition (f3) is equivalent to the one in [26,
27]

(V) K@ ~ 2 sign(1 - 1) + 0V () 525 > 0,50, 7 70.

In fact, we have the next remark.

Remark 1.1 Condition (f3) is equivalent to (V’).
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Proof We only prove the case of £ > 0. For £ € (0,1], ¢t < 7, then

f@) fo)] . 11-2
I((x)[? - (”)3] sign(1-¢) + 0V (x) e
_ flo) ftr) 1-¢
= K(x)li7 - (tt)3] +0V(x) e
_K@)f(r)-0V(x)r  Kx)f(tr) -0V(x)it
N 73 B (tr)3
If t > 1, then by tt > 7, we have
fx) f@o)] . 1%
K(x) [7 + TBE ] sign(1-1¢) + 0V (x) )2
_ f)  fler) 1-¢
< T v
Kx)f(r)-0V(x)t Kx)f(tr) -0V (x)ttT
T 73 " (¢7)3 ’
Therefore, the conclusion holds. O

In addition, we must notice that the condition on V5 cannot ensure the nonlocal term
b, — ¢y if u, — uin L2N'WN=-2)_ The least energy sign-changing solution to the Kirchhoff-
Schrodinger-Poisson system has not been studied under the conditions (V) and (K). We
unify the conditions 6 = 0 and 6 > 0 and generalize to the problem (1.1). Throughout this
paper, we consider the weighted space L of measurable u : RN — R such that

x :
|2t] g, = |:fR K(x)|u(x)‘qu:| < 00.

If K is a constant, L% is the usual space L” and the norm is denoted by | - |,,. The weighted
Sobolev spaces E defined by setting

N
E= {u e D*(RN) :/ Vi(x)u? dx < +oo},
R

make E a Hilbert space with the inner product and the norm
N 1
(u,v) = / (Vu Vv + Vl(x)uv) dx, llt]| = (e, 1) 2.
R

Then we have the following embedding theorem, which is often used later.

Proposition 1.2 ([28]) Let N > 3 and suppose that (V), (K) hold with T € (0,2] and & > 0,
respectively. Then, for p € [1, %], there is C > 0 such that

|ulperx < Cllull, uek.

N+2).

Furthermore, the embedding E — L‘?l is compact for p € (1, 75
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Letg(x, t) = K(x)f (t)-0V(x)t and G(x, £) = fot g(x, ) ds, then we must notice the following
fact.

Remark1.3 Ifu, — uinE, then [p3 KF(1,) — [p3 KF(u) and g3 Kf (un)tty — [ps Kf ()11,
for the proof see Lemma 2.1. However, G(x, £) and g(x,t) do not satisfy these properties,
due to the term ng V(x)u?. Therefore, we cannot replace Kf (1) — 0V (x)u with g(x, u).

For every u € E, the Lax-Milgram theorem implies that there exists a unique ¢, €
DY2(RN), satisfying —A¢, = Vou?. Thus, we can define the corresponding functional to
(1.1) as follows:

]9 2
J(u) = %/RN(WW + Vilo)u?) + Z(/RN |Vu|2) + i /RN Vo (%) us® —/RN KF(u)

1 » b 2 ! 2
= —|lul||”+ = [Vu| + = Vo(x)p,u” — KF(u).
2 4 RN 4 RN RN

Here G(x, u) = fou g(x,t) dt. It is obvious that J € C1(E,R) and

/ _ 2 .
(' w), ) = /RN(Vqua + Vi(x)ugp) +b/RN [Vl ./]RN Vu-Vo
o [ v [ rwe
= (u, @) + b/]RN |Vu|2/RN Vu-Vo + /]RN Vo (%), uq — /RN Kx)f (u)p.

Clearly, critical points of J are the weak solutions to nonlocal problem (1.1). Furthermore,
if u € E is a solution of (1.1) and u* # 0, then u is sign-changing, where

ut(x) = max{u(x),O} and u (x) = min{u(x),O}.

In order to get a least energy sign-changing solution for the system (1.1), we first try to
seek a minimizer of the energy functional J with the following constraint:

M= {u €E:u* #0, (]'(M); M+) = (],(“)' “_> = 0} 12)

and then we show that the minimizer is a sign-changing solution of (1.1). But in our prob-
lem (1.1), since f is not C', which is assumed in [22, 25], it is rather difficult to show that
M # (. Thus, we must introduce some new ideas to get a sign-changing solution for the
problem (1.1). In the present paper, we use a new homotopy operator which is C'.

Now, we state our main theorem.

Theorem 1.4 Ifwe have the assumptions (V), (K), and (f,)-(f), then the problem (1.1) pos-

sesses at least one sign-changing solution which is the least energy sign-changing solution.

