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Abstract
In this paper, we consider the stochastic heat equation of the form

au of 92w
E = (A + Aa)u+ &(t,X, U) + m,

where W is a fractional Brownian sheet, A + A4 is a pseudo differential operator on R
which gives rise to a Lévy process consisting of the sum of a Brownian motion and an
independent symmetric ae-stable process, and f: [0, 7] x R x R — R is a nonlinear
measurable function. We introduce the existence, uniqueness, Holder regularity and
density estimate of the solution.
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1 Introduction

Stochastic heat equations and fractional heat equations driven by fractional Brownian mo-
tion (sheet) are a recent research direction in probability theory and its applications. In
Balan and Conus [1], Song [2], the authors considered intermittency for the fractional heat
equation and a class of stochastic partial differential equations. In Chen et al. [3], Hu et al.
[4], Hu, Lu and Nualart [5],the authors discussed the Feynman-Kac formula for fractional
heat equations. In Bo et al. [6], Diop and Huang [7], Duncan et al. [8], Balan [9], Hu and
Nualart [10], Liu and Yan [11], the authors introduced the stochastic heat equations with
fractional white noises, and about the stochastic heat equations with fractional-colored
noises we can see Jiang et al. [12, 13], Balan and Tudor [14, 15], Tudor [16] and the refer-
ences therein. However, it is very limited to study the stochastic heat equations driven by
the mixed fractional operator A + A, and fractional Brownian sheet, where A, = —(—A)*/?
is the fractional power of the Laplacian. On the other hand, many mathematical problems
in physics and engineering with respect to systems and processes are represented by a
kind of equations, more precisely fractional order differential equations driven by frac-
tional noise. The increasing interest in this class of equations is motivated both by their
applications to fluid dynamic traffic model, viscoelasticity, heat conduction in materials
with memory, electrodynamics with memory and also because they can be employed to
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approach nonlinear conservation laws (see, for example, Sobczyk [17] and Droniou and
Imbert [18]). Therefore, it seems interesting to handle the mixed fractional heat equations
driven by fractional Brownian sheet. In this paper, we are concerned with the stochastic

heat equation of the form

(A Agu+ Lt xut,x) + DX 1[0, T)xeR, W
u(0,x) =%(x), xeR

with 0 < o < 2, where W (t,x) is the fractional Brownian sheet and the nonlinear mea-
surable function f : [0, 7] x R x R — R and the initial-value ¥ (x) satisfy the following

assumptions:

Assumption 1 For some p > 2, we have

sup E(|19(x)‘p) < 4009, 1.2)

xeR

and there is a constant 6 € (0,1) with p6 <1 such that

supE(‘z?(x+x/)—z?(x)‘p) <Cp‘x"pe. (1.3)
xR

Assumption 2 For each T > 0, there exists a constant C > 0 such that

If(&, x| < C(1+1y), (1.4)
[f(t,x9) —f(s,x,9) | < C(It=sl + |x =& + [y=¥/]) (1.5)

forall (£,x,9) €[0,T] x R x Rand «',y' € R.

The paper is organized as follows. Section 2 contains some preliminaries on the pseudo
differential operator A + A, the double-parameter fractional noises and the related Malli-
avin calculus. In Section 3, we study the existence and uniqueness of the mild solution to
(1.1) by using a Picard approximation. In Section 4 we show the Holder regularity of the so-
lution u(t,x). Section 5 is devoted to showing the existence of the density of u(¢,x) and we
show that the law of u(t, x) is absolutely continuous with respect to the Lebesgue measure
on R by using Malliavin calculus.

2 Preliminaries

In this section, we briefly recall some basic results for Green function of the pseudo differ-
ential operator A + A, and Malliavin calculus associated with fractional Brownian sheet.
We refer to Chen et al. [19-23] and Nualart [24] and the references therein for more de-
tails. For convenience, in this paper we assume that C is a positive constant depending
only on T, H, @ and its value may be different in different positions.

2.1 On the pseudo differential operator A + A,
It is well known that, for a second order elliptic differential operator Z on R? satisfying
some natural conditions, there is a diffusion process X on R% such that  is its infinitesimal
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generator, and its transition density function is the fundamental solution of the equation

ou
Fri Du.
We also call the fundamental solution the heat kernel (Green function) of Z. For a large
class of Markov processes with discontinuous sample paths, we also have such a corre-
spondence, and such Markov processes have been widely used in various problems. In
this one, an important Markov processes with discontinuous sample paths is (rotation-
ally) symmetric «-stable (Lévy) process with 0 < o < 2.

A symmetric a-stable process X = {X;,¢ > 0,P,,x € R} on R? is a Lévy process such that

E.[exp{i¢ - (X, — Xo)}] = exp{~tI¢|*}

for every x,¢ € R, where E, denotes the expectation with respect to P,. When « = 2,
X is a Brownian motion on R? whose infinitesimal generator is the Laplacian A. When
0 < « < 2, the infinitesimal generator of a symmetric a-stable process X is the fractional

Laplacian A, = —(—A)%'2, which is a nonlocal operator and it can be defined by

Agh(x) =1lim (h(x') - b)) Ldo)

d
810 (&' eRY:|x/ —x|>8} |x _x/l e

’

where L(d, ) := @2 -8 F(d%)/r(l - 5) and I" denotes the classical Gamma function.
In this paper, we consider only the case d = 1.
Let now X* be a real value «a-stable process with 0 < @ < 2 and let B be a real value

Brownian motion independent of X*. Define the process X by
Xi:=B+X;, t=0.
Then the infinitesimal generator of X is A + A, and

E.[exp{i¢ (X, — Xo)}] = exp{~t(1¢|* + I£]%)}

for every x,¢ € R. Denote by G, (t,x) the fundamental solution of the equation

ou
— =(A+Ayu
ot

(or equivalently the heat kernel of A + A,). It follows from Chen et al. [23] that

1 _ Gk 1 t—s
ct ((t—s)_Ze = +(t—8)"2 A 7)

=T 1 t—s
< Gu(sp5tx) < C ((t —-5)72%e Q) 1 (t—5)2 N —r (2.1)
|x_y|1+oz

forallt>s>0,x,y¢€ R? and some constants Ci, C, > 1, where a; A ay := min{a;,a,} for
ay,a; € Rand Gy (s, y;t, %) := Gu(t — 5, — ).
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2.2 Malliavin calculus
Recall that a fractional Brownian sheet defined on a probability space (2,.%,P) with
indices Hy,H, € (0,1), W = {W(¢,x),t € [0,T],x» € R} is a Gaussian random field with
W(0,0) =0 and

EW(t,x) =0, E(W(6,x)W(s,9)) = Ry (5, )Ry, (x, )
foralls,t >0, x,y € R, where

1
Ry (u,v) = §(|u|2Hf + v - |u—v|2Hf), j=L2%u,velR.

Let H be the completion of the linear space 7 generated by the indicator functions 1(x (x,]
on [0, T] x R with respect to the scalar product

(Lio,qx 10,41 Lo,s1x[041) 1 = Ry (85 E)Rpy (%, ).

The following embedding property follows from Bo et al. [6] (see also Jiang et al. [13] and
Wei [25]).

Proposition 2.1 For H > % we have
L#([0,T] x R) CH.

Define the mapping W (g) between 7 and the Gaussian space associated with W by

T
g=10x[0x —> / /g(s,x) W (ds,dy) = W(t,x).
o Jr

Then it is an isometry and it can be extended to H, which is called the Wiener integral of

g with respect to W. Denote
En(t$;%,9) = 4H1Hp(2Hy ~1)(2Hy — )]t = 5|17 | — 127
forany0 <s<t<Tandx,yeR.

Proposition 2.2 For ¢, € H, we have E{W ()] = 0 and
E[W((p)W(w)] = / dsdt/ o(s,x)Y (t,y)Ex (s, t;x,y) dy dx.
[0,772 R2
Proposition 2.3 IfH € (5,1) and ¢, € L# ([a, b)), then

2H-2
x x— dxdy <C .
/[a,b]2 p() Y ()lx -yl Y = ”(p”ﬁ([u,b])”I/f”L%([u,b])

Consider now the set C of smooth and cylindrical functional

F=f(W@).... W), (2.2)
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where the function f and its derivatives of all orders are bounded and g; e H,i=1,...,n.
Define the derivative operator DI (the Malliavin derivative) by

DF := Z W(gl) L W(g)g

for the functional /- of the form (2.2). Then D is a close operator from L2($2) into L?(2; H).
Denote Dy,f = (DF ,h)3. Let Dj, and D2 be the closures of C with respect to the norms

1 s = E[IF 2 + 1D 112]

for i € H and
2 2\1/2

IF 2 = (EIF* + EIDF113,)"
respectively. Then D'? is the domain of D on L?(£2) and

[ eD”? «— [ eD,
for each n € N, if ZZZIEthnF|2 < +00, where {,,n > 1} is an orthogonal basis of H.

The divergence operator (integral) § is defined as the adjoint of D. A random variable

u € L2(; H) belongs to the domain Dom(8) of §, provided

E|(DF ,u)n| < CIIF 20
for all F € C. Thus, §(u) can be determined by the next duality relationship:

E(DF,u)y =E(F8(w)), ueDY.

We will also use the next notations:

8(u) = / / u(s,x) W (ds, dx)
8(uli0,x4) // u(s,x) W(ds, dx).

By using Malliavin calculus for stochastic partial differential equations (abbr. SPDEs)

and

driven by fractional noises, we can get the following propositions (see, e.g., Wei [25] and
Jiang et al. [13]).

Proposition 2.4 Let Fy := o {W (M), M C N} for N € B([0,T] x R), and let the random
variable Y be square integrable. If Y is measurable with respect the o -field F e, then

DY1y =0,

almost surely.
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Proposition 2.5 For a random variable Y belonging to DV?, if | DY ||3, > 0 almost surely,
the law of Y is absolutely continuous with respect to the Lebesgue measure.

3 Existence and uniqueness of the solution

Given a filtered probability space (2, .%,(%¢)t=0, P) with the natural filtration (%#;):>0
of W. In this section, the Cauchy problem (1.1) will be discussed. By using the heat kernel
Gu(s,y5t,%) of A + Ay, as usual (see, e.g., Walsh [26]) we say that the stochastic field

u:[0,T] x Rx Qr— R

is a mild solution to (1.1) if

t
u(t,x):fGa(O,y;t,x)z?(y)dy+/ /Ga(s,y;t,x)W(ds,dy)
R 0 JR

t 3G, ‘
+/0 /R dy (s,3;8,%)f (5,9, us,y)) dyds 6

forall £ > 0 and ¥ € R. Now we can state the main result in this section, and its proof could
be derived by using some estimates of the heat kernel G, (s, y; £,x) and some properties of
the stochastic integral

t
/ / Gu(s,y;t,x) W (ds, dy).
0 JR

Theorem 3.1 Under Assumptions 1 and 2, equation (3.1) admits a unique solution u =
{u(t,x), (t,x) € [0, T] x R} such that

sup  Elu(t,x)|" < +o0
te[0,T],xeR

foralla €(0,2) and p > 2.

Proof We first use Picard’s approximation to get a solution to (3.1) and then we show that
the solution is unique. This proof will be decomposed into three steps, and we define

uo(t,%) = [ Go(0,y;£,%)0 (y) dy,
st (6,%) = uo (6, %) + [y [ Gu(s, y52,%) W (dy, ds) (3.2)
+ Jo S 5 (5,060 (5,3, (5, 9)) dy dis

forallt>0,xeRandneN={0,1,2,...}.
Step 1. We prove that

sup sup  E|u,(t,x)]" < +oo.
neN t€[0,T]xeR

By Holder’s inequality and Assumption 1, we get

p-1
E!uo(t,x)V’§E<(A|Ga(0,y;t,x)|dy) A|Ga(0,y;t,x)||ﬁ@)|pdy)

p
< supE[9 ()" ( / |Ga(0,5; t,x)ldy) (33)
xeR R
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for all p > 2. Notice that (2.1) implies that

sup /|Ga(0,y;t,x)|dy<+oo.
R

te[0,T],xeR

We see that sup,c(o 77 ver Elto(£,%)|P < +00.
On the other hand, for each # > 1 and p > 2 we denote

D, u(t,x) = Gy (s, 38, %) (dy,ds)

)

i
— (s, 5, x)f(s 9, Un(s, )) dyds| .

pn (t, %)
By (3.2) it follows that
Eltpn(t, %) < C(E|uot5)|” + @pult,x) + Wu(t,%)). (3.4)

We need to estimate &, ,(¢,x) and W, ,,(¢,x). Clearly, we have

__ 1 Cly? 1.1
/(t—s) Mrem s dy<C(t—s) 272
R

and

/((t—s)% (t-s) ) dy<Cl(t—s) 2H2 21+a)
R |x |l+a

for all £ > s > 0. It follows that

|Guts s69]

L Hz (R)

1 Hy
= (/ Go(s,y;t,x) 2 dy)
R
2 HLZ Hy
< ((t—s) Te Cl'zt‘—s Ty (f— s)__ ﬂ) dy)
|x_y|1+uz

ol 1 t— A\
<C t 5)*%6 Cz(zy—s>)H2 dy+/((t—s)% A —( Sl) ) ’ dy)
R e =y
Hy _1, 3 LH
<C(t-s) F 4 (t—s) 2 2] ) < C(¢— )2t (3.5)

which implies that

D, (L, %)

o (1, z; t,x) W (dr, dz)

14

t pt ;
= C</ / dr er/ Go(r1, 215 8,%) B(r1, 72521, 22) Go (12, 205 £, %) dzy dzz>
0 JO R2
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t t
:C(//|V1—V2|2H1_2d7’1d1’2/ |21 — 2z |72
0 Jo R2

p
2

- Golr, 2158, %) Go (12, 225 8, %) dzy de>

14

t t
< C</ / Ir =172 Golr, 56%) | 1 [|Galrasst,®)| 1 dn dr2> ’
0 Jo L™ (R) L2 (R)
T 1 pH1
§C</ (|Galr,st)| 1 ) dr) <C<+00 (3.6)
0 L2 (R)

by Propositions 2.1, 2.2, and (2.1). Similarly, by the Holder inequality we get

p-1
dy ds>

f f(EV(S,J’:Mn(S,y))|p)‘%(5,y;t,x)

dyds

W, (tx) < C(

s,y,t x)

dyds

<C (s,y,tx

+C/ /E|un(s, |p
o] [l

t » G,
+C supE|u,,(s,y)| ds —(s,35t,%)
0 yeR r| 3y

s,y,t x)| dyds

dyds

dy. (3.7)

3
Denote g,(t —s) = f]R| e (s,y;t, %) dy, Dy = {z € R | |[x — 2| < (t — 5)20+0) }, and

1 lx? 1
Gral(s,y; %) = (t—5)"2e 209 1+ (£—5)72,

gﬁi t—s
N o— — t—s, I
G2,Dt(siy; trx) = ( S) 2@ 2 + |x_y|1+a

forall £ > s> 0 and x,y € R. It follows from (3.6), (3.7), and (2.1) that

t t
SUp E| 1 (¢, %) " < C+/ gx(t—s)ds+/ sup E|u,(s,) | g«(t — s) ds
xeR 0 0 yeR

and

3Ga 8G o aG o
/ yit,x)| dy < / % (s, y;8,%) | dy + / 2 (s,y;t,%) | dy
r| 0 ol 0y Dl 0y
bl 2l —
- f—s)y e G (X TV N4
/x( 9e ( c2<r—s)>‘ y
1 Lol 2lx —y| t—s
+ (t—s)2e Q0 (— )—(1+a)7 d
/]D)x Cy(t—s) lx — |2+ )

< Clt—s|"2. (3.8)
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Combining this with Lemma 15 in Dalang [27], we get

sup  sup E|un(t,x)|p<+oo.
neN t€[0,T]xeR

Step 11. We prove that {u,(,x)},cn converges in L?(S2) for any p > 2. For n > 2, we have

E(‘ Upi1 (t: JC) - Lt,,(t, x) |p)

_E(

/ / —(s,3:t, x)f (8,9 tn-1(s,y)) dy ds
2 ——(5,3:t,%)

§Cf0 (/]R Iy
= (L5

(s, Y6, %) (5,9, un(s,)) dy ds

)

dy)E‘ un(s,y) — uy_1(s,9) ‘p ds

aya (s, y;2,%)

dy) SUP E|ut,(s,) — thn1(s,) | ds
yeR

and

sup E[111(5,5) = uo(6.9)|” = G (Eluo(s) " + Elir(5.) ") < +o0.
ye

Combining this with Gronwall’s inequality, we get

sup  E(|tps1(t,%) — un(t, %)[") < +00,
neN te[0,T],xeR

which implies that {u,(¢,%)},>0 is a Cauchy sequence in L”(2). Define
u(t,x) := lim wu,(t,x)
n—+0Q
in L(R2). Then we have

sup E‘u(t,x)|p<+oo
te[0,T],xeR

for each (¢,x) € [0, T] x R. Taking n — +o0 in LP(Q2) for (3.2), we see that {u(¢,x) : (¢,x) €
[0,¢] x R} satisfies (3.1).

Step I11. We prove the uniqueness of the solution. Let # and & be the two mild solutions
of (1.1), then

E(|u(t, x) — u(t,x) |P)

:E(

/ / —— (s y:6%)f (5,9, 04(s,)) dy s

AV

—(S,y,tx
§C/ supE|u(sy it(s,y)|p/
0 R

yE

G,
oy (5, 7; ,%)f (5,7, u(s, 7)) dyds
)

dy)E|u(s, it(s,y)|p ds

y;t,x)| dyds.
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It follows from Gronwall’s inequality that

sup E|u(t,x) —it(t,x)|}7 =0
te[0,T],xeR

for all 7> 0. Thus, we have completed the proof of the theorem. d

4 Holder regularity and p-variation of the solution
In this section we expound and prove the next theorem, which gives the Holder regularity
of the solution u = {u(t,x), (t,x) € [0, T] x R} to (3.1).

Theorem 4.1 Let H,H, € (%,1) and o € (1,2). Under Assumptions 1 and 2, the solution
u(t,x) has a continuous version which is y-Holder continuous in t with y € (0,v%,) and
v-Holder continuous in x with v € (0,9,), where

0 2H, -1 H,
+_

191 = mln{ E, ) ) }, 192 = min{@,Hz}.

In order to show that the theorem holds we need two lemmas.

Lemma 4.1 We have

1
3G, 01 o\ H 126041
—(r,z;t,x)| |Gu(r,z;t,%) o dz<C(t-r)? 7 (4.1)
ot
R
forallO<r<t<T,xeRandb €(0,1). Moreover, when 0 < 6; < 2H21_1 + %, we have also
1 )
‘ G “ S\ O\ A
f (/ (‘ o (r,z; t,%) |Go((r,z;t,x)‘1 91) ’ dz) ldrfc (4.2)
0o \Jr

forallt €[0,T] and x € R.

3
Proof Given t>randz € R. Recall that D, ={y e R | |x —y| < (£ — r) 20> },

G,
‘é(‘?(r,z;t,x)
/ G
=
D,
/ G
+
D,

=Ay1,(67,%) + Ay (6 1,%)

01

1
Go(rzt,2)| ™" . dz
| |

la Hy i
. ‘Gl,a(r,z; t,x)‘ H dz

(r,z; t,%)

01

H:

2.0 2 1-6;
2 |Gau(rrz; t,x)| T2 dz

(r,zt,%)

forall 0 <7 <¢ < T and x € R. Clearly, we have

A;LLI (t,r,x)

:/DZ

6

L pde st o Sl e 1, )”_
——(t-r"2e T +(t-r)2—0e T ——(t-r

2 (t-r)? 2
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Cla—zl?

Ne=nte S5 e -n | e

o
L W/ L x—z]®  c-d? Hy | Cla—zf? 1-6,
<(t-r) ¥ 2M e+ e i +1 |e T—r +1| H Jy
D, t—r
z
3010 31420
< C(t _ I”) 2Hy = 2Hy / dz < C(t_ I”) 2(+a) ~ 2H,
D,
2
by the fact x?¢™ <1 and
1
Ax 1t 1,%)
2 2 2 01
1 3 _ lx—z| X -2z _ x| 1 Hy
=‘/ ——(t-r)2e QD 4+ (£ - rY’J———l—e oY R
D, Cz( —r) |x_Z|1+oz
1-6;
Jael2 t—-r |H
. (t—}") 26 QU g —— dz
|x — Z|1+a
61
_30p _1-6 Joe— Z\z \x—z\Z (t )3/2 Hy
< C(t—}") 2Hy ~ 2Hy / e Q) 4 |x Z|2 TG0 4
D, |x Z|1+a

B -2 t—r 3/2
e Co(t-r) + ( )

dz

|x_Z|1+oz

36,
30 _1-6; Clr—2)2 2] Clx-2)? (t—r)2
<C(t-r)y M 2 (e‘tr tlx—z|2e T 4 ———— |dz
D,

01 (1+a)
lx—z|

3910 ; 1,0 3
<C(t-r) 2 2% ((t—r)f +({t—r)2 2 4 (t—r)20+

a))

300 1-01 1 1 1+26;

<C(t-r) " 2, T2 _ Clt—r)2" 20
for all £ > r > 0 and x € R. Thus, we have introduced (4.1) and hence (4.2) follows. a

Lemma 4.2 Forallt>r>0,0 <6, < H,, and x,z € R, we have

9G, ) 1 146
/( z;t,x) '|Goz(r,2;t,9€)|1 62) dz < C(t- ) “m (4.3)
R ox
and
Hy

T 3G, b2 m
/ (/( z; t,x) \Ga(r,z;t,x)| 62) dz) 1drfC. (4.4)
0 R ox

3
Proof Given t>rand z € R. Recall that D, = {x €e R | |x — z| < (¢ — r)20+@ }. Then we have

0G,
—(r,z; 1, %)
R 0x
< / 0 Gl o
D,

—(r,zt,%)
X

0y =
_0 2
) |Ga(r,;z;l,‘,ac)’1 2) dz

)

Hy -6y
| Gio(r,zit, x)| M dz
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1-69

92
2 (r,z;t, %) |G20,(r,z,t x)|  dz

/‘ Gy
+
D,

= A%ym(t, r,X) + A%J,z(t, r,x).

L3
Ch—z?>  2|x—z||H2
t—r X

Clearly, we have
A2 (t,r,x) = C/ t—r)e
211(& 15 %) Z (t=7) NG
Clr—zf? 1-6y

|(—r) L +(t- r)2|H2 dz

_ 146y
< C(t —r)2Wa) 2y

by the fact |x|e”‘2 <Cforallx € R, and

0

)
1 _cle? [ 2C|x —z] t—-r |H
A? trx:/ t-r)y2e =& |—— | -(1l+a)————
ot = [ - ) e
1-0y
1 Cla—zl? t—r Hy
Nt=r)y2e — T dz
% — z|l+e
Oy
30, 1-6y a2 (E—7)2? |
<C(t-r) oy~ 0y | |lx—zle” & _—
: |x_z|2+a
1-6y
_Cl—22 (E— r)?’/2 H)
-|le t—r —_— dz
|x_z|1+at
30: 1-6 (2 56 3 367 (2+a)

1
<C(t- r)‘ﬁ‘% ((t _ r)ﬁ’fj +(t=7) 2H2 *3+a) 2H2(1+oz))

_Liby

2,

S

<C(t-r)
for all 0 < 6, < Hy. Thus, we have proved the estimate (4.3) and (4.4).

Proof of Theorem 4.1 We shall divide the proof into two steps.
Step 1. We first consider the temporal case. Denote

Af(t,5,%) = / [G (0,51, %) — Go(0,955,%) |9 () dy,
R
t S
Al(t,s,x) = / / Go(r,y;t, )W (dy, dr) — / / Go(r,y;5,%) W (dy, dr),
0 JR o JR
1 ! aGoz
A5ty 5,%) := a—(r,y; 6x)f (r,y,u(r,y)) dydr
/ / G (V,y,t x)f(”xy, 7”,)/)) dydr
forallx e Rand 0 <s<t < T. Then we have

’u(t,x) - u(s,x)’ < |A}(t,s,x)’ + ’A;(t,s,x)f + }Aé(t,s,x)|

Page 12 of 24
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for allx € R and 0 < s <t < T. By Holder’s inequality, the semigroup property and (3.2),

we have
E|Ai(t,s,x)|p
12
:E/ [Ga(O,z;t—s,y)Ga(O,y;s,x)]ﬁ(z)dydz—/Ga((),y;s,x)ﬂ(y)dy
R2 R
P
:E/Ga(O,z;t—s,O)fGa(O,y;S,x)(ﬁ‘(y—z)—z?(y))dydz
R R

5C/|Ga(0,z;t—s,0)|/ Ga(O,y;s,x)E|19(y—z)—19(y)|pdydz
R R
5C/|Ga(0,y;s,x)|dy/|Go,(0,z;t—s,0)||z|”0dz

R R

with p6 < a. Some elementary calculations can show that

ey
/’GQ(O,y;s,x)‘dySC(/ s‘%eszdey+/s_ A%dy)
R R R =yt

3

1
dy < C+Cs 2720+

ol

N
y1+a

o0 1
§C+C/ STZA
0

and

2

/]Ga(o,z;t—s,o)“zlpg dz = C/(t—s)‘%efczﬁt*” |z|P? dz
R R

t_
+ C/ ((t—s)‘% A ls )Izlpedz
R |z[H+e

o _l+3(1+p6)
<C(t-5)7 +C(t—s) 2" 2],

which gives

E|Alt s, <Clt-9)%. (4.5)
Let now us estimate the term A} (¢, s, x). Denote

Aé’l(t,s, x) = /S/ (Ga(r, zt,x) — Gy (r,z; S,x)) W (dz,dr),

0, R

Aé,z(t, $,X) = /S /R Go(r,z; t,x) W (dz, dr)
forallx e Rand 0 <s <t < T.We then have

|A§(t,s,x)| < |A§Y1(t,s,x)| + |A§‘2(t,s,x)|
forallx € Rand 0 <s< ¢ < T. Moreover, for every 6, € (0,1) we let

A;Ll(t’ er) = || |Got(’ 5 t;x) - G(x(; ‘;S)x)|91 |G0l(') 5 trx)|l_91 ||§'l,

AL (t5,%) = ||| Galr i 6,%) = Gal 55,0 [ Gal 5,2,
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withx € Rand 0 <s <t < T. Then we have

E[A5,(t5,0)]" < C||Gul-,58,%) = Gal,55,%) |3,
= C(][|Galer %) = Galr35,2)| | Galer 5 £,2) = Galr 55| 5,

14
2

< C(!A;l,l(t,s,x)’ + |A§,1,2(t» s,x)|)

14
2

for allx € Rand 0 <s <t < T. But, by using (3.2), Proposition 2.4, Lemma 4.1, and the

mean-value theorem, we see that there is an & between s and ¢ such that

|A5,1'1(t) S, x) |

5

2
1-61

01
— (558, t— o Got 5t
o (56%)| 1E=s1"|Gal5t,%)|

t ot 3G,
= |t—s|201/ / drler/ f‘—(rl,zl;s,x)
o Jo R JR| Of

o

0
|Galr,zi 8,2

1-6
‘Got(FZ)ZZ;t;x)’ 1dZ1de

Gy
W(rZ:ZZ:E)x)

o ([ ([

<Clt-s*!

- Br(r,rs21,22)

Hy

1
aGa 61 _ ooy H 2Hy
—(r,z; t,x) ‘Gw(r,z;t,x)’1 01) ’ dz) ' dr)

at

forall 0 < 6; < 2H21’1 + % Similarly, one can prove that

A}, (ts,x)| < Clt — s

It follows that
E|A} (t,s,%)|” < Clt — s

for all 6; € (0,1%). On the other hand, we have

t t
/ / dn de/ Go(r, 215, %) E(r1, 125 21, 22) Go (12, 205 1, %) dzy dzy
s s R2

t t
=/ / |”1—V2|2H1_2d7”1d7‘2/ |21 — 2o |?272
s s R2

- Gy(r,z15t, %) Gy (12, 203 £, %) dza dzo dry diry

t t
SC/ f =172 Gu(r )| 1 [Galra st ®)| 1 dridry
s Js L2 (R) L2 (R)

¢ 1
. H
sc(/s (| G, ,t,x)HLH%(R)) 1dr>

forallx € R and 0 <s<¢ < T, which gives

t
/ / Gu(r,z; t,x) W (dr, dz)
s R

2H;
< C|t _S|(2H1+H271)

p
< C|t _ Sl%(2H1+H2_1)

E|A§,2(t,s,x) |p =E

(4.6)

(4.7)

(4.8)
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forallx € Rand 0 <s< ¢ < T by (3.7). Combining this with (4.6), we get
E|A}(t,s, %) < Clt—sPt (4.9)

for 0; € (O, 191)
Finally, by the Holder inequality, Assumption 2, Theorem 3.1, and (3.8), we have

E(|A3,(t5,%) ’p)

P
dr r,y,s,x)D‘(r+ t—s,y,ulr+ t—s,y)) —f(r,y, u(r,y))]dy
s p-1 ,s
§C</ dr/ %(r,y;s,x)dy) / dr/ %(;’,y;s,x)
0 r 0y 0 r 0y
-EV(r+ t—s,y,u(lr+ t—s,y)) —f(r,y,u(r,y))‘pdy
< C<|t—s|’” +/ SupE|u(r+t-s,y) - u(r,y)|pdr> (4.10)
0 yeR
and
1 » t=s 0G, s
E(|A3, @t s%)]") = ‘/ dr/ a—(r,y; t,x)f (r,p, u(r,y)) dy
0 R 0)Y
t-s p-1
< C(/ dr/ aa&(r,y;s,x)dy)
t—s
f dr/ (r,y:t, x)E[f(r,y, r,y))| dy
< Cle-sl’(1+  sup Elu(t)f") < Cle-s? (4.11)
(t%)e[0, T xR
forallx e Rand 0 <s <t < T.Itfollows that
E|A1 (t, s,x)’p = E‘/ f (r,y;8,%) (r,y,u(r,y))dydr
G, s
—/ / a—Ga(r,y; t,x)f(r,y, u(r,y)) dydr
0
< C(E|A (2 s,x)|p+E|A (t,s, x)| )
< C(|t—s|p +/ supE‘u(r+t—s,y) —u(r,y)’pdr) (4.12)
0 yeR

forallxe Rand 0 <s<t<T.
Thus, we have obtained the desired estimate

E|u(t, x) — u(s, x) |p < C(E|A}(t,5,%) |p + E|A}(t, 5, %) |p +E|A}(t,5,%) |p)

< C(|t—s|1"’ + |t — 5Pt

+|t—slP +/ supE|u(r+t—s,y)—u(r,y)|pdr)
0 yeR
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forallx € Rand 0 <s< ¢ < T, which implies that

E’u(t,x)—u(s,x)’pfC(|t—s|1”+/ supE’u(r+t—s,y)—u(r,y)‘pdr>
0 yeR

forallx e Rand 0 <s<t < T by taking v € min{6, 6;}. This shows the Holder continuity
in time variables ¢ by Gronwall’s inequality.
Step 2. We consider the spatial case. For all ¢ € [0, T] and x,y € R, we need to estimate

the following expressions:

’

A2(t,x,y) = /[Ga(O,z;t,x)—Ga(O,z;t,y)]ﬁ(z)dz
R

A%(t,x,y) = /o A;[Ga(r,z;t,x)—Ga(r,z;t,y)]W(dz,dr)

t [T4G, 3G,
A2(t,2,9) = / / |:a—(r,z;t,x)——(r,z;t,y)}[(r,z,u(r,z))dzdr
o JrL 0z 0z

We have

12
E’A%(t,x,y)‘p < supE|l9(z+x—y)—z9(z)‘p- < |x—y|p9 (4.13)
zeR

/ G,(0,z;t,%x) dz
R

forall ¢ € [0, T] and x, y € R by Assumption 1. Denote

A2 (62,9) = [|Galor 5 6,2) = Galer 5 6,9)] [ Gal s 2,0)[ 24,

A%)z(tyx)y) = || |Got(') ) t:x) - Got(') 5 t;y)|92 |G01('! ';t,}/)|1_92 ||’H
for all £ > 0 and %,y € R. Then we have

6 1-6
E|A%(t,x,y)|p = C|| |Ga(~, 55X) — Gy t,y)| 2 |Ga(-, 3£,%) = Gyl -;t,y)| 2 ”1;
< C(A3,(txy) + A3, (6%, 9)) .
Similar to Step I, by using (3.2), Proposition 2.4, Lemma 4.2, and the mean-value theorem,
one can see that

0y

a

Gq -0
A3 (6x,y) = H‘ S (st) ¢ — 9172 Ga (-, 5 2,2) |
’ T T aGa [} 1-6
=Clx—y” ——(r,z158,8) ’Ga(7”1,21;t,x)|
o Jo Jr2| Ox

x Br(ri,r;21,22)

[}

1
2
|Go(r, 25 t,2)| " dzy dzy diy dr2>

b2 1-6, HLZ 11-% h
’ Gy(r,z; t, %) ‘ dz dr

G,
: ‘—(rZ’ZZ;t)E)
ox

T
G,

SCIx—yIGZ(/ (/(‘ aG (r,z;t,%)
0 R X

<Clx-y"
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for all 6, < H,. Similarly, one can also prove
A3, (t,x,9) < Cla = y|
for all 6, < H,. It follows that
E|AL(t,x,y)| < Clx—yIP® (4.14)

for all 6, < H,. Finally, we consider the term |A3(¢, x, y)|. By the Hélder inequality, Assump-
tion 1, and (3.8), we have

SC/ dr/|@(nz; )
0 0z
/dz 9Gq

< C<t|x—y|p +f supE|u(r,z+x—y) - u(r,z)|p dr). (4.15)
0 zeR

E|A3(t, x,y)\p

p
dr

3Gy
zZt,x) — p —(rz t,y)]j(r, z,u(r,z)) dz

Elf(rz+x—yulr,z+x-y)) —f(r.zu(rz2)| dz

r,z,ty)‘/ Ix y|p+supE|u(r,z+x—y)—u(r,z)‘p)dr

zeR

Combining this with (4.13) and (4.14), we have
E|u(t, x) — u(t,y)|p < C(E|Af(t,x,y)|p + E|A§(t,x,y) |p + E|A§(t, x,9) |p)

t
< C<|x —yP%2 4 tlx—yP + / SUpE|u(r,z +x - y) —u(r,z)|’ dr)
0 zeR
for all 0 < 6, < Hy. Thus, we have proved the Holder continuity in space variables x by

Gronwall’s inequality. O

As an immediate result of the above theorem, we see that the quadratic variation is
zero. At the end of this section, we give the p-variation of the solution. For convenience

we consider the following special equation:

ot @ dtdx’ (4.16)

LN 4
(0,x) =0, xeR.

As in Section 3, the solution of (4.16) can be written in mild form as

u(t,x) = /tAGa(s,y;t,x)W(ds,dy), (4.17)
0

where G, (s, ;t,x) stands for the heat kernel of A,. It follows from Chen et al. [23] that

Gu(s,y3t,%) < C ((t—s)‘olv A i) (4.18)

|x_y|1+o¢

forall 0 <s<t, %,y € R and some constant C > 0.
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Lemma 4.3 Let u be the solution of (4.16). Then, for all 0 < s < t, we have
Eli(s,x) — it %)|* < Cle — s[>, (4.19)

aHy+Hy—1
where n € (0, == 2=).

Proof Similar to the proof of Step 1 of Theorem 4.1 and Lemma 4.1, when 1 € (0, %)

’

we obtain

t s 2
E|z_4(t,x)—12(s,x)|2 = E’/(; A‘%Ga(r,y;t,x)W(dy,dr)—/o Aéa(r,y;s,x)W(dy,dr)

2
<E

/S/ (Ga(r, zt,x) — Golr,z; s,x)) W (dz,dr)
0o JR

2

t
+E/ /Go,(r,z;t,x)W(dz,dr)
s R

= Cp,n(“ |Ga(';‘;tyx) - Ga('y‘;ij)|n : {Ga(':'; t:x)|1_,7 ||§_[
+ || |G’a("';t;x) - G(x(';‘;srx)|n N |Got("';57x)|1_n”it)
t 1 2H;
+ C(/O (HGa(r,-;t,x)”Ll%(R))Hl ds)

< Clt—s*".
This completes the proof. d

For T>0,lett, ={0=1¢y <t <--- <t, = T} be a partition of [0, T] such that the mesh
size |A,| = max; |t — 1| — 0 (m — 00). Recall that a process ¥ = {¥;;0 < £ < 0o} is of
bounded p-variation with p > 1 on the interval [0, T'] if the limit of

n-1

VE(Y;T) =) 1Yy, = YylP
j=0

exists in L}(2), as n — 0o, We denote by V?(Y; T) the p-variation on [0, T'.
We new consider p-variations of the solution to the fractional heat equation (4.16).

Theorem 4.2 Let (u(t,x),t € [0, T],x € R) be given by (4.17). For H; € (%, 1), and H, = %,
we have

VP (u(-,x); T) =0,

ifp> 22— forall x € R.

200H1-1

Proof By Lemma 4.3, we have

n-1
E(VP(ut,x); T)) =E (Z | (¢, %) - e, )| )

i=0

n-1
= ZE’ﬁ(t,-H,x) - ﬁ(ti:x)‘p
i=0
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E
,..

p
2

(E|M(tl+1,?(f) u(tvx)| )

N
(=]

i
n-1

pQaH-1)

SCE L =&l 2,

i=0

which shows that ¢ — (¢, x) has p-variation 0 when p > for all x € R. This com-

ZotH -1
pletes the proof. O

5 Existence of the density
In this part, we will focus to prove the absolute continuity of the distribution of solution
{u(t,x) : (t,x) € [0, T] x R} given in Section 3 by using Malliavin calculus.

Proposition 5.1 Under the assumptions in Theorem 3.1, if the function (t,x,z) — f(t,%,2)
and its partial derivatives of order 1 are bounded, then u(t,x) € DV? and

D, u(t,x) = Gy(r,v;t,x) + / / (s,y,t x) of (s,y, u(s,y))D,,Vu(s,y) dyds

forall0 <r<t<Tandx,vek

Proof By approximating we can introduce the theorem. Let u,,(¢, %) satisfy the next equa-
tion:

uo(t,x):/RGa(O,y;tyx)ﬁ()’)dyr
U1 (£, %) = uo (£,%) + / t / Go(s,y;t,x) W(ds, dy) (5.1)

/ / s,y,t x)f (s,y, u,,(s,y)) dyds

foralln=0,1,2,.... Then u,(t,x) € D, and it satisfies

Dyu,(t, x) :( S5 6X), h / / —(s,y5,%)

)
. ai; (89> tn-1(5,9)) Dttn_r(s, ) dy ds.

for each n € N and 1 € H (see the argument in Zhang and Zheng [28]). Since

lim u,=u
n—+00

in L7, there is a random field (¢, x) such that

lim Dyu,(t,x) = u®(t,%)

n—+00

uniformly on (¢t,x) € [0, T] € R, and

u®(t,x) = <Ga / ds (s, y5,x%)— f (s,y,u(s,y))u(h)(s,y) dy
0z
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It follows from the closeness of the operator Dy, that Dyu(t,x) = u™ (¢, %), u(t,x) € Dy, and

Dyu(t,x) = <Go,(~, ~;t,x),h>

fds

forall 0 <t < T and x € R. Now, we claim that u(¢,x) € D2 By (5.2), we have

i) o (s,y, u(s, y))Dyu(s,y) dy (5.2)

E|Dhnu(1§,x)|2

2
=E‘<Ga(-,~;t,x),h /ds/ tx) (s,y,u(s,y))Dhnu(s,y)dy

2
< C(Ga(5t,%), hy) +C/ ds/( sy,tx> E(Dhnu(s,y))zdy (5.3)

forall0 <t<T,xeRand{h,,n>1} C H. Set

!
Ki(t) = sup Y E| Dy, u(t, x)|’

LS —

forall 0 <t < T. Then we have
IC[(t)<CE/ ds/( (sy,tx)) K;(S)dy+C||G(,,tx)||H
<C+ C/O (t—s) 25 Ky(s) ds
for all ¢ € [0, T] by (5.3) and Cauchy’s inequality, where we have used the fact that

3G, 2
/( (sy,tx)> y<C|t—s|
r\ 9y

forall s,t € [0, T] and x € R. It follows from Gronwall’s inequality that

1l
Ki(e) < CeCT 272

Letting [ — +00, we get

oo
supEZ:|Dhnu(t,x)|2 < +00,

xR 5

which shows that u(t,x) e D" forall0 <t < T andx € R.

Finally, let us calculate the derivative Du(¢,x) for all (¢,x) € [0, T] x R. Since u(¢,x) is
F-adapted, by Proposition 2.4 there exists a measurable function D, ,u(t,x) € H such
that D, u(t,x) =0 if r > t and for any 1 € H,

Dyu(t,x) = <Du(t, x), h)H (5.4)
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forall 0 <t < T and x € R. From (5.2), (5.4), and the Fubini theorem, it follows that

(Du(z, x),h)H

e [of 3

(Gl / ds

TR— N
. / / drdr’ / Dyuls (7,2 Bl v, 2) v

~ (Gl //drdr /RZ r,2)Bu(r, sV, 7) dv dd
[ /

for (¢,x) € [0, T] x R. Thus, we have proved the desired formula,

y;t, x) A (s,y, u(s,y)) Dyu(s, y) dy

3£, %) f(s Y, u (s,y))(Du(s,y),h)H dy

i £,%) f(s,y,u(s,y)) dy

¥3t,%) f(s,y, u(s,y)) dy

it x) A (s,y, u(s,y))Dy,yu(s,y) dy

D, u(t,x) = Gy (r,v; t, x)+/ ds/

forall 0 <r <t x,veR,and the theorem follows. O

Theorem 5.2 Under the assumptions of Theorem 3.1 and assuming the function f and its
partial derivatives of order 1 to be bounded, the distribution of the random variable u(t, x)

is absolutely continuous with respect to the Lebesgue measure for all (¢,x) € [0, T] x R.
For proving Theorem 5.2, we will make use of the following lemma.

Lemma 5.1 Lett >0 and 0 <r<t. Denote

t
Tis3) = f dl / E|Dyyu(s, )| dv
t-r R
forse[t—r,t] and y € R. Then we have

sup  Ji(s,y) < or'T. (5.5)
(sy)elt-rt]xR

Proof Let 0 <r<tandse€ [t—r,t]. Then we have

sup  Jx(s,y) < +00
(s,)€l0,t] xR

by the proof of Proposition 5.1. Denote

Tr1(8,9) :=/ /|Ga(v,z;s,y)|2dzdv,
t-r JR
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s G,
/ dr1/ —(71,21;5,)’)
1 R 90y

2

Tr2(s,9) ::/ dl/dvE
t—r R

a
: a—{;(rbzbM(r1,21))Dl,vu(”1,21)dZ1

fors € [t —r,t] and y € R. Then, by (5.1) and (3.2), we have

Tr(5,9) < 2(Tr1(8,9) + Tr2(s,9))

for s € [t — r,t] and y € R. By some elementary calculations one can show that

¢ L G 1 Is—1 \*
s =€ [ [ (5= T+ (-1t a B
t-r R ly — vl

Cly-v|? .y o
F2s— I Be (Is— II°2 A ||37|)> dv<Cr's (5.6)

y — V|1+a
and

Tr2(s,9) < C/ sup Jy(ri,z1) dn < Cr% + C/ sup Jy2(r1,z1) dn
t

t-rz1€R —rz1€R
for s € [t —r,t] and y € R. Thus, (5.5) follows from Gronwall’s inequality. d

Proof of Theorem 5.2 Let (t,x) € [0, T] x R. We will adopt a technical argument proposed
by Cardon-Weber [29]. By Proposition 2.5, we need only to prove

||Du(t,x)||H >0
almost surely. Recall that the statement ||Du(¢,x)||% > O is equivalent to the statement

| Du(t, %)l 120, 11xR) > 0. Thus, we need only to introduce ||Du(t, x)|;2(0,r1xr) > O almost
surely. For 0 < < ¢ and x € R, we denote

t
Al(t,x,r):/ /|Ga(v,z;t,x)|2dzdv
t-r JR

and

£ G, ad
/ d"l/ —(V1,Z1;t,x)—f(’"1:21,u(rhzl))Dl,vM(Vl,Zl)dzl .
! R 021 0z

t
Az(t,x,r):/ dl/dv
t-r R

It follows from (5.1) that

/ dl / Dyt x)|* dv > C(ANE,x,7) - A%(t,%,7)) (5.7)
0 R

forall0 <r<tandx € R.
Now, let us to estimate Al(t,x,7) and A%(¢,x, r). Similar to the proof of (5.6), one can see
that

Alt,x,r) = Cr'T . (5.8)
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By (3.8) and Lemma 5.1, one can also see that

t 3G0, n
E|A2(t,x,r)’ 5/ drlfdzl—(t—rl;x,zl)E</ /|D,,zu(r1,zl)|2dzdr>
t—r R 0z tr JR

a- ¢ 0G,
<Cr'r / dr1/ 2t -ryx,z)dzy < Crot
t—r R aZl

for 0 < r <t and x € R. Combining this with (5.6), (5.7), and (5.8), we get

t
P(/ /|Dv,zu(t,x)‘2dzdv>0>
0o Jr

> sup P(C(Al(t,x, r) - At x, r)) > O)

re(0,rg]

> sup P(A2(t,x, r) < CANe, x, r))

r€(0,ro]

. 1 2 . a=1
>1-C inf — E|A (t,x,r)’ >1-C inf rz =1
r2

re(0,rg] = re(0,rg]

for all g > 0, and the theorem follows. O

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

LTY and DFX carried out the mathematical studies, participated in the sequence alignment, drafted the manuscript, and
participated in the design of the study and performed proofs of the results. All authors read and approved the final
manuscript.

Author details

'College of Information Science and Technology, Donghua University, Shanghai, 201620, PR. China. ?School of
Mathematics and Physics, Anhui Polytechnic University, Wuhu, Anhui 241000, PR. China. *Department of Mathematics,
College of Science, Donghua University, Shanghai, 201620, PR. China.

Acknowledgements
The project was sponsored by the National Natural Science Foundation of China (11571071, 71571001) and the Natural
Science Foundation of Anhui Provincial (1608085MAQ2).

Received: 5 September 2016 Accepted: 19 December 2016 Published online: 05 January 2017

References
1. Balan, R, Conus, D: A note on intermittency for the fractional heat equation. Stat. Probab. Lett. 95, 6-14 (2014)
2. Song, J: On a class of stochastic partial differential equations (2015). arXiv:1503.06525v2
3. Chen, X, Hu, Y, Song, J: Feynman-Kac formula for fractional heat equations driven by fractional white noises (2012).
arXiv:1203.0477
4. Hu, Y, Nualart, D, Song, J: Feynman-Kac formula for heat equation driven by fractional white noises. Ann. Probab. 39,
291-326 (2011)
5. Hu,Y, Lu, F, Nualart, D: Feynman-Kac formula for the heat equation driven by fractional noises with Hurst parameter
H < 1/2. Ann. Probab. 40, 1041-1068 (2012)
6. Bo, L, Jiang, Y, Wang, Y: On a class of stochastic Anderson models with fractional noises. Stoch. Anal. Appl. 26, 256-273
(2008)
7. Diop, M, Huang, J: Retarded neutral stochastic equations driven by multiplicative fractional Brownian motion. Stoch.
Anal. Appl. 32, 820-839 (2014)
8. Duncan, TE, Maslowski, B, Pasik-Duncan, B: Fractional Brownian motion and stochastic equations in Hilbert spaces.
Stoch. Dyn. 2, 225-250 (2002)
9. Balan, R: Recent advances related to SPDEs with fractional noise. Prog. Probab. 67, 3-22 (2013)
10. Hu, Y, Nualart, D: Stochastic heat equation driven by fractional noise and local time. Probab. Theory Relat. Fields 143,
285-328 (2009)
11. Liy, J, Yan, L: On a semilinear stochastic partial differential equation with double-parameter fractional noises. Sci.
China Math. 57, 855-872 (2014)
12. Jiang, Y, Wang, X, Wang, Y: On a stochastic heat equation with first order fractional noises and applications to finance.
J. Math. Anal. Appl. 396, 656-669 (2012)


http://arxiv.org/abs/arXiv:1503.06525v2
http://arxiv.org/abs/arXiv:1203.0477

Xia and Yan Boundary Value Problems (2017) 2017:7 Page 24 of 24

18.
19.

20.
21.

22.
23.
24.
25.
26.
27.
28.

29.

Jiang, Y, Wei, T, Zhou, X: Stochastic generalized Burgers equations driven by fractional noises. J. Differ. Equ. 252,
1934-1961 (2012)

Balan, R, Tudor, CA: The stochastic heat equation with a fractional-colored noise: existence of the solution. ALEA Lat.
Am. J. Probab. Math. Stat. 4, 57-87 (2008)

. Balan, RM, Tudor, CA: Stochastic heat equation with multiplicative fractional-colored noise. J. Theor. Probab. 23,

834-870 (2010)

. Tudor, CA: Recent developments on stochastic heat equation with additive fractional-colored noise. Fract. Calc. Appl.

Anal. 17,224-246 (2014)

Sobczyk, K: Stochastic Differential Equations with Applications to Physics and Engineering. Kluwer Academic, London
(1991)

Droniou, J, Imbert, C: Fractal first-order partial differential equations. Arch. Ration. Mech. Anal. 182, 299-331 (2006)
Chen, Z, Kumagai, T: Heat kernel estimates for jump processes of mixed types on metric measure spaces. Probab.
Theory Relat. Fields 140, 277-317 (2008)

Chen, Z, Kumagai, T: Heat kernel estimates for stable-like processes on d-sets. Stoch. Process. Appl. 108, 27-62 (2003)
Chen, Z,Kim, P, Song, R: Global heat kernel estimate for relativistic stable processes in exterior open sets. J. Funct.
Anal. 263, 448-475 (2012)

Chen, Z,Kim, P, Song, R: Heat kernel estimates for A% + A#? ||l J. Math. 54, 1357-1392 (2000)

Chen, Z,Kim, P, Song, R: Heat kernel estimates for A + A% in C'"! open sets. J. Lond. Math. Soc. 84, 58-80 (2011)
Nualart, D: Malliavin Calculus and Related Topics. Springer, Berlin (2006)

Wei, T: High-order heat equations driven by multi-parameter fractional noises. Acta Math. Sin. Engl. Ser. 26,
1943-1960 (2010)

Walsh, JB: An introduction to stochastic partial differential equations. In: Ecole d'été de Probabilités de Saint Flour XIV.
Lecture Notes in Math., vol. 1180, pp. 266-439. Springer, Berlin (1986)

Dalang, R: Extending the martingale measure stochastic integral with applications to spatially homogeneous SPDE's.
Electron. J. Probab. 4, 1-29 (1999)

Zhang, T, Zheng, W: SPDEs driven by space-time white noises in high dimensions: absolute continuity of the law and
convergence of solutions. Stoch. Stoch. Rep. 75, 103-128 (2003)

Cardon-Weber, C: Cahn-Hilliard stochastic equation: existence of the solution and its density. Bernoulli 7, 777-816
(2000)

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com




	On a semilinear mixed fractional heat equation driven by fractional Brownian sheet
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	On the pseudo differential operator Delta+Deltaalpha
	Malliavin calculus

	Existence and uniqueness of the solution
	Hölder regularity and p-variation of the solution
	Existence of the density
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


