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Abstract
By using the Schrödingerean continuation theorem due to Li (Bound. Value Probl.
2015:242, 2015), we obtain some new results for boundary value problems of
Schrödingerean Green potentials. As new applications, the boundary behaviors of
superharmonic functions at infinity are also obtained.
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1 Introduction
Cartesian coordinates of a point G of Rn, n ≥ , are denoted by (X, xn), where Rn is the n-
dimensional Euclidean space and X = (x, x, . . . , xn–). We introduce spherical coordinates
for G = (r,�) (� = (θ, θ, . . . , θn–)) by |x| = r,

⎧
⎨

⎩

xn = r cos θ, x = r(
∏n–

j= sin θj) n = ,

xn–m+ = r(
∏m–

j= sin θj) cos θm n ≥ ,

where  ≤ r < +∞, – 
π ≤ θn– < 

π and  ≤ θj ≤ π for  ≤ j ≤ n –  (n ≥ ).
We denote the unit sphere and the upper half unit sphere by Sn– and Sn–

+ , respectively.
Let � ⊂ Sn–. The point (,�) and the set {�; (,�) ∈ �} are identified with � and �,
respectively. Let � × � denote the set {(r,�) ∈ Rn; r ∈ �, (,�) ∈ �}, where � ⊂ R+. The
set R+ × � is denoted by �n(�), which is called a cone. Especially, the set R+ × Sn–

+ is
called the upper-half space, which is denoted by Tn. Let I ⊂ R. Two sets I × � and I × ∂�

are denoted by �n(�; I) and �n(�; I), respectively. We denote �n(�; R+) by �n(�), which
is ∂�n(�) – {O}.

Let B(G, l) denote the open ball, where G ∈ Rn is the center and l >  is the radius.

Definition  Let E ⊂ �n(�). If there exists a sequence of countable balls {Bk} (k =
, , , . . .) with centers in �n(�) satisfying

E ⊂
∞⋃

k=

Bk ,
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then we say that E has a covering {rk , Rk}, where rk is the radius of Bk and Rk is the distance
from the origin to the center of Bk .

In spherical coordinates the Laplace operator is

�n = r–�n + r–(n – )
∂

∂r
+

∂

∂r ,

where �n is the Beltrami operator. Now we consider the boundary value problem

(�n + τ )h =  on �,

h =  on ∂�.

If the least positive eigenvalue of it is denoted by τ� , then we can denote by h�(�) the
normalized positive eigenfunction corresponding to it.

We denote by ι� (>) and –κ� (<) two solutions of the problem t + (n – )t – τ� = ,
Then ι� + κ� is denoted by �� for the sake of simplicity.

Remark  In the case � = Sn–
+ , it follows that

(I) ι� =  and κ� = n – .
(II) h�(�) =

√
n
wn

cos θ, where wn is the surface area of Sn–.
It is easy to see that the set ∂�n(�) ∪ {∞} is the Martin boundary of �n(�). For any

G ∈ �n(�) and any H ∈ ∂�n(�) ∪ {∞}, if the Martin kernel is denoted by MK(G, H),
where a reference point is chosen in advance, then we see that (see [], p.)

MK(G,∞) = rι� h�(�) and MK(G, O) = cr–κ� h�(�),

where G = (r,�) ∈ �n(�) and c is a positive number.
We shall say that two positive real valued functions f and g are comparable and write

f ≈ g if there exist two positive constants c ≤ c such that cg ≤ f ≤ cg .

Remark  Let � ∈ �. Then h�(�) and dist(�, ∂�) are comparable (see []).

Remark  Let �(G) = dist(G, ∂�n(�)). Then h�(�) and �(G) are comparable for any
(,�) ∈ � (see []).

Remark  Let  ≤ α ≤ n. Then h�(�) ≤ c(�, n){h�(�)}–α , where c(�, n) is a constant
depending on � and n (e.g. see [], pp.-).