The paper is organized as follows. In Section 2, we prove several lemmas, which are cru-
cial to prove our main results. In Section 3, we show that the minimizer of the constrained
problem is a sign-changing solution by a new homotopy operator.
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2 Preliminaries
Firstly, we give the convergence of the nonlinear term.

Lemma 2.1 Assume that u, — u in E, then [on K&)f (un)uy — [on K&)f (w)u and
Jrs K®)F (1) =[5 K(x)F ().

Proof By Proposition 1.2, u, — u strongly in L% for g € [2,6). Thus after passing to a
subsequence, u,(x) — u(x) fora.e.x € RN. From the convergence of u,, — # in L% and L’;fl,
there exist two functions a € L? and b € L”*! such that K(x)u? < a®(x) and K (x)|u,|"*! <
[b(x)]7*! for a.e. x € RN, Therefore, (f;) implies that

f K)f ()| < / C|K®)|nl? + CK ()| [P
RN ]RN

< /1;1\/ [C(a))” + C(b@))"*] dx.

According to the dominated convergence theorem, fR3 K)f (u)u, — ng K(x)f (u)u.
A similar argument implies that fR3 K(x)F(u,) — ng K(x)F(u). The proof is completed.
d

The next lemma shows that M # (.

Lemma 2.2 Assume that (f|)-(f,) hold. If u € E with u* #0, then there is a unique pair
(¢,8) of positive numbers such that tu* + su~ € M.

Proof Fix u € E with u®™ # 0, [on Vour - Vo = [on Va(®)gys (u7)?; since —Agy,- =
Va(x)(147)?, we can obtain

/ Vo (x)pu+ ’u_|2dx :f Vz(x)¢u-’u+’2dx =/ Vo,+ - Vo,-.
RN RN RN

Denote A := b [on |V [*dx [on [VuT |2 dx + [gn Va(x)¢u-|u*|? dx for convenience. We in-

troduce the following notations:

2
2 :b< v+2); 21
a /RN| u'*| 1)

2
2 b:b( vz). 2.2
e[ 15 22)

Since —A¢, = Va(x)u® = Va(x)(u*)? + Vax)(u)* = ~A(@ur + ¢u-)s $u = $ur + G- Then,
tu* + su” is contained in M if and only if

a = Hu*

b1 = ”M7

i @(t,9) = at® + art* + A2 — [ Kf (bu*)(tu*) = 0, 03)

&(t,5) = bis* + bys* + At*s* — [on Kf (su™)(su™) = 0.

We have from (f;), (f;), and (2.3) g:1(¢,¢) > 0 and g»(¢,¢) > 0 for £ > 0 small and gi(s,s) < 0,
22(s,8) < 0 for s > 0 large. Thus there exist 0 < § < R such that

gi(8,6) >0, g1(R,R) < 0; £(5,8) <0, £(R,R) <0. (2.4)
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From (2.3), it follows that g,(8,s), g1(R, s) both are increasing for s > 0 and g>(¢, R), &(t,5)
both are increasing for ¢t > 0. Therefore, by (2.4), we have

g(8,5)>0, g1(R,5)<0, sel[§,R], (2.5)
and
gZ(t’ 8) >0, gZ(t’R) <0, te [81R]' (2'6)

By (2.5), (2.6), and Miranda’s theorem [29], there exists a point (¢,,s,) with £,,s, € (§,R)
such that g1(¢,,5,) = g2(¢4,5,) = 0.

In the following, we prove the uniqueness of (¢, s). If there are two pairs (¢1,s1) and (¢2, s2)
such that tju* + su™ € M and tu* + su™ € M, then (&1/6:)tu’ + (s1/83)sou~ € M. Therefore,
we may assume that # € M and tu* + su” € M. We need only to prove that £ =s =1. We
assume that 0 < ¢ <s. Then, by (2.3) and 0 < 1, we have b; — 0 f]RN V(x)(u™)? >0 and

[Kf(su™) — 0V (x)su]

21 \4
|:b1—9/RNV(x)(u)]§+b2+Az/RN ey
Since u € M,

[bl —e/RN V(x)(u‘)z] le - 1]

>/ { [Kf(su™) — 0V (x)su™] B [Kf (u™) =0V (x)u~] }(u)4
= o .

(su7)? (w)?

According to condition (f3), s < 1. On the other hand, since ¢ < s and u € M, similarly, we

can obtain

|:a1 -6 /RN V(x)(u+)2] [;2 - 1}

</ { [Kf (tu”) -0V (x)tu’]  [Kf(u") -0V (x)u’] }(u+)4
= o .

(tu*)? (u)3

Therefore, ¢ > 1. Consequently, t =s =1. O

Lemma 2.3 Foru € E withu* #0, the pair (t,,s,,) obtained in Lemma 2.2 is the maximum
point of the function ¥ : R, x R, — R defined as Y (t,s) = J(tu* + su~), where R, = [0, 00).

Proof From the proof of Lemma 2.2, (t,,s,) is a critical point of ¥ in R, x R,. By as-
sumptions (f;), (f2), and the proof of Lemma 2.2, we deduce that J(tu* +su~) > 0 for £,5 > 0
small and ¥ (¢,5) - —00 as |(£,s)] — 00. Therefore, (£,,s,) is the maximum point. In the
following, we prove that £,,s, > 0. It is sufficient to check that a maximum point cannot
be achieved on the boundary of R, x R,. Without loss of generality, we may assume that
(0,50) is @ maximum point of ¥. Then, for ¢ > 0 small, by condition (f;),

v (t,s0) =](tu+ + sou_)

t* +|2 ¢t + |4 t* +\2 +
-Gl P eveie 5 [ e ) [ K@F(e)ds
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tzsg 12 2 tzsg \2
+ Tb|lel |2|VM |2+ T on V2(x)¢u+(u ) dx

$ S|P s Dpfvar |t 50 [ vioo )~ [ Keor(sor)ds
2 4 27 g Jon 2T RN 0

2 4 4
> B Belvuly e [ Ve (0)? - [ Ko ) d
= ¢(0,50)~

The pair (0,sp) is not a maximum point of ¢ in R, x R,. O

Lemma 2.4
() If J'(u),u*) <0, then (t,,s,) € (0,1)2.
(ii) Ifu® #0 is such that (J'(u),u™) <0, then (t,,s,) € (0,1]%.
(i) If (J'(u),u™) > 0, then (t,,s,) € (1,00)>.

Proof Under the assumptions of (i), (i), and (iii), we have u* # 0. Let ¢; = a; — 0 x
Jan V&) (*)* and dy = by — 6 [pn V(x)(u7)%, then ¢i,dy > 0. Since t,u* + s,u™ € M, we
have from (2.3)

2
o2

u

[ [ Ve Kl V) ) gt

(u*)? (tuut)?

and

2
/), = dy [1 _ Siz} . A[l . 2_2}
~ / [K(x)f(u) -0V W)  K@)f(sau) - gv(x)(suu)] W) 28
RN

(u)3 (suu™)3

For convenience, we introduce some notations as follows:

1 2
et i)
u u

Dy, - /RN [K(x)f(u*) —0V@)(u') K@) (t,u') - 0V(x)(tuu+)] (u+)4,

(w*)? (tuut)?

1 £
D21 :d1|:1— —2] +A[1— —Z],
Su Sy

Dy - /R |:I((x)f(u‘) -0V (x)(u") ~ K(x)f (s,u™) - GV(x)(suu‘)] (u‘)4.

()3 (suu™)3

Without loss of generality, we may assume that ¢, > s,,.

(i) If t, = 1, then Dy; > 0 and by the condition (f3), we have Dy, < 0. It follows from (2.7)
that (J'(u), u*) > 0. This is a contradiction. Thus, (¢,,s,) € (0,1)2.

(ii) If t, > 1, then Dy; > 0 and by the condition (f;), we have D;; < 0. Therefore,

(J'(w), u*) > 0. This is a contradiction. Thus, (,,s,) € (0,1]2.
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(iii) If s, <1, similarly Dy; < 0 and Dy, > 0. It follows from (2.8) that (J'(u),u™) <0,

which is a contradiction. Thus, (¢,,s,) € (1,00)2.
By Lemma 2.3, we may define the minimization problem
m =inf{J(u): u € M}. (2.9)
Lemma 2.5 Suppose that conditions (f1)-(f4) hold, then m > 0 can be achieved.

Proof For any u € M, we have (J'(u), u) = 0. Then we get from conditions (f;) and (fs)
lul® < / (IVul* + Vi®)u® + Va(x)pus®) dx + b| Vil
RN

= f K(x)f (u)u
RN

<e K(x)u® + CS/ K(x)uP*L.
RN RN

Then by Proposition 1.2, we can get

2 2 1
lul™ < Crellull” + Collull”*,

where Cj, C, > 0 are constants. So there exists a constant « > 0 such that || «|| > «. More-

over, by (f3), we have
[K@)f ()t -0V (x)] - 4|:K(x)F(t) - 9% V(x)t2:| >0, xeRV,teR.
Hence, we have
J(w) = J() - ~(J' (u), u)

- ol e g /R K@ (i~ 4Fw)

1 1

> —lul® - —9/ V(x)u®
4 4 ]RN
1

> —(1-60)a’

> 4( Jot

This implies that m > 1(1-6)a? > 0.

Let {u,} C M be such that J(u,) — m. Then {u,} is bounded in E, so there exists a
subsequence of {u,} and u € E, we may still denote the subsequence by {u,}, such that
u, — u and ut — u* weakly in E and u,(x) — u(x) a.e. x € RV. Since {u,,} € M, we have
(J'(u,),u;) = 0. That is,

”u;’, H2 +b|Vun|%’Vu;’,|§ +/ \/g(ac)d)un(u;)2 =/ Kf(u;)u; (2.10)
RN RN
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This implies from conditions (f;) and (f;) that there exists a constant p > 0 such that
llze || > p for all m € N. By (2.10) and Lemma 2.2, we get

o<t <l = [ Krtyi - [ K o0
RN RN

where 0(1) denotes a quantity tending to zero as # — +o00. Thus, u* # 0. Similarly, we have
u #0.

Since u, — uin E, we have ¢, — ¢, in DV2(RN) if V, € L®(RN) or ¢, — ¢, in D?(RN)
if V, € LO-N/2N(RN), By the weak lower semicontinuity of the norm and Fatou’s lemma,

we have

”u*H2+b|Vu|§\Vu+\§+/ Va)bulu > dx
RN

<11m1nf(||u H +b|Vu,,|%|Vu;|§+/ Vz(x)d)uniu;fdx).
RN

n—+00

Then from (2.10) and Lemma 2.1 we get
||z,fr ||2 + b|Vu|§|Vu+|§ + / Vz(x)¢>u|u+|2dx < / Kf(u*)u*. (2.11)
RN RN

Similarly, we have
”u‘ H2 + b|Vu|%|Vu“§ + / Vg(x)(bu!u_’zdx < / Kf(u_)u_. (2.12)
RN RN

From (2.11), (2.12), and the proof of Lemma 2.4, there exists (Z,5) € (0,1] x (0,1] such that
i = tu* +5u” € M. Moreover, according to condition (f3) we have [K(x)f(£)t — 60V (x)t?] —
4[K(x)F(t) - %0 V(x)£?] > 0 is nondecreasing on (—o00, 0) and (0, 00), respectively. Thus,

=@ =@ - 1/ @,

= %Ilﬁll2 + % /RN K(f ()i — 4F () dx

1

_ _ 1 o .
= Z(||1,‘u"||2 + ||su HZ) + ZA}\{I((f(u)u—4F(u))dx

1 1 1 1
< =|Vul3+ —f V(x)u® + —/ K(f w)u — 4F (1) )dx+ _ef V(x)[uz _ﬁz]
4 4' RN 4

RN
1_ 0, 1 , 1
< —|Vul;+—-(1-0) V(x)u +— [K(f u)u — 4F( u))+9\/( Yu ]
4 4 RN
. 1,
< liminf| J(z,,) - —(] (Mn),un> =m.
n— 00 4
By the above inequality and Lemma 2.3 we deduce that £ =5=1. Thus # = u and J (i) =

O

3 Existence of sign-changing solution
In this section, we mainly prove that the minimizer # obtained in Lemma 2.5 is indeed a
sign-changing solution of (1.1), that is, J'(x) = 0
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Proof of Theorem 1.4 Using the quantitative deformation lemma [30], Lemma 2.3, we
prove that J'(x) = 0. It is clear that (J'(u), u*) = (J'(u),u”) = 0. It follows from Lemma 2.3
that, for (¢,s) € R, x R, and (¢,s) #(1,1),

](tu+ + Su_) </'(z[r + u‘) =m. (3.1)
If J'(u) # 0, then there exist § > 0 small and ¢; > 0 such that, for all ||v — u| < 34,
I7®)| = .

LetD:= (1 —-68/||ull,1+68/||ull) x (1 =6/|luell,1+68/|ue|]) and k(z,s) = tu* + su~. It follows from
Lemma 2.3 again that

m:=maxjoh<m. (3.2)
aD

By [30], Lemma 2.3, for ¢ := min{(m — m)/2,£¢5/8} and S := B(u, §), there is a deformation
n such that

(@) nl,u)=uifu ¢ ] ([m-2e,m+2¢e]) N Sys;

(b) n(,J™*NS) "

(© J(n(Q,u)) <J(u) forallu € E.
For (t,5) € D, ||h(t,s) — ul|® = (¢ = 2|t ||> + (s = D)?|lu"||> < 82, then h(¢,s) € S for all
(t,5) € D. On the other hand, maxz /(h(t, s)) = m, therefore, from (b) we have

1, h(t, . 3.3
(ﬂ;}(ﬁ](n( (t,9))) <m (3.3)

We prove that (1, h(D)) "M # 4, contradicting the definition of m. Let us define y (¢, s) :=
n(1, h(t,s)) and

W (t,s) := (]/(h(t,s))u*,]’(h(t,s))u’) = (]’(L‘u+ +su’)u+,]/(tu+ + su’)u’),

Ui(t5) = (%f’(y(t, N7 65T (r69)y (6 s)).

Since f : R — R is continuous, W, : D — R? is continuous. Then we cannot directly com-
pute the topology degree deg(Wy, D, 0). Now, we define the operator as follows: ®(¢,s) :=
(¢1(£,5), (£, 5)) where

oi(t,s) = —ar (£ - 1),
do(t,s) = —bys*(s* — 1).

Then @ has unique zero (t,s) = (1,1). Let us take a homotopy operator
H(t,(t,9) =t¥ + (1 - 7).
It is easy to see that H(z,(1,1)) = 0. Then H(1,(¢,s)) = Wo(t,s) and H(0, (¢,5)) = ®(Z,5).

Moreover, H : [0,1] x D is continuous. We will show that H(z, (t,s)) # 0 on [0,1] x 3D.
In fact, if T = 1, according to Lemma 2.2 we see that (1,1) is the unique zero point of
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H(0,(t,s)). If T = 0, from the definition of ®, the conclusion is obvious. In the following,
we may assume that t € (0,1). It is easy to see that for any 7 € (0,1), (1,1) is a zero point
of H(t, (t,s)). Therefore, we need only to prove that the zero point of H(z, (¢,5)) is unique
in D. If (ty,s0) € D is a zero point of H(z, (,s)), that is,

atty +ar(1-1)tg (1- ) + Tasty + TALSs;
_z /R K (o) (o) ~ 0Vt = 0 (3.4)
and
bitst + b= 1) (1-£2) + bytsh + ATES
_z /R K (o) (o) ~ OV s ] = 0. (3.5)
We may assume that £, < so. Then from (3.5), we have

b1[£2 RS2l ) 755 1)} +byt + AT > r/ Kftsou’) ~ 050 V@) as)” (u’)4.

o RN sou)?

So 5o

On the other hand, it follows from u € M that

bi+by+A= f [Kf(u’)u‘ - GV(x)(u_)z].
R3

Therefore,
1 [t a-n)(s5-1)
R R
- —\2
o [ | O [y -avi ]

Hence, we have from the condition (f5) that sy < 1. In the following, we prove that z, > 1.
In fact from (3.4) and 0 < £y < 59, we have

al[t (1—r)(t§—1)i|

£ 8

Kf(tou™) -0V (x)tou™
+a2t+At§r/ ko )3 )t
RN tO(M+)3

()" (3.6)

Since u € M, we have from (3.6)

1 T (1-7)(-1)
R e

Kf (tou*) — 0V (x)tou*
=T /RN £

()"~ [Kf (u*)ut —0V(x)(u?)’].  (37)

Therefore, condition (f3) implies that £, > 1 and then sy = £, = 1. Hence for (s,t) € 9D,
we obtain H(z,(¢,5)) # 0 for all © € [0,1]. Therefore, the homotopy invariance property of
Brouwer’s degree implies that deg(H(z, (-, -)), D, 0) = constant for t € [0,1] and then

deg(Wo,D,0) = deg(H(L, (-,-)),D,0) = deg(H(0,(-,-)),D,0) = deg(®, D, 0).
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Hence, we need only to compute deg(®, D,0). Note that ® € C!, and ® has an isolated
zero point (1,1) in D. Since

a0 It
—(1,1) = 2ay, —(1,1) =0,
ey (L1 a 2 (L1)
Jo)) L))
—(1,1) =0, —(1,1) = =2b,
2 (1.1) T (1,1) = —2b,
we have
-2
“ 0 =4a,b, > 0.
0 -2b;

Then according to the definition of the topological degree, we have
deg(®,D,0) =1.

On the other hand, it follows from (3.2) that # = y on dD. Consequently, we obtain
deg(W¥1,D,0) = deg(Wo,D,0) =1 from the property of the topological degree. Therefore,
W (to,80) = 0 for some (ty,s0) € D, that is, n(1, h(ty,s0)) = y (£p,s0) € M, which is a con-
tradiction with n(1,#(D)) N M # (. From this, u is a critical point of /, and then it is a
sign-changing solution for problem (1.1). O
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