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Abstract
In this paper, using the intertwine relations of differential operators, we study one
representation of real analytic functions by Dunkl-harmonic functions, which is a
generalization of the well-known Almansi formula. As an application of the
representation, we construct a solution of the Dunkl-Poisson equations in Clifford
analysis. Then we investigate solutions of homogeneous and inhomogeneous
Dirichlet type problems for Dunkl-Poisson’s equation, and inhomogeneous Dirichlet
problems for Dunkl-Laplace’s equation.
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1 Introduction
In mathematics, a Dirichlet problem for Laplace’s equation can be stated as follows: Given
a function f that has values everywhere on the boundary of a region in Rm, there is a
unique function u twice continuously differentiable in the interior and continuous to the
boundary, such that u is harmonic in the interior and u = f on the boundary. The Dirich-
let problem [] can be investigated for many PDEs, although originally it was posed for
Laplace’s equation. In this paper, we consider Dirichlet type problems for Dunkl-Poisson
equations.

Dunkl operators Tj (j = , . . . , m) introduced by Dunkl in [, ] are combinations of dif-
ferential and difference operators, associated to a finite reflection group. These operators
have the property of being invariant under reflections and, additionally, they are pairwise
commuting. Also, they are very important in pure mathematics and physics. They pro-
vide a useful tool in the study of special functions with root systems and they are closely
related to certain representations of degenerate affine Hecke algebras (see [, ]). More-
over, the commutative algebra generated by these operators has been used in the study of
certain exactly solvable models of quantum mechanics, namely the Calogero-Sutherland-
Moser models (see [–]). One of the most important properties of Dunkl operators is that
they are mutually commute. This allowed Cerejeiras et al. in [] to introduce a Dirac op-
erator, called the Dunkl-Dirac operator, based on differential-difference operators which
are invariant under reflection groups and also construct the Dunkl-Laplacian which is a
combination of the classical Laplacian in Rm with some difference terms. The theory of
Dunkl-Clifford analysis is further developed in [–].
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Using Almansi representations, Karachik constructed solutions of initial and boundary
value problems for partial differential equations in real analysis, such as Dirichlet prob-
lems, Neumann problems, and Riqurie problems, etc. (see [–]). However, the study
of boundary value problems for partial differential equations in Clifford analysis is a very
difficult task. Clifford analysis is the study of functions defined in Euclidean space Rm and
taking values in a Clifford algebra. Functions in Clifford analysis are not mutually com-
muting (see []). Using the intertwining relations of differential operators (i.e., differential
operators satisfy the defining relations of the Lie algebra (see [])), we overcome the non-
commutative properties between functions. In this paper, we investigate solutions of the
homogeneous and inhomogeneous Dirichlet problem for Dunkl-Poisson’s equation and
the inhomogeneous Dirichlet problem for Dunkl-Laplace’s equation in Clifford analysis.

The paper is organized as follows. In Section , we introduce the definition of Dunkl
operators and review some results on the theory of Dunkl-Clifford analysis. In Section ,
applying the intertwine relations of differential operators, we study one representation of
real analytic functions by Dunkl-harmonic functions. Using the representation, we con-
struct solutions for Dunkl-Poisson’s equation. In Section , we first consider solutions of
the homogeneous Dirichlet problem for Dunkl-Poisson’s equation. Then we investigate
solutions of the inhomogeneous Dirichlet problem for Dunkl-Laplace’s equation and the
inhomogeneous Dirichlet problem for Dunkl-Poisson’s equation.

2 Preliminaries
2.1 Dunkl operators
Let Rm be the Euclidean space equipped with a scalar product 〈, 〉 and let ‖x‖ =

√〈x, x〉.
For α ∈ Rm\{}, let σα be the reflection in the hyperplane orthogonal to α i.e. for x ∈ Rm,

σαx = x – 
〈α, x〉
|α| α.