Definition  For any G ∈ �n(�) and any H ∈ �n(�). If the Green function in �n(�) is
defined by GF�(G, H), then:

(I) The Poisson kernel can be defined by

POI�(G, H) =
∂

∂nH
GF�(G, H),

where ∂
∂nH

denotes the differentiation at H along the inward normal into �n(�).
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(II) The Green potential on �n(�) can be defined by

GF�ν(G) =
∫

�n(�)
GF�(G, H) dν(H),

where G ∈ �n(�) and ν is a positive measure in �n(�).

Definition  For any G ∈ �n(�) and any H ∈ �n(�). Let μ be a positive measure on�n(�)
and g be a continuous function on �n(�). Then (see []):

(I) The Poisson integral with μ can be defined by

POI�μ(G) =
∫

�n(�)
POI�(G, H) dμ(H).

(II) The Poisson integral with g can be defined by

POI�[g](G) =
∫

�n(�)
POI�(G, H)g(H) dσH ,

where dσH is the surface area element on �n(�).

Definition  Let μ be defined in Definition . Then the positive measure μ′ is defined by

dμ′ =

⎧
⎨

⎩

∂h� (�)
∂n�

t–κ�– dμ on �n(�; (, +∞)),

 on Rn – �n(�; (, +∞)).

Definition  Let ν be any positive measure in �n(�) satisfying

GF�ν(G) 
≡ +∞ (.)

for any G ∈ �n(�). Then the positive measure ν ′ is defined by

dν ′ =

⎧
⎨

⎩

h�(�)t–κ� dν on �n(�; (, +∞)),

 on Rn – �n(�; (, +∞)).

Definition  Let ν be any positive measure in Tn such that (.) holds for any G ∈ �n(�).
Then the positive measure ν is defined by

dν =

⎧
⎨

⎩

hSn–
+

(�)t–n dν on Tn(, +∞),

 on Rn – Tn(, +∞).

Definition  Let μ and ν be defined in Definitions  and , respectively. Then the positive
measure ξ is defined by

dξ =

⎧
⎨

⎩

t––κ� dξ ′ on �n(�; (, +∞)),

 on Rn – �n(�; (, +∞)),
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where

dξ ′ =

⎧
⎨

⎩

∂h� (�)
∂n�

dμ(H) on ∈ �n(�; (, +∞)),

h�(�)t dν(H) on ∈ �n(�; (, +∞)).

Remark  Let � = Sn–
+ . Then

GFSn–
+

(G, H) =

⎧
⎨

⎩

log |G – H∗| – log |G – H| if n = ,

|G – H|–n – |G – H∗|–n if n ≥ ,

where G = (X, xn), H∗ = (Y , –yn), that is, H∗ is the mirror image of H = (Y , yn) with respect
to ∂Tn. Hence, for the two points G = (X, xn) ∈ Tn and H = (Y , yn) ∈ ∂Tn, we have

POISn–
+

(G, H) =
∂

∂ny
GFSn–

+
(G, H)

=

⎧
⎨

⎩

xn|G – H|– if n = ,

(n – )xn|G – H|–n if n ≥ .

Remark  Let � = Sn–
+ . Then we define

d� =

⎧
⎨

⎩

d�′
|y|n on Tn,

 on Rn – Tn,

where

d�′(y) =

⎧
⎨

⎩

dμ on ∂Tn,

yn dν on Tn.

Definition  Let λ be any positive measure on Rn having finite total mass. Then the max-
imal function M(G;λ,β) is defined by

M(G;λ,β) = sup
<ρ< r



ρ–βλ
(
B(G,ρ)

)

for any G = (r,�) ∈ Rn – {O}, where β ≥ . The exceptional set can be defined by

EX(ε;λ,β) =
{

G = (r,�) ∈ Rn – {O};M(G;λ,β)rβ > ε
}

,

where ε is a sufficiently small positive number.

Remark  Let β >  and λ({P}) >  for any P 
= O. Then:
(I) M(G;λ,β) = +∞.

