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Abstract

In this paper, we study the uniqueness and existence of positive solutions for the
fractional integro-differential equation with the integral boundary value problem. By
means of the Banach contraction principle and the Krasnoselskii fixed point theorem,
the sufficient conditions on the uniqueness and existence of positive solutions are
investigated. An example is given to illustrate the main results.
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1 Introduction
It is widely recognized that the memory and hereditary properties of various materials
and processes are well predicted by using fractional differential operators. The differen-
tial equation with fractional order derivative has recently proven to be a strong tool in
the modeling of many phenomena in various fields of science and engineering [1, 2]. The
fractional differential equation has made a profound impact on some areas such as vis-
coelasticity, diffusion procedures, relaxation vibrations, electrochemistry, signal and im-
age processing, mechatronics, physics, and control theory; see [3-5].

The Volterra model for population growth of a species within a closed system is char-

acterized by a nonlinear fractional integro-differential equation in the following form:

DFp(t) = ap(t) — bp™(t) - cp(t) fo pdx,  p(0) = po,

where °D* denotes the Caputo fractional derivative of order 0 < @ <1, p(¢) is the scaled
population of identical individuals, ¢ denotes the time, a > 0 is the birth rate coefficient,
b > 0 is the crowding coefficient, and ¢ > 0 is the toxicity coefficient, which denotes the es-
sential behavior of the population evolution before its level falls to zero in the long run [6,
7]. Besides, the nonlinear oscillation of earthquake can be modeled with fractional deriva-
tives [8], and the fluid-dynamic traffic model with fractional derivatives can eliminate the
deficiency arising from the assumption of continuum traffic flow [9]. In the characteriza-
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tion of viscoelasticity’s Hook law, the five parameter generalized Zener model
x(2) + aD?x(t) = by(t) + cD} y(2)

or the three parameter generalized Maxwell model
x(2) + aD} y(t) = bz(t)

are often used. With suitable initial or boundary conditions, the existence and nonexis-
tence of positive solutions for the above equations are significant and serviceable.

Since theoretical results can help to get an in-depth understanding for the fractional
order model, motivated by the mentioned equation models and their application back-
ground, in this paper, we concentrate on the more complicated and abstract fractional
boundary value problem (FBVP):

D*u(t) +f (¢, u(t), Tu(t),Su(t)) =0, 0<t<l,
u(©)=by,  W(©)=b, ...,  u"30)=b,s 1.1)
w0DO) =byy,  u(l)=p fyuls)ds,

wheren-1<a<n,0<u<n-1,n>3,b;>0((=12,...,n-3,n-1), D% is the Ca-
puto fractional derivative. f : J x R, x R, x R, — R, is a given function satisfying some
assumptions that will be specified later, / = [0,1], R, = [0, +00). T, § are given by

t 1
(Tx)(¢) = / K(t,s)x(s) ds, (Sx)(t) = / H(t,s)x(s)ds
0 0

with k* = sup,; fot K(t,s)ds, h* = sup,; fol H(t,s)ds, in which K € C(D,R,), D = {(t,s) €
JxJ:t>s},He C(J xJ,R,).

For the past few decades, many researchers have tried to model real processes using
the fractional calculus. In the mathematical context, several interesting results about the
existence of positive solutions for fractional equation models have been reported [10-25].
In [10], the following boundary value problem of the fractional differential equation was

considered:

‘D*u(t) +f(t,u(t)) =0, 0<t<l, 1.2)
u(0) =u'(1) =u"(0) =0,

where 2 < ¢ < 3, °D* is the Caputo fractional derivative. f : (0,1] x R, — R, is continu-
ous. By the Guo-Krasnoselskii fixed point theorem and the nonlinear alternative of Leray-
Schauder type, the authors in [10] established the existence of positive solutions to the
problem (1.2).

Cabada and Wang [14] demonstrated some existence results for positive solutions to the
EBVP (1.3) relying on the known Guo-Krasnoselskii fixed point theorem,

D*u(t) +f(t,u(t)) =0, 0<t<l,

w(©0)=u"(0)=0,  u(l)=xr [, uls)ds, (1:3)
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where 2 <o < 3,0 <X <2, D is the Caputo fractional derivative. f : ] x R, - R, is a
continuous function. Xu and He [17] researched the FBVP (1.3) for 3 < « < 4.

But up to now, when f contains integral operators T and S, a fractional differential equa-
tion like FBVP (1.1) has seldom been considered, furthermore, in FBVP (1.1), b; > 0, we
generalized the boundary conditions in [10, 14, 17]. Inspired greatly by the above men-
tioned works, we establish some new existence criteria of uniqueness and existence of
positive solutions for FBVP (1.1).

2 Preliminaries and lemmas

Denote C(J, R, ) the Banach space of all continuous functions from J into R, with the norm
llee]| := sup{|u(t)| : t € J}, LP(J,R,) the Banach space of all Lebesgue measurable functions
from J into R, with the norm ||| » := (fo1 @)y dt)ll’ < +00, 1 < p < +00, respectively.
Next, we introduce some basic definitions and properties of the fractional calculus theory
and auxiliary lemmas in order to obtain the uniqueness and existence of positive solutions
for FBVP (1.1).

Definition 2.1 ([26,27]) The Caputo fractional order derivative of order o« >0, n -1 <« <
n, n € N is defined as

¢ _ 1 ! _ n—a-1_.(n)
D u(t)-—r(n_a)/o(t s) u’(s) ds,

where u € C"(J,R), R = (—00, +00), N denotes the natural number set, n = [«] + 1, and [«]
denotes the integer part of «.

Definition 2.2 ([26, 27]) The Riemann-Liouville fractional derivative of order @ > 0, n —

l<a <n,neNisdefined as

ou) e — 1 (LY [ et
D u(t)_l"(n—a)(dt> /O(t s) u(s) ds,

where the function u(t) is # times continuously differentiable on J.

Definition 2.3 ([26, 27]) Let « > 0 and let u be piecewise continuous on (0, +00) and

integrable on any finite subinterval of J. Then, for ¢ > 0, we call

I®u(t) = ﬁ /Ot(t —8)* L u(s)ds

the Riemann-Liouville fractional integral of « of order «.

Lemma 2.1 ([26,27]) Let n—1< « < n. Then the differential equation *D*u(t) = 0 has one

solution as follows:
u(t) =co+crt + ot + -+ + ¢yt

wherec; e R(i=1,2,...,n-1), n is the smallest integer greater than or equal to «.
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Lemma 2.2 ([26,27]) Letn—-1<o <n,u e C"[0,1]. Then
I“ (”D“u)(t) =u(t)+co+ et +Cat® + - +cygt"

wherec; e R(i=1,2,...,n—1), n is the smallest integer greater than or equal to «.

For h € C(0,1) N LY(0,1), consider the following FBVP (2.1) with integral boundary value

condition:

Du(t) +h(t)=0, O<t<l,n—-l<a<n,
w©0)=bo, W) =b, ..,  u"30)=b,s, 21
U 0) = by, (1) = fy uls)ds,

wheren-1l<a<n,0<u<n-1,n>3,b;>0(i=1,2,...,n-3,n-1).
Lemma 2.3 Let h € C(0,1) N LY(0,1), then FBVP (2.1) has an integral representation

- r- 1):“ (19!
u(t) = / @) ———h(s)ds + M(t) + / T@) h(s)ds

Cpm=1e? (1 -s) ) ds + (LM = M(1))(n —1)¢"2 22)
n-1-u Jo al(@) n-1-p ’ ’

n-3 n-1
where M(t) = b + byt + -+ + b”(;itg)l + b‘&lfl)l ,MQA)=bo+by + -+ + b”*31 + b”*l. M =

by-3 by
2yt

b0+b—21+~~~+

Proof FBVP (2.1) is equivalent to the following integral equation:

n-1
u(t) = I h(

~ t (t _ S)ot— , u(n—l)(o)tn—l
_—/0 Wh(s)ds+u(0)+u(0)t+m+W. (2.3)

Since u(0) = by, ' (0) = by, ..., u"3(0) = b,_3, uD(0) = b,_;, we can deduce that

/ (t )Ot 1
F(a
bn 3t"_3 u(n-z)(o)tn—z bn—ltn_l

+bo+bit+---+ (n_—3)! M e PR (2.4)

The other boundary condition u(1) = u fol u(s) d(s) implies that

(n-2) 1 a-1
LG_g)!):uf s)ds+/ a- ) SV ps)ds

n bn—l
— by b—---——3— )
! (n—-3) (n-1)!
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Hence, substituting (2.5) into (2.4), we have

bn_?) t}’l—3 . bn—l tVl—l
n-3)! (m-1)

~ 1 ( _S)al
n-2
+t (M/o u(s)ds+/0 @) h(s)ds — by — by

bn—3 bn—l
) 2o

_ -1
ult) = — /(t ) s ds + bo + byt 4+

Now, integrate (2.6) from 0 to 1 in both sides, we get

1 n-1 1 (1 - S)a bl bn_g bn—l
/ou(t)dt_n—l—u<_/o ar(a)h(s)ds+b0+3+m+(n_z)!+ n!>

1 1—s)*!
h(s)ds—bg —b
+ (/0 (s)ds— by — by

n-1-pu ')
bn—S bn—l
____ (n-3) (n—1)!>' @7

Substituting (2.7) into (2.6), we obtain (2.2). This completes the proof of the lemma. O

Remark 2.1 According to Lemma 2.3, we get u(t) > 0, if (¢) > 0, ¢t € ]. By (2.2), we have

Lt —s)ot (n—1)t"2 1-s~" 1
@) h(s)ds + M(t) + P / )
Cpm=1e? (1 -s) ) ds + (LM - M(1))(n —1)¢"2
n-1-pu Jo al'(x) n-1-u
L(t—s)* 1 m=-12 la@-s)*T—pul-s)"
Ry | f O
(n—1—p)M(@E) + (UM = MQ1))(n - 1)t"2
" n-1-pu
L(t—s)*! (m=Dt"2 flal-s)*!—uld-s*
:—/0 ) h(s)ds + a(n—l—u)/ @) h(s)ds
m=-1t"2 ta@-s)*T-puld-s)
w1 r O
. (n—1- wM(t) + (LM = M(1))(n - 1)¢" >
n-1-pu
B 1
Ca(m-1-p)
. /‘t (n-1t"2(a(l-s)*" - M(I1~(;§)a) —a(n—1-pu)(t- S)aflh(s) s
m=1t2 (la@-s)*T-puld-s)*
an-1-p) J; [(a) ) ds

s (n—1- WM(t) + (uM - M(1))(n - 1)t">
n-1-p '
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Since0<pu<n-1,n-1<a<nfor0<s<t<1,wehave

EA=-s) T 2 T (1= 9) T = (- 1) 2 (- 9) (2.8)
(n=1)" (@l =5)"" - u(l=5)") —aln-1-w)(-5)*"

=" (1= (=D - p(l - 5)) —aln—1-p)(t-5)*"

> (-9 ((n-Da-p(l-s)—a(n-1-p))

= (¢ —s)*! (a -(1- s)),u > 0. (2.9)

Thus, by (2.8) and (2.9), we know

1
an—1-p)
_ /t (n—1)t" (a1 —5)*" = u(1-5)*) —a(n -1 - pu)(t - S)(Hh(s) ds=0. (2.10)
0 I"(er)
For 0 <t <s <1, wehave
al-5)"" —pu@-9)*=(1-5)""(a-pnl-s)=0. (2.11)

Then we obtain

m=-1t"2 ta@-s)*T-puld-s)
an-1-p) J, I'(a)

h(s)ds > 0. (2.12)

By the definition of M(t), M(1) and M, since b; >0 (i = 1,2,...,n — 3,n — 1), we know
M(t) >0, M(1)>0and M >0, so

(n—1- M) + (LM - M(1))(n - 1)£" >
>n-1- pc)(M(t) + (,u/\/l —M(l))t”_z)

= (n—1-p)(M(t) - MD)E"? + pMe"?) > 0. (2.13)
From (2.10), (2.12), and (2.13), we get u(¢) > 0, if h(¢) > 0, t € J.

Remark 2.2 By Remark 2.1, combined with the boundary conditions 0 < u <n-1,n> 3,
bi>0(i=12,...,n-3,n—1), wealso get u(t) >0, t € (0,1), if h(¢) # 0.

Lemma 2.4 (Krasnoselskii fixed point theorem [28]) Let X be a closed convex and
nonempty subset of the Banach space E. Let A and B be two operators such that

1. Ax + By € X, whenever x,y € X;

2. A is compact and continuous;

3. B is a contraction mapping.
Then there exists z € X such that z = Az + Bz.

3 Main results

In the following, we list some conditions to be used later:
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(H1) f:] xR, xR, x R, — R, is measurable with respect to £ on /.
(Hy) There exista constant g € (0, @ —n+1) and real-valued functions m1; (¢), m5(¢), m3(t) €
L« (J,R,) such that

If (&, u, v, w) — £ (,5,7, )]

< mO)|u—ul + m(O)lv -Vl + m3()lw-wl, te],u,v,w,u,v,weR,.

1
(H3) There exist a constant a3 € (0, — 7 + 1) and a real-valued function 4(¢) € L% (J,R,)
such that

[f(t, u,v, w)| <h(t), te],u,v,weD,DCR, isabounded subinterval.

Theorem 3.1 Assume that (H;)-(Hs) hold. If

o (n-1) w
F( )(a 0(2 1-o9 F(Ol)(l’l 1= M) (Ot L‘t2 1-ay

M(Vl -1 o <1
ol (@) =1 ) (et

(3.1)

where w = ||my + kK*my + h*ms|| 1, then FBVP (1.1) has a unique positive solution on J.
L%

Proof Fort e ], u e C(J,R,), by (H3), we have

t t . I-ap t 1 o
/ |(t - s)"_lf(s, u(s), Tu(s),Su(s)) | ds < (/ (t —s)lci_"‘2 ds) (/ (h(s))@ ds)
0 0 0

Al 1
L%

a—ao )l—otz :
1-ap

IA

Thus, [(£—s)* " f (s, u(s), Tu(s), Su(s))| is Lebesgue integrable with respect to s € [0, ¢] for all
t€Jand u € C(J,R,). Hence, FBVP (1.1) is equivalent to the following integral equation:

(t )a 1

L ul(s), Tu(s), Su(s)) ds

}’1 1)tn 2 1 (1 —S)a_l
* n—-1- " /(; F(Oé) f(S, M(S)) TM(S),SM(S)) ds

( _ 1)t”‘2 1 (1 _ )oz
- Mnn—l—,u 0 ar(; S (5,1409), Tus), Suls)) ds

(UM = MD))(n - 1)t

+M(t) + , Ltej.
n-1-u
Let
L e R
I ) (=2 g; 2 T(e)n—1-p) 422y
pin-1 Il (WM = MD)(n - 1)

+ +M(1) +
al(@)(n—1-pu) (afﬂt2+1)1“"2 W n-1-u
1-ap
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Now, define the operator F on B, = {u € C(J,R,) : | u|| < r} as follows:

t a-1
Fu(t) = - /O ¢ ;(‘2) 1 (5 us), Tuls), Su(s)) ds

(n-1)t"2 1- s)"‘ 1
" n-1-u /

L u(s), Tu(s),Su(s)) ds

i (- 1)tn—2 / (1 - S) f(S, u(s), Tu(s),SM(S)) ds
0

n-1-pu ol (a)
(LM = MQ))(n - 1)">
n-1-pn

+M(t) + , tej.
Therefore, the existence of a solution of the FBVP (1.1) is equivalent to that of a fixed point
on B, of the operator F. We shall use the Banach contraction principle to prove that F has
a fixed point. The proof is divided into two steps.

1. Fu € B,, for every u € B,.

For every u € B, and § > 0, by (Hs) and the Holder’s inequality, we get

|Fu(t + 8) — Fu(t)|

t+6 (t+ by _S)a—l
< ‘_/0 Tf(s, u(s), Tu(s),Su(s)) ds

¢ a-1
+ / &f(s, u(s), Tu(s), Su(s)) ds
0

')
=Dt +8)"2 -2 [ (1-s)>?
" n-1-p / (@) SyM(S), Tu(s),Su(s))ds
pn=1)|(t+8)"2 - "2 (1 (1-5)"
Ty are (O T su@) ds
n-2 n-2
b Mt +8) - M(D)| + (UM = MD))(n = 1)|(£ + 8)"% — "]
n-1-pu

t |(t +6— S)ot—l _ (t _ S)a—1| t+8 (t _s)a—l
=< /0 r@ h(s)ds + / @ h(s)ds

(m=1)|(t+8)" 2 —t"" 2I/ a- s)"’1
+
n-1-pu

wim=1)|(t +8)"2 — "2
Py / e )h(s)ds

(LM = MQ)(n = 1)|(t +8)" > — "
n-1-pu

([t ([t ) )
[ ees0) ()

o ;zg;r(;a)zz M)t”'( / -9t ds>1_a2< / (h(9)) = ds)az
DT [ (e

+ |M(t+8) —M(t)| +
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(UM =M1 (= D)|(t +8)"> - "
n-1-p

- ||h||L$ (((t n 3)7011:2 _ 5“1%522 )l—az <ta1§22 >1—v¢2 (57522 >l—az>
[ _ + _—
= o—a9 a—o a—o)
F(Ot) T—a 1-ay 1-an

||h||L$(n—l)|(t+3)n72—t”72| (1_a2)1a2

+ |M(t+8) —M(t)| +

F@)(n—1-1)
o mlr= DI+ 82 =2 )\
' oT (@)(n—1- 1) ( )

(UM = MD))(n—1)|(t +8)" > — " 2|
n-1-p ’

o — 0y

a—ap+1

+ |M(t+6) —M(t)| +

Thus, the right-hand side of the above inequality tends to zero as § — 0. Therefore, F is
continuous on J.

Next, we prove Fu(t) > 0,¢t €J. Forany t € ],

=52t
(@) f (s, u(s), Tu(s), Su(s)) ds

n— 1 o—
+ (::i)f : /0 a ;(2) 1f(s, (s), Tu(s), Su(s)) ds

( _ 1)tn—2 1 (1 _ )a
_ unn_ . /0 ar(fx ) f (s, u(s), Tu(s), Su(s)) ds

(uM = M(1))(n - 1)
n-1-pn

Fu(t) = -

+ M(2) +

¢ a-1
- _ O (t;(so)[) f (s, u(s), Tuls), Suls)) ds
. (n=1)¢t"2 /1 a(l—s)* 1 — p(l—s)*
a(n-1-pn) Jo I (e)
. (n—1-pu)M(t) + (uM = M(1))(n - 1)¢">
n-1-pn

f (s, u(s), Tu(s), Su(s)) ds

L= g)el
' (e)
. (m=1D"2 flal-s)*'-uld-s*
am—1-p) Jo I"(er)
.\ (n—1)¢"2 /1 a(l—s)* 1 — p(l-s)*
a(n—1-u) J; ['(a)
. (n—1-p)M(t) + (uM - M(1))(n - 1)¢" >
n-1-p
B 1 /t (=12 (a(1-5)*" — p(1-9)*) —o(m—1— p)(t—s)*"
a(n-1-pu) Jo INGY

f(s, u(s), Tu(s), Su(s)) ds

f(s, u(s), Tu(s), Su(s)) ds

f(s, u(s), Tu(s), Su(s)) ds

f (s, u(s), Tu(s), Su(s)) ds
(=12 (Tal-s) - p(l-9)"
Tatn-1-p J, ()
, (1= 1= M@ + (M - M)(n - 1)t
n-1-p ’

f(s, u(s), Tu(s), Su(s)) ds

(3.2)
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SinceO<u<n-1,n-1<a <mnfor0<s<t<1,by(2.8) and (2.9), we have

1 /t (m=Dt"2(al -5 -l -9)*) —a(m—1-pu)(t—s)*"!
an-1-p) Jo I'(a)

~f(s, u(s), Tu(s),Su(s)) ds > 0. (3.3)

For 0 <t <s <1, by (2.11), we know

(n-1)t"2 /1 a(l—s)* 1t — (1 -s)®

N TEE @ f (s, (s), Tu(s), Suls)) ds > 0. (3.4)

By the definition of M(¢), M(1), and M, since b; > 0 (i =1,2,...,n — 3,n — 1), we know
M(t) >0, M(1) > 0 and M > 0, thus

(m—1—p)M(t) + (u./\/l - M(l))(n —1)2
> (n=1- (M@ + (uM - MD))"?)

= (n—1-p)(M(t) - MD)E"? + pMt"2) > 0. (3.5)

From (3.2)-(3.5), we obtain Fu(t) > 0,t €J. So, Fu € C(J,RR,).

Moreover, for any u € B, and all £ € ], we have

t _ o)1
||Fu||§/(; (tF(So)z) If (s, u(s), Tu(s), Suls))| ds

( _ l)tn—z 1 (1 _ )a—l
+ :_ - /(; F(ix) [f(s, u(s), Tu(s), Su(s)) | ds
(1= 111 -5
+ Mn”l_ - /(; aI‘(ix) If (s, u(s), Tu(s), Suls)) | ds
MO+ (UM = MQ))(n—1)t">
n-1-pu
t (t _ S)oz—l (n _ l)tn—z 1 (1 _ S)oz—l
5/0 T@) h(s)ds + 14 ) T@ h(s)ds
G D2 (M (1-s)* 1) ds + M(1) + (LM -M(Q))(n-1)
n-1-u Jo al'(@) n-1-pu

1 t a1 1-a t N a
< @) </0 (£ —s) ds) (/(; (h(s)) ds)
(l’l - 1) 1 % 1-a9 1 % @y
T n-1-p) ( /0 (1-s) ds) ( fo (h(s)) ds)
M(l’l -1) 1 ﬁ 1-az 1 % ay
+ el @1 10) (/0 (1-5s) ds) (/0 (h(s)) ds)

. (LM - M(1))(n - 1)

+M(1) P

B N e I e
T D)(E2)7 T T@)n-1-p) (22)
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T (Y

OlF(Ot)(}’l —-1- /,1,) (Ol—a2+1 )1—012

(M - MQ))(n - 1)
n-1-p

+M(Q1) +

which implies that ||Fu| < r. Thus, we can conclude that, for all 4 € B,, Fu € B,, that is,
F:B, — B,.

2. F is a contraction mapping on B,.

For u;,uy € B, and any ¢ € ], using (H,) and the Holder’s inequality, we have

’FMl(t) - Fuz(t)|

Lt—s)*t
< /O T I (s, 21(), Tusr (s), Sua (5)) = f (s, 12 (), T (s), Suia(s)) | dis
(=12 Q-5
+
n-1-p Jo T()
—f(s, us(s), Tuy(s), Suz(s)) ‘ ds
M(n _ l)tn—Z 1 (1 _ S)a
+
n-1-pn Jo al(a)

[f(s, u1(s), Tu (s), St (s))

If (s, 11(5), Tuia (s), S (s))

—f(S, MZ(s)r TMZ (S): Su2(s)) | ds

t _ o)1
< /0 (tF(SO)O (m1(5)|u1(s) - M2(5)| + mz(s)|Tu1(s) - TMZ(S)|

+ m3(s) |Su1 (8) = Susy(s) |) ds

n-1) [r@-s*?
+
n-1-uJto T(a)

+ m3(s) ’Sul (8) = Suy(s) ’) ds

pn-1) 1 1-s)*
+
n-1-uJo al'(a)

+ m3(s) |Su1 (8) = Suy(s) |) ds

(m1.(5)|ur () = ua(s) | + ma(s)| Tuar (s) — Tua(s)|

(m1(5)|ua(s) — ua(s) | + ma(s)| T (s) — Tz (s)|

lug —uall [* a1 . «
< r@) /0 (t—3s) (ml(s) +k*my(s) + h }’1’13(5)) ds
luy — sl (m—=1) [

MNa) n-1-pu (1 _S)ail(ml(s) + kK my(s) + h*ng(s)) ds

1)
*Hler(:)z“: = uf (=97 (mls) + KTma(s) + I ms(s) ds

|M1 | 1“2 e ' * * o% “
) (/ (t-ys) ds> </0 (m1(s) + K*m(s) + h*ms(s)) @2 )

L —wf(n 1) uz[|(n - 1) AN
Te)n-1-n) </ =9 ds)

1 o
. (/ (ml(s) + k*my(s) + h*rng(s)) @ ds)
0

—ay
L N —wafpln —1) uz || u(n —1) /(1 9T ds
al(@)(n—1-pu)
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o

1 1
. (/ (m1(s) + k*m(s) + h*ms(s)) *2 ds)
0

- < o . n-1) (o}
T \M(@)(&=2)72 - T(e)(n—1-p) (=2)

y KD _ )nul—uzn.
ozl“(a)(n—l—u)(%;;l) “2

So, we obtain
| Fuy — Fuo || < Qlug — uz|l.

Thus, F is a contraction mapping by the condition (3.1). By the Banach contraction prin-
ciple, we can deduce that F has an unique fixed point which is the unique positive solution
of the FBVP (1.1). g

Theorem 3.2 Assumethatf :] x R, x R, x R, — R, is a continuous function, and (H),
(Hs) hold. If

. ~ n-1) () N p(n—1) o
CT(@)(n—1-p) (%)1“"2 al (a)(n—1-p) (%{32“)1_“2

o’ <1, *

’

1-9*!
()

FBVP (1.1) has at least one positive solution on J.

where w* = fol (my1(s) + k*ma(s) + hW*m3(s))ds, w = ||my + k*my + ' m3z]| Lo then
LC(

Proof Choose

v -y Mg
Plo+1)  Tla)m—1-p) (=22

Rzu—wﬂ{

e T

" OlF(Ol)(}’l -1- /,l,) (0(—0(2+1)1’0‘2
1-ap

(UM -M@D))(n-1) }
n-1-p ’

+M(1) +

where ¥ = max{f(¢,0,0,0) : t € J}. Consider the set Bg = {u € C(J,R,) : |lu#|| < R}, then Bg
is a closed, bounded and convex set of C(J, R, ). We define the operators A and B on By as

Amn=-/¢gliff@u@Ju@5m9ym te],
0

')
e A A e
Bu(t) = P g /0 T@) f(s, u(s), Tu(s),Su(s)) ds

( —l)tn_2 1 (1_ )a
- ,unn_ - Jo ar(jx)f(s’”(s)’ Tu(s), Su(s)) ds + M(t)

(UM - M1))(n - 1)t
+ , tej.
n-1-pu
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By a similar proof to (3.2)-(3.5) in Theorem 3.1, we know Au(¢) + Bu(t) > 0, ¢t € J. For any
u € Bg, by (Hy) and the triangle inequality, we get

f (& u(t), Tu(t), Su(®))| < |f(t u(t), Tu(t), Su(t)) - £(¢,0,0,0)| + |£(£,0,0,0)|

< ml(t)|u(t)| + mz(t)|Tu(t)| + mg(t)|Su(t)| +W, te].

Then, for any u € Bg and all £ € ], we have

t _ -1
|Au(t)| = ‘—/0 %f(s,u(s), Tu(s), Su(s)) ds

t _ o)1
< /0 (tl”(soz) (m1(5)|u(s)| + ma(s)| Tuls)| + m3(s)|Suls)| + W) ds

1 (t _ S)oz—l ) . 1 (t _ S)a—l
<R ; W(ml(s)+k ma(s) + h mz,(s))ds+\ll/(; ) ds
<w*R+ SEE (3.6)

For any v € Bg and all t € /, by (H;), we have
( _ 1)tn—2 1 (1 _ )a—l
|Bv(t)| < :_ v R (‘L) If (5, v(s), Tu(s), Sw(s))| ds
(-1 [ (A=)
+ ,unn_ ), ozF(fx) [f(s, v(s), Tv(s),Sv(s))| ds
S M) + (MM = M(1))(n - 1)t">
n-1-p
(=12 [L(1-s)t wm=12 L (1-s)"
=1 /0 @) h(s)ds + ey /0 O{F(O{)h(S)dS
M) + (pM - M(1))(n-1)
n-1-p
(] oot ds)l” (/ (i) s)”
T T()(m-1-w)\Jo 0
+ &(/1(1 _s)Fa ds)l‘m (/l(h(s))alz a’s)m2
al(a)(n-1-u)\Jo 0
M) + (pM - M(1))(n - 1)
n-1-p

(n-1) ||h||L$ . w(n—1) ||h||L$

T D)0 =1-p) (752)7 ol (@)(n =1 - p) (epest)=e
() ¢ $MEMDe =1 (3.7)

n-1-p
By (3.6)-(3.7), we obtain |Au(t) + Bv(t)| < |Au(t)| + |Bu(t)] <R, u,ve Bg, t €.
For vy, v, € Bg and any ¢ € J, using (Hy) and the Holder’s inequality, we have
|Bvi(£) — Bva ()|

_ (-1 /1 (1-9)"
Ton=l-p Jo T(a)

If (s, v1(8), Tv1(s), Svi(s)) = f (5, v2(s), Tva(s), Sva(s)) | ds
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_ n-2 1 _ o\
+ M’(:l_ lljtu | ((11_ (2) If (s v1.(5), Tva(s), Sva(s)) = f (s, v2(s), Ta(s), Sva(s)) | ds
(n-1) [H-s"

“n-1-pnJy, T(x)

(m1(s)|vi(s) — va(s)| + ma(s)| Tva(s) — Ta(s)|

+ m3(s) |Sv1 (s) = Svy(s) |) ds

pn-1) 1 1-s)*
+
n-1-uJo al'(a)

+ m3(s) |Sv1 (8) = Svy(s) |) ds

(m1(9)|va(s) = va(s)| + ma(s)| Tva(s) — Tva(s)|

lvi—wall (n-1)
IMNa) n-1-p

/ (1= )% (ms) + K*ma(s) + Homs(s)) ds

[vi —vall pw(n—1)
all(@) n-1-p Jy

t 1 %) t 1 o
< ””F(_av)z” ( f (t—s) ds) ( /0 (ma(s) + K*my(s) + s (s)) @ ds)
lvi = va[|(n - 1) o -
T@n-1-p) IMNa)(n-—1-pw) </ (1- ds)
1 1
. </ (m1(s) + K" m(s) + h*ms(s)) ®2 ds)
0
lvi = vallpa(n = 1) e\
" ar@(n-1-p) </ 1= ds)
1 1 @
. (/ (ml(s) + kK*my(s) + h*rm(s)) ) ds)
0

<< (n-1) o . uln=1) o >||v ol
T\ =1- ) (552)7 " aT(@)(n -1~ p) (sgzeytz )70 20

(1 -5~ (ml(s) + k*my(s) + h*rng(s)) ds

o

Therefore, we get
[Bvi = Ba|| < QF|lvi — w2l
It follows from (H,) that B is a contraction mapping for Q* < 1.

The continuity of f implies that A is continuous. Also, A is uniformly bounded on Bg,

since for any u € Bg, by (Hs), we have

t a—-1 t a-1
[Au| < | (t;(so)l) [f(s,u(s), Tu(s),Su(s))|ds§/0 ¢ l"()) h(s)ds
1 t el 1-ay t 1 5]
< m(/o (t —s) T2 ds) (/0 (h(s)) ds)
Al o
< L2

1-ay

On the other hand, for any u € By, t1,%, € J, without loss of generality, we may assume
L < &y, forany ¢ > 0, choose § = %(%@)é, ® = sup{f(t,u,v,w): (¢, u,v,w) € ] X Bg X Bixg X

Byxr}, Bier = {v € CULR,) : VIl < k*R}, Byer = {w € CU,R,) : [[w] < h*R}, such that, for
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0<ty—t <8, we have

|Au(ts) - Au(ty)|

J

2 (ty —s)! 0t —s)t
Wf(s, u(s), Tu(s), Su(s)) ds — /0 Wf(s, u(s), Tu(s), Su(s))

IA

<rol) (-9 -+ [ -
0 f
_ @ £
otF(ot)| 20 |

Since 0 < t, — t; < 8, we have the following two cases:
Casel.§ <t <t <1.

|Au(ty) - Au(ty)| < i| 51| < ° ad* Nty — 1) < ifsa <e.
~ al(a) ~ al(a) ~ I'a)
Case2.0<f <6, <25 <1.
(o} (o} )
Au(ty) —Au(t)| < ——|t5 -t < ty < 28)% <e.
[Au(za) ”(1)|—ar(a)| 2 1|—ar(a) 2= T2 <e

Therefore, A is equicontinuous, by the Arzela-Ascoli theorem, we know that A is com

Page 15 of 17

ds

pact

on Bg, so the operator A is completely continuous. Thus, all the assumptions of Lemma 2.4

are satisfied, by Lemma 2.4, FBVP (1.1) has at least one positive solution on J.

4 Example

O

Now we consider the existence and uniqueness of positive solutions for the fractional dif-

ferential system:

D(t) +f (¢, u(t), Tu(t), Su(t)) =0, 0<t<l,
w0)=1,  w(©0)=2  u0)=0,  ul)= Pl [Fu(s)ds,
where3<a<4,0< = 11':)11 < 3. Let k > 0 be a constant, choose
L u Le =D |y Lets+1) |w
S u,v,w) = k. +/ d ds++/ e+l vl
1+k1+ul Jo 1+k 1+ o 16(1+K2)1+|w|
So
K(ts) g0 Ht.s) et(s+1)
7S = —, YS = 7’
1+k 16(1 + k2)
k" /tl((t yds - 21 h* /IH(t )d
= sup ,8)ds = ———, = sup ,8)ds = —————,
tef Jo (1+k) e Jo 32(1 + k2)
lf(t; u,v, W) _f(t’ ﬁx 17: W)|
—t e—kt et
< 1 +k|1/l—ﬁ| + mlv—\_/| + m'W—WL te],u,v,w,ﬁ,V,WGRﬂ
et +ett et
t’ ol 7 < b t e ] 5] ) e R .
fiewvw| < == T8I+ 1) Jiwviw €R,

(4.1)
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~t —kt —t
For t €], o1 € (0,0 — 3), ozz € (0, oz 3), set my(t) = {7z, ma(t) = 81?,1’}13(1') = 8(%](2) €
1 —t —kz —t —kt (p_1
Lal (]1 R+): h(t) = 1:‘;( (1+k2 € L 2 (] R+) w = ||f+_k + e(1+(/f)2) 256 1+k2)2 ” ChOOS—

ing some k > 0 large enough and suitable o € (0, —3), @y € (0, —3), we can arrlve at the
inequality (3.1). Therefore, by Theorem 3.1, we see that FBVP (4.1) has a unique solution
on/.

5 Conclusions

In this work, we establish the conditions of uniqueness and existence results of positive so-
lutions for a class of fractional integro-differential equations involving the Caputo deriva-
tive of order o (n—1 < @ < n, n > 3), the explicit cases, including measurable or continuous
nonlinear term f, are discussed by adopting new assumption conditions. Our results (The-
orems 3.1 and 3.2) are based on the Banach contraction principle and the Krasnoselskii
fixed point theorem. In particular, an example is given to show the effectiveness of the
obtained results. Moreover, the sufficient conditions we obtained are very simple, which
provides flexibility for the application and analysis of a nonlinear fractional differential

equation.
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