A finite set R ⊂ Rm \ {} is called a root system if αR ∩ R = {α, –α} and σαR = R for all
α ∈ R. Each root system can be written as a disjoint union R = R+ ∪ (–R+), where R+ and
–R+ are separated by a hyperplane through the origin. The subgroup G ⊂ O(m) generated
by the reflections {σα | α ∈ R} is called the finite reflection group associated with R.

A multiplicity function κ on the root system R is a G-invariant function κ : R → C i.e.
κ(α) = κ(gα) for all g ∈ G. We will denote κ(α) by κα . For abbreviation, we introduce the
index

γ = γκ =
∑

α∈R+

κα

and the weight function

hκ (x) =
∏

α∈R+

∣∣〈α, x〉∣∣κα .

Throughout this paper, we will assume that κα ≥  for all α ∈ R and γκ > .
For each subsystem R+ and multiplicity function κα we have the Dunkl operators

Tif (x) =
∂f (x)
∂xi

+
∑

α∈R+

κα

f (x) – f (σαx)
〈x,α〉 αi, i = , . . . , m,
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for f ∈ C(Rm). An important consequence is that the operators Ti are mutually commut-
ing, that is, TiTj = TjTi (see []).

2.2 Dunkl-Clifford analysis
Let {e, e, . . . , em} be an orthogonal basis of the Euclidean space Rm. We consider a func-
tion f : Rm → R,m. Hereby R,m denotes the m-dimensional real Clifford algebra over
Rm with basis given by e =  and eA = eh · · · ehk , where A = {h, . . . , hk} ⊂ {, . . . , n} for
 ≤ h ≤ · · · ,≤ hk ≤ m. The function f can be written as f =

∑
A eAfA(x), where fA(x) is a

real-valued function. An element x = (x, . . . , xm) of Rm can be identified with x =
∑m

i= xiei.
By direct calculation, we have x = –|x|.

A Dunkl-Dirac operator in Rm for the corresponding reflection group G is defined as
Dh =

∑m
i= eiTi, where Ti are Dunkl operators. Functions belonging to the kernel of the

Dunkl-Dirac operator Dh are called Dunkl-monogenic functions.
If we let Dh act on x, we see that

μ :=



Dhx =
m


+ γ ,

where μ is a complex number in contrast to the non-Dunkl case of the dimension m. In
this paper, we assume that μ ≥ .

The Dunkl Laplacian is defined as

�hf (x) = –D
hf (x) = �f (x) + 

∑

α∈R+

κα

( 〈∇f (x),α〉
〈α, x〉 –

f (x) – f (σαx)
〈α, x〉 |x|

)
,

where � and ∇ are the usual Laplacian and gradient operator. When κα = , the Dunkl
Laplacian �h is just the ordinary Laplacian. Functions belonging to the kernel of the Dunkl
Laplacian �h are called Dunkl-harmonic functions.

3 Dunkl-Poisson equation in Clifford analysis
3.1 One representation of real analytic functions by Dunkl-harmonic functions
Definition . ([]) An open connected set � ⊂ Rm is a star domain with center  if any
x ∈ � and  ≤ t ≤  imply that tx ∈ �. The set is denoted by �	.

Definition . Let �	 be a star domain in Rm with center . Then the generalized Euler
operator on domain �	 is defined by

Et = tI + E = tI +
m∑

i=

xi∂xi ,

where t is a real number, I is the identity operator, and E is the Euler operator.

Now we can see the most important intertwining relations concerning the operators x,
�h, Eμ.

Lemma . ([]) The operators

E :=
x


, F :=

–�h


, H := Eμ
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generate the lie algebra

[H , E] = E, [H , F] = –F , [E, F] = H ,

where μ = m
 + γ and the Lie bracket [x, y] is the commutator [x, y] = xy – yx.

Lemma . Let �	 be a star domain in Rm with center . If f (x) ∈ C(�	) ⊗ R,m and
μ ≥ , then

�h
(
xsf (x)

)
= xs�hf (x) + sxs–Eμ+s–f (x). ()

Proof By Lemma . and the definition of Et , we have

�h
[
xsf (x)

]
= �hx[xs–f (x)

]

=
(
x�h + Eμ

)[
xs–f (x)

]

= x�hxs–f (x) + Eμxs–f (x)

= x(x�h + Eμ

)
xs–f (x) + 

(
xEμ + x)xs–f (x) = · · ·

= xs�hf (x) + sxs–Eμ+s–f (x).

Thus, we finish the proof. �

Lemma . Let g(x) ∈ C(�	) ⊗ R,m. Then

(E + l + )
∫ 


αlg(αx) dα = g(x) ()

and

(E + l + )
∫ 



( – α)q

q!
αlg(αx) dα =

∫ 



( – α)q–

(q – )!
αl+g(αx) dα ()

for q ∈ N and l ≥ .

Proof The proof can be referred to in the literature []. �

In this paper, we assume the following infinite series converges absolutely and uniformly
in �∗.

Theorem . Let G(x) ∈ C∞(�∗) ⊗ R,m. Then

G(x) = f +
∞∑

s=

xs

ss!(s – )!

∫ 


( – α)s–αμ–fs(αx) dα, ()

where �hfs(x) =  and

fs(x) = �s
hG(x) +

∞∑

l=

(–)lxl

ll!

∫ 



( – α)l–αl–

(l – )!
αμ–�s+l

h G(αx) dα. ()
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Proof First we prove that the functions fs(x) satisfy (). Substituting fs(x) into the right-
hand side of the identity (), we have

f +
∞∑

s=

xs

ss!(s – )!

∫ 


( – α)s–αμ–fs(αx) dα

= G(x) +
∞∑

s=

(–)sxs

ss!

∫ 



( – α)s–αs–

(s – )!
αμ–�s

hG(αx) dα

+
∞∑

s=

xs

ss!(s – )!

∫ 


( – α)s–αμ–�s

hG(αx) dα

+
∞∑

s=

xs

ss!(s – )!

∫ 


( – α)s–αμ–

×
∞∑

l=

(–)l(αx)l

ll!

∫ 



( – β)l–β l–

(l – )!
β

μ
 –�l+s

h G(αβx) dβ dα. ()

Denote by A(x) the fourth term on the right side of equation (). Then

A(x) =
∞∑

s=

∞∑

l=

(–)lxs+l

l+ss!l!

∫ 



( – α)s–αl+μ–

(s – )!

∫ 



( – β)l–β l+μ–

(l – )!
�l+s

h G(αβx) dβ dα

=
∞∑

s=

∞∑

l=

(–)lxs+l

l+ss!l!

∫ 



α( – α)s–

(s – )!

∫ 



(α – αβ)l–(αβ)l+μ–

(l – )!
�l+s

h G(αβx) dβ dα.

Denote by A(x) the integral on the above expression. Let t = αβ . Then dt = α dβ . We
calculate

A(x) =
∫ 



α( – α)s–

(s – )!

∫ α



(α – t)l–tl+μ–

(l – )!
�l+s

h G(tx) dt dα

=
∫ 



∫ α



α( – α)s–(α – t)l–

(s – )!(l – )!
tl+μ–�l+s

h G(tx) dt dα

=
∫ 



∫ 

t

α( – α)s–(α – t)l–

(s – )!(l – )!
tl+μ–�l+s

h G(tx) dα dt

=
∫ 



tl+μ–

(s – )!(l – )!
�l+s

h G(tx) dt
∫ 

t
α( – α)s–(α – t)l– dα.

Let α = β + t. Then we have

A(t) =
∫ 

t
α( – α)s–(α – t)l– dα =

∫ –t


(β + t)( – β – t)s–β l– dβ .

Let β = α( – t). It follows that

A(t) =
∫ 


(α – αt + t)( – α)s–( – t)s–αl–( – t)l dα

= ( – t)s+l–
∫ 


(α – αt + t)( – α)s–αl– dα.
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We calculate

A(t) = ( – t)l+s
∫ 


αl( – α)s– dα + t( – t)l+s–

∫ 


αl–( – α)s– dα

= ( – t)l+sB(l + , s) + t( – t)s+l–B(l, s),

where the beta functions

B(l, s) =
∫ 


αl–( – α)s– dα. ()

Using the properties of beta functions and gamma functions:

B(l, s) =
�(l)�(s)
�(s + l)

()

and

�(s) = (s – )!, ()

we have

A(t) =
�(l + )�(s)
�(l + s + )

( – t)s+l +
�(l)�(s)
�(l + s)

t( – t)l+s–

=
l!(s – )!
(l + s)!

( – t)s+l +
(l – )!(s – )!

(l + s – )!
t( – t)l+s–.

By substituting A(t) into A(x), we have

∞∑

s=

∞∑

l=

(–)lxs+l

l+s

∫ 



[
( – t)s+l

s!(l – )!(l + s)!
+

t( – t)l+s–

s!l!(l + s – )!

]
tl+μ–�l+s

h G(tx) dt

=
∞∑

s=

∞∑

l=

(–)lxs+l

l+s

∫ 



[
tl–( – t)s+l

s!(l – )!(l + s)!
+

tl( – t)l+s–

s!l!(l + s – )!

]
tμ–�l+s

h G(tx) dt

=
∞∑

i=

i–∑

l=

(–)lxi

i

∫ 



[
ti–l–( – t)i

l!(i – l – )!i!
+

ti–l( – t)i–

l!(i – l)!(i – )!

]
tμ–�i

hG(tx) dt

=
∞∑

i=

xi

i

∫ 



[
( – t)i

i!

i–∑

l=

(–)lti–l–

l!(i – l – )!
+

( – t)i–

(i – )!

i–∑

l=

(–)lti–l

l!(i – l)!

]
tμ–�i

hG(tx) dt.

We calculate

i–∑

l=

(–)lti–l–

l!(i – l – )!
=

i–∑

s=

(–)lti–l–

l!(i – l – )!
–

ti–

(i – )!

=
(t – )i–

(i – )!
–

ti–

(i – )!
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and

i–∑

l=

(–)lti–l

l!(i – l)!
=

i–∑

s=

(–)lti–l

l!(i – l)!
–

ti

i!
–

(–)i

i!
=

(t – )i

i!
–

ti

i!
–

(–)i

i!
.

Thus, we have

A(x) =
∞∑

i=

xi

i

∫ 



[
–

( – t)i–ti–

(i – )!i!
–

(–)i( – t)i–

(i – )!i!

]
tμ–�i

hG(tx) dt

=
∞∑

i=

xi

i

∫ 



[
–

( – t)i–ti–

(i – )!i!
–

(–)i( – t)i–

(i – )!i!

]
tμ–�i

hG(tx) dt.

By substituting A(x) into (), we have ().
Next, we prove that �hfs(x) = . By Lemma ., we have

�hfs(x)

= �s+
h G(x) +

∞∑

l=

(–)l

ll!
�h

(
xl

∫ 



( – α)l–αl–

(l – )!
αμ–�s+l

h G(αx) dα

)

= �s+
h G(x) +

∞∑

l=

xl

ll!

∫ 



( – α)l–αl+

(l – )!
αμ–�s+l+

h G(αx) dα

–
∞∑

l=

x(l–)

l–(l – )!
(E + μ + l – )

∫ 



( – α)l–αl–

(l – )!
αμ–�s+l

h G(αx) dα.

Denote by B(x) the third term of the above equality. From Lemma ., we have

B(x) =
∞∑

l=

(–)lx(l–)

l–(l – )!
(E + μ + l – )

∫ 



( – α)l–αl–

(l – )!
αμ–�s+l

h G(αx) dα

= –(E + μ)
∫ 


αμ–�s+

h G(αx) dα

–
∞∑

l=

x(l–)

l–(l – )!
(E + μ + l – )

∫ 



( – α)l–αl–

(l – )!
αμ–�s+l

h G(αx) dα

= –�s+
h G(x) –

∞∑

l=

(–)lx(l–)

l–(l – )!

∫ 



( – α)l–αl

(l – )!
αμ–�s+l

h G(αx) dα

= –�s+
h G(x) –

∞∑

l=

x(l–)

l–(l – )!

∫ 



( – α)l–αl

(l – )!
αμ–�s+l

h G(αx) dα

= –�s+
h G(x) –

∞∑

l=

xl

ll!

∫ 



( – α)l–αl+

(l – )!
αμ–�s+l+

h G(αx) dα,

which implies that �hfs(x) = . Thus, we finish the proof. �

Corollary . Let Pl(x) be a homogeneous polynomial of degree l. Then

Pl(x) = Rl(x) + xRl–(x) + · · · + xkRl–k(x), ()
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where Rl–k(x) are homogeneous Dunkl-harmonic polynomials and

Rl–k(x) =


kk!(l – k + μ) · · · (l – k + μ)

[l–k]∑

s=

(–)sxs�s+k
h Pl(x)

ss!(l – k – s + μ – )s
. ()

Proof Let Pl(x) be a homogeneous polynomial of degree l. By Theorem ., we have

Pl(x) = Rl(x) + xRl–(x) + · · · + xkRl–k(x),

where

Rl–k(x) =
fk(x)

kk!(k – )!

∫ 


( – α)k–αl–k+μ– dα =

fk(x)B(k, l – k + μ)
kk!(k – )!

. ()

Using equation (), we have

f(x) = Pl(x) +
∞∑

s=

(–)sxs

ss!

∫ 



( – α)s–αs–

(s – )!
αμ–�s

hPl(αx) dα

= Pl(x) +
∞∑

s=

(–)sxs�s
hPl(x)

ss!(s – )!

∫ 


( – α)s–αl–s+μ– dα

for the case G(x) = Pl(x). Using equations () and (), we have

∫ 


( – α)s–αl–s+μ– dα = B(s, l – s + μ – ) =

(s – )!
(l – s + μ – )s

,

where (m)s = m(m + ) · · · (m + s – ) is the Pochhammer symbol. Therefore,

f(x) = Pl(x) +
∞∑

s=

(–)sxs�s
hPl(x)

ss!(l – s + μ – )s
=

∞∑

s=

(–)sxs�s
hPl(x)

ss!(l – s + μ – )s
.

By equation (), we have

fk(x) =
∞∑

s=

(–)sxs�s+k
h Pl(x)

ss!(l – k – s + μ – )s
.

Thus, it follows from () that

Rl–k(x) =
fk(x)B(k, l – k + μ)

kk!(k – )!

=


kk!(l – k + μ) · · · (l – k + μ)

∞∑

s=

(–)sxs�s+k
h Pl(x)

ss!(l – k – s + μ – )s
,

which completes the proof. �
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3.2 Solutions of the Dunkl-Poisson equation in Clifford analysis
In this section, we study the Dunkl-Poisson equation in Clifford analysis,

�hG(x) = f (x), ()

where f (x) ∈ C∞(�) ⊗ R,m is a real analytic function.

Theorem . Let f (x) ∈ C∞(�∗) ⊗ R,m. A real analytic solution of equation () can be
found in the form

G(x) =
∞∑

s=

(–)sx(s+)

s+(s + )!s!

∫ 


( – α)sαμ+s–�s

hf (αx) dα. ()

Proof Let f (x) ∈ C∞(�∗) ⊗ R,m. Then it follows by Theorem . that

G(x) = f +
∞∑

s=

xs

ss!(s – )!

∫ 


( – α)s–αμ–fs(αx) dα, ()

where fs(x) are Dunkl-harmonic in �∗ given by the relation

fs(x) = �s
hG(x) +

∞∑

l=

(–)lxl

ll!

∫ 



( – α)l–αl–

(l – )!
αμ–�s+l

h G(αx) dα. ()

Note that �s+
h G(x) = �s

hf . Thus, we have

G(x) – f(x) = –
∞∑

l=

(–)lxl

ll!

∫ 



( – α)l–αl–

(l – )!
αμ–�l

hG(αx) dα

=
∞∑

s=

(–)sx(s+)

s+(s + )!s!

∫ 


( – α)sαμ+s–�s

hf (αx) dα. ()

Since �h[G(x) – f(x)] = f (x), it implies that [G(x) – f(x)] is a solution of the Poisson
equation (). Therefore, the right-hand of equation () is a solution of equation (). �

Corollary . The solution of the Poisson equation �hG(x) = Pl(x) can be represented in
the form

G(x) =
[ l

 ]∑

s=

(–)sx(s+)�s
hPl(x)

s+(s + )!(l + μ) · · · (l – s + μ)
, ()

where [ l
 ] is the integer part of l

 and (a, b)k = a(a + b) · · · (a + kb – b) is the generalized
Pochhammer symbol with the convention that (a, b) = .

Proof Let Pl(x) be a homogeneous polynomial of degree l. Then we have �k
hPl(αx) =

αl–k�k
hPl(x). Therefore, () can be transformed into

G(x) =
[ l

 ]∑

s=

(–)sx(s+)�s
hPl(x)

s+(s + )!s!

∫ 


( – α)sαμ+s–αl–s dα.
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Furthermore, we can write

G(x) =
[ l

 ]∑

s=

(–)sx(s+)�s
hPl(x)

s+(s + )!s!
B(s + ,μ + l – s),

where B(s, k) =
∫ 

 αs–( – α)k– dα. Then by the relation

B(s, k) =
�(s)�(k)
�(s + k)

,

we have

u(x) =
[ l

 ]∑

s=

(–)s�(l – s + μ)x(s+)�s
hPl(x)

s+(s + )!�(l + μ + )
.

Using the property �(s + ) = s�(s) of the gamma function, we find that

�(l + μ + ) = (l + μ)(l + μ – ) · · · (l + μ – s)�(l + μ – s).

It follows that

G(x) =
[ l

 ]∑

s=

(–)sx(s+)�s
hPl(x)

s+(s + )!(l + μ) · · · (l – s + μ)
,

which completes the proof. �

Corollary . Let Pl(x) be a homogeneous harmonic polynomial of degree l. The solution
of the equation �hG(x) = xkPl(x) is given by

G(x) = xk+Pl(x)
k∑

s=

(–)s(k – s + , )s(l + μ + k – s, )s

s+(s + )!(μ + k + l) · · · (μ + k + l – s)
.

Proof Let f (x) = xkPl(x). We calculate this solution using equation () to obtain

G(x) =
∞∑

s=

(–)sx(s+)

s+(s + )!s!

∫ 


( – α)sαμ+s–�s

h
[
xkPl(x)

]
dα.

Let us derive an expression for �s
h[xkPl(x)]. By Lemma ., we have

�h
[
xkPl(x)

]
= kxk–(l + μ + k – )Pl(x).

Therefore, for s ≤ k + l, we have

�s
h
[
xkPl(x)

]

= k(k – ) · · · (k – s + )(l + μ + k – ) · · · (l + μ + k – s)xk–sPl(x)

= (k – s + , )s(l + μ + k – s, )sxk–sPl(x).
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Thus, we find

G(x) =
k∑

s=

(–)sx(s+)

s+(s + )!s!

×
∫ 


( – α)sαμ+s–(k – s + , )s(l + μ + k – s, )s(αx)k–sPl(αx) dα

and, since Pl(αx) = αlPl(x),

G(x) = xk+Pl(x)
k∑

s=

(–)s(k – s + , )s(l + μ + k – s, )s

s+(s + )!s!

×
∫ 


( – α)sαμ+k+l–s– dα.

The integral in this expression is evaluated as

∫ 


( – α)sαμ+k+l–s– dα = B(s + ,μ + k + l – s)

=
s!

(μ + k + l) · · · (μ + k + l – s)
,

where B(m, n) is the Euler beta function. Then G(x) is transformed into

G(x) = xk+Pl(x)
k∑

s=

(–)s(k – s + , )s(l + μ + k – s, )s

s+(s + )!(μ + k + l) · · · (μ + k + l – s)
.

Thus, we complete the proof. �

4 Dirichlet type problems for Dunkl-Poisson’s equation
In [–], a weak solution of the Dirichlet problem of the Poisson equation with homoge-
neous boundary data in variable exponent space was obtained. In [], Karachik used the
Almansi representation for Laplace operator to construct a polynomial solution of the in-
homogeneous Dirichlet problem for Poisson’s equation in harmonic analysis. Inspired by
the above-mentioned results, we develop further these ideas for Dunkl-Poisson’s equation
in Clifford analysis.

4.1 Homogeneous Dirichlet problem for Dunkl-Poisson’s equation
In this section, we consider the following boundary value problem for the Dunkl-Poisson
equation in the unit ball B = {x ∈ Rm : |x| < }:

⎧
⎨

⎩
�hG(x) = f (x), x ∈ B,

G(x)|∂B = ,
()

where f (x) is a polynomial.
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In order to obtain solutions of the homogeneous Dirichlet problem for Dunkl-Poisson’s
equation (), we first consider the following boundary value problem for the Dunkl-
Poisson equation in the unit ball B = {x ∈ Rm : |x| < }:

⎧
⎨

⎩
�hu(x) = Pl(x), x ∈ B,

u(x)|∂B = , x ∈ ∂B = {|x| = },
()

where Pl(x) is a homogeneous polynomial of degree l.

Theorem . Let Pl(x) be a homogeneous polynomial of degree l. The solution of the
Dirichlet problem () can be written as

u(x) =
x + 



[ l
 ]∑

k=

(–)k�k
hPl(x)

k+(k + )!k!

∫ 



(
 + αx)k( – α)kαl–k+μ– dα. ()

Proof By Corollary ., it follows that the solution of the equation �hG(x) = Pl(x) becomes

G(x) =
[ l

 ]∑

k=

xk+Rl–k(x)
(k + )(l – k + μ)

. ()

Note that Rl–k(x) are Dunkl-harmonic polynomials. Then the polynomial

G(x) =
[ l

 ]∑

k=

Rl–k(x)
(k + )(l – k + μ)

()

is Dunkl-harmonic.
Thus, we have �h[G(x) + G(x)] = Pl(x) and the property G(x) + G(x) =  for |x| = .

Therefore, the polynomial G(x) + G(x) solves the Dirichlet problem ().
Using equations () and (), we find

G(x) + G(x)

=
[ l

 ]∑

k=

xk+Rl–k(x)
(k + )(l – k + μ)

+
[ l

 ]∑

k=

Rl–k(x)
(k + )(l – k + μ)

=
[ l

 ]∑

k=

(xk+ + )
(k + )(l – k + μ)

Rl–k(x)

=
[ l

 ]∑

k=

(–)k�kPl(x)
k+(k + )!

k+∑

i=

(l + μ – k + i – )xi

i!(k – i + )!(l + μ – k + i – )k+

=
[ l

 ]∑

k=

(–)k�kPl(x)
k+(k + )!

k+∑

i=

(l + μ – k + i – )�(l + μ – k + i – )xi

i!(k – i + )!�(l + μ – k + i + )
.
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Using equations (), (), and (), we transform the inner sum in this expression as

�(l + μ – k + i – )
�(l + μ – k + i + )

=
B(i + , l + μ – k + i – )

�(i + )

=


(i + )!

∫ 


( – α)i+αl+μ–k+i– dα.

Using iαi = α(αi)′ and the binomial theorem, we have

(l + μ – k – )
∫ 


( – α)k+αl+μ–k–

k+∑

i=

xiαi

i!(k – i + )!
dα

+ 
∫ 


( – α)i+αl+μ–k–

k+∑

i=

xiαi

i!(k – i + )!
dα

=
∫ 


( – α)i+(l + μ – k – )αl+μ–k–( + αx)i+ dα

+ 
∫ 


( – α)i+αl+μ–k–[( + αx)i+]′ dα

=
∫ 


( – α)i+d

(
αl+μ–k–( + αx)i+)

+ (i + )x
∫ 


( – α)i+αl+μ–k–( + αx)i dα.

By integration by parts, we have

∫ 


( – α)i+d

(
αl+μ–k–( + αx)i+)

= (i + )
∫ 


( – α)iαl+μ–k–( + αx)i[( + αx) + x( – α)

]
dα

= (i + )
(
 + x)

∫ 


( – α)iαl+μ–k–( + αx)i dα.

Therefore, the polynomial G(x) + G(x) can be rewritten as

G(x) + G(x) =
x + 



[ l
 ]∑

k=

(–)k�k
hPl(x)

k+(k + )!k!

∫ 



(
 + αx)k( – α)kαl–k+μ– dα. �

Theorem . Let f (x) be an arbitrary polynomial. Then the solution of the Dirichlet prob-
lem () can be written as

u(x) =
x + 



∫ 



∞∑

k=

( + αx)k( – α)k

k+(k + )!k!
�k

hf (αx)αμ– dα. ()

Proof Let f (x) be an arbitrary polynomial. Then f (x) =
∑

l Pl(x), where Pl(x) is a homoge-
neous polynomial of degree l. Using (), we see that the solution of the Dirichlet problem
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() is

u(x) =
∑

l

ul(x)

=
∑

l

x + 


∞∑

k=

∫ 



( + αx)k( – α)k

k+(k + )!k!
�k

hPl(αx)αμ– dα

=
x + 



∫ 



∞∑

k=

( + αx)k( – α)k

k+(k + )!k!
�k

hf (αx)αμ– dα. �

4.2 Inhomogeneous Dirichlet problem for Dunkl-Laplace’s equation
Now we consider the following Dirichlet problem for Dunkl-Laplace’s equation in the unit
ball B:

⎧
⎨

⎩
�hv(x) = , x ∈ B,

v(x)|∂B = P(x)|∂B,
()

with a polynomial boundary value P(x).

Theorem . Let P(x) be a polynomial. Then the solution of problem () can be written
as

v(x) = P(x) –
x + 



∫ 



∞∑

k=

( + αx)k( – α)k

k+(k + )!k!
�k+

h P(αx)αμ– dα. ()

Proof Using equation (), we find the solution of the Dirichlet problem

⎧
⎨

⎩
�hu(x) = �hP(x), x ∈ B,

u(x)|∂B = ,
()

as follows:

u(x) =
x + 



∫ 



∞∑

k=

( + αx)k( – α)k

k+(k + )!k!
�k+

h P(αx)αμ– dα.

Then the function

v(x) = P(x) – u(x) = P(x) –
x + 



∫ 



∞∑

k=

( + αx)k( – α)k

k+(k + )!k!
�k+

h P(αx)αμ– dα

is Dunkl-harmonic, because �hv(x) = �hP(x) – �hu(x) = . And the function υ(x) satis-
fies the boundary condition v(x)|∂B = P(x)|∂B. Therefore, the function υ(x) is a solution of
problem ().

Combining Theorems . and . yields the following result. �
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4.3 Inhomogeneous Dirichlet problem for Dunkl-Poisson’s equation
Now we consider the following Dirichlet problem for Dunkl-Laplace’s equation in the unit
ball B:

⎧
⎨

⎩
�hu(x) = f (x), x ∈ B,

u(x)|∂B = P(x)|∂B,
()

with a polynomial boundary value P(x).

Theorem . Let f (x) and P(x) be polynomials. Then the solution of the Dirichlet problem
() can be written as

u(x) = P(x) –
x + 



∫ 



∞∑

k=

( – αx)k( – α)k

k+(k + )!k!
�k

h(f – �hP)(αx)αμ– dα. ()

Proof The solution of problem () can be decomposed into the sum of solutions of two
problems: () and (). It follows by solutions () and () that the solution of the prob-
lem () is the function (). �
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