(II) {G ∈ Rn – {O};λ({P}) > } ⊂ EX(ε;λ,β).
The boundary behavior of classical Green potential in Tn was proved by Huang in [],

Corollary and Remark .
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Theorem A Let g be a measurable function on ∂Tn satisfying
∫

∂Tn

yn
(
 + |y|)–n dy < ∞. (.)

Then

GF�ν(x) = o
(|x|) (.)

for any x ∈ Tn – EX(ε;ν, n – ), where EX(ε;ν, n – ) is a subset of Tn and has a covering
{rk , Rk} satisfying

∞∑

k=

(
rk

Rk

)n–

< ∞. (.)

2 Results
Our first aim in this paper is also to consider boundary value problems for Green potential
in a cone, which generalize Theorem A to the conical case. For similar results for Green-
Sch potentials, we refer the reader to the paper by Li (see []).

The estimation of the Green potential at infinity is the following.

Theorem  If ν is a positive measure on �n(�) such that (.) holds for any G ∈ �n(�).
Then

GF�ν(G) = o
(
rι�

{
h�(�)

}–α)

for any G = (r,�) ∈ �n(�) – EX(ε;ν ′, n – α) as r → ∞, where EX(ε;ν ′, n – α) is a subset of
�n(�) and has a covering {rk , Rk} satisfying

∞∑

k=

(
rk

Rk

)n–α

< ∞. (.)

Corollary  Under the conditions of Theorem , GF�ν(G) = o(rι� ) for any G = (r,�) ∈
�n(�) – EX(ε;ν ′, n – ) as r → ∞, where EX(ε;ν ′, n – ) is a subset of �n(�) and has a
covering {rk , Rk} satisfying (.).

Corollary  Under the conditions of Theorem , GF�ν(G) = o(rι� h�(�)) for any G =
(r,�) ∈ �n(�) – EX(ε;ν ′, n) as r → ∞, where EX(ε;ν ′, n) is a subset of �n(�) and has
a covering {rk , Rk} satisfying

∞∑

k=

(
rk

Rk

)n–

< ∞. (.)

Theorem B (see [], Chapter , Theorem ..) Let  < w(G) be a superharmonic function
in Tn. Then there exist a positive measure μ on ∂Tn and a positive measure ν on Tn such
that w(G) can be uniquely decomposed as

w(x) = cxn + POISn–
+

μ(x) + GFSn–
+

ν(x), (.)

where G ∈ Tn and c is a nonnegative constant.

RETRACTED A
RTIC

LE



Lai et al. Boundary Value Problems  (2017) 2017:21 Page 6 of 10

Theorem C Let  < w(G) be a superharmonic function in�n(�). Then there exist a positive
measure μ on �n(�) and a positive measure ν on �n(�) such that w(G) can be uniquely
decomposed as

w(G) = c(w)MK(G,∞) + c(w)MK(G, O) + POI�μ(G) + GF�ν(G), (.)

where G ∈ �n(�), c(w) and c(w) are two constants dependent on w satisfying

c(w) = inf
G∈�n(�)

w(G)
MK(G,∞)

and c(w) = inf
G∈�n(�)

w(G)
MK(G, O)

.

As an application of Theorem  and Lemma  in Section , we prove the following result.

Theorem  Let  ≤ α < n, ε be defined as in Theorem  and w(G) ( 
≡ +∞) (G = (r,�) ∈
�n(�)) be defined by (.). Then

w(G) = c(w)MK(G,∞) + c(w)MK(G, O) + o
(
rι�

{
h�(�)

}–α)

for any G ∈ �n(�) – EX(ε; ξ , n – α) as r → ∞, where EX(ε; ξ , n – α) is a subset of �n(�)
and has a covering {rk , Rk} satisfying (.).

Corollary  Under the conditions of Theorem ,

w(G) = c(w)MK(G,∞) + c(w)MK(G, O) + o
(
rι�

)

for any G ∈ �n(�) –EX(ε; ξ , n – ) as r → ∞, where EX(ε; ξ , n – ) is a subset of �n(�) and
has a covering {rk , Rk} satisfying (.).

Corollary  Under the conditions of Theorem ,

w(G) = c(w)MK(G,∞) + c(w)MK(G, O) + o
(
rι� h�(�)

)

for any G ∈ �n(�) –EX(ε; ξ , n) as r → ∞, where EX(ε; ξ , n) is a subset of �n(�) and has a
covering {rk , Rk} satisfying (.).

In Tn, we have

Corollary  Let w(x) ( 
≡ +∞) (x = (X, xn) ∈ Tn) be defined by (.). Then

w(x) = cxn + o
(|x|)

for any x ∈ Tn – EX(ε;�, n – ) as |x| → ∞, where EX(ε;�, n – ) has a covering satisfying
(.).

Corollary  Under the conditions of Corollary ,

w(x) = cxn + o(xn)

for any x ∈ Tn – EX(ε;�, n) as |x| → ∞, where EX(ε;�, n) has a covering satisfying (.).
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3 Lemmas
In order to prove our main results we need following lemmas.

Lemma  (see [], Lemma  and []) Let any G = (r,�) ∈ �n(�) and any H = (t,�) ∈
�n(�), we have the following estimates:

GF�(G, H) ≤ Mr–κ� tι� h�(�)h�(�) (.)

for  < t
r ≤ 

 ,

GF�(G, H) ≤ Mrι� t–κ� h�(�)h�(�) (.)

for  < r
t ≤ 

 and

GF�(G, H) ≤ Mh�(�)t–nh�(�) + t–κ� h�(�)��(G, H), (.)

for r
 < t ≤ r

 , where

��(G, H) = min
{

tκ� |G – H|–nh�(�)–, Mrtκ�+|G – H|–nh�(�)
}

.

Lemma  (see [], Lemma ) If λ is positive measure on Rn having finite total mass, then
exceptional set EX(ε;λ,β) has a covering {rk , Rk} (k = , , . . .) satisfying

∞∑

k=

(
rk

Rk

)β

< ∞.

The following result is due to Jiang et al. (see [], Theorem ), who are concerned with
the boundary behaviors of Poisson integrals and their applications. For similar results in
a half space, we refer the reader to the paper by Jiang and Huang (see []).

Lemma  Let POI�μ(G) 
≡ +∞ for any G = (r,�) ∈ �n(�), where μ is a positive measure
on �n(�). Then

POI�μ(G) = o
(
rι�

{
h�(�)

}–α)
(.)

for any G ∈ �n(�) – EX(ε;μ′, n – α) as r → ∞, where EX(ε;μ′, n – α) is a subset of �n(�)
and has a covering {rk , Rk} of satisfying (.).

4 Proof of Theorem 1
Let G = (r,�) be any point in �n(�; (L, +∞)) – EX(ε;ν ′, n – α), where L is a sufficiently
large number satisfying r ≥ L

 .
Put

GF�ν(G) = GF 
�(G) + GF

�(G) + GF
�(G),

where

GF 
�(G) =

∫

�n(�;(, 
 r])

GF�(G, H) dν(H),
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GF
�(G) =

∫

�n(�;( 
 r, 

 r))
GF�(G, H) dν(H),

GF
�(G) =

∫

�n(�;[ 
 r,∞))

GF�(G, H) dν(H).

We have the following estimates:

GF 
�(G) ≤ Mrι� h�(�)

(



r
)–��

∫

�n(�;(, 
 r])

tι� h�(�) dν(H)

≤ Mεrι� h�(�), (.)

GF
�(G) ≤ Mrι� h�(�)

∫

�n(�;[ 
 r,∞))

t–κ� h�(�) dν(H)

≤ Mεrι� h�(�), (.)

from (.), (.), and [], Lemma .
By (.), we have

GF
�(G) ≤ GF

� (G) + GF
� (G),

where

GF
� (G) = Mh�(�)

∫

�n(�;( 
 r, 

 r))
t–n+κ� dν ′(H),

GF
� (G) =

∫

�n(�;( 
 r, 

 r))
��(G, H) dν ′(H).

Then by [], Lemma  we immediately get

GF
� (G) ≤

(



)ι�

Mrι� h�(�)
∫

�n(�;( 
 r,∞))

dν ′(H)

≤ Mεrι� h�(�). (.)

In order to give the growth properties of GF
� (G). Take a sufficiently small positive

number k independent of G such that

�(G) =
{

(t,�) ∈ �n

(

�;
(




r,



r
))

;
∣
∣(,�) – (,�)

∣
∣ < k

}

⊂ B
(

G,
r


)

. (.)

The set �n(�; ( 
 r, 

 r)) can be split into two sets �(G) and �′(G), where �′(G) =
�n(�; ( 

 r, 
 r)) – �(G). Write

GF
� (G) = GF

� (G) + GF
� (G),

where

GF
� (G) =

∫

�(G)
��(G, H) dν ′(H), GF

� (G) =
∫

�′(G)
��(G, H) dν ′(H).
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For any H ∈ �′(G) we have |G–H| ≥ k′
r, where k′

 is a positive number. So [], Lemma 
gives

GF
� (G) ≤ M

∫

�n(�;( 
 r, 

 r))
rtκ�+h�(�)|G – H|–n dν ′(H)

≤ Mrι� h�(�)
∫

�n(�;( 
 r,∞))

dν ′(H)

≤ Mεrι� h�(�). (.)

To estimate GF
� (G). Set

Il(G) =
{

H ∈ �(G); l�(G) > |G – H| ≥ l–�(G)
}

,

where l = ,±,±, . . . and �(G) = infH∈∂�n(�) |G – H|.
From Remark  it is easy to see that ν ′({P}) =  for any G = (r,�) /∈ EX(ε;ν ′, n – α). The

function GF
� (G) can be divided into GF

� (G) = GF
� (G) + GF

� (G), where

GF
� (G) =

–∑

l=–∞

∫

Il(G)
��(G, H) dν ′(H),

GF
� (G) =

∞∑

l=

∫

Il(G)
��(G, H) dν ′(H).

For any H = (t,�) ∈ Il(p), we have –�(G) ≤ �(H) ≤ Mth�(�), because �(H)+ |G–H| ≥
�(G). Then by Remark 

∫

Il(G)
��(G, H) dν ′(H) ≤

∫

Il(G)

tκ�

|G – H|n–h�(�)
dν ′(H)

≤ M(–α)ir–α+κ�
{

h�(�)
}–α ν ′(B(G, l�(G)))

{l�(G)}n–α

≤ Mrι�
{

h�(�)
}–αrn–α

M
(
G;ν ′, n – α

)

for l = –, –, . . . .
Moreover, we have

GF
� (G) ≤ Mεrι�

{
h�(�)

}–α (.)

for any G = (r,�) /∈ EX(ε;ν ′, n – α).
Equation (.) shows that there exists an integer l(G) >  such that l(G)�(G) ≤ r <

l(G)+�(G) and Il(G) = ∅ for l = l(G) + , l(G) + , . . . . And Remark  shows that

∫

Il(G)
��(G, H) dν ′(H) ≤ Mrh�(�)

∫

Il(G)
tκ�+|G – H|–n dν ′(H)

≤ M–iαrι�
{

h�(�)
}–αrn–αν ′(Il(G)

){
l�(G)

}α–n

for l = , , , . . . , l(G).
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We have for any G = (r,�) /∈ EX(ε;ν ′, n – α)

ν ′(Il(G)
){

l�(G)
}α–n ≤ ν ′(B

(
G, l�(G)

)){
l�(G)

}α–n ≤M
(
G;ν ′, n – α

)
< εrα–n

for l = , , , . . . , l(G) –  and

ν ′(Il(G)
){

l�(G)
}α–n ≤ ν ′(�(G)

)
(

r


)α–n

< εrα–n.

So

GF
� (G) ≤ Mεrι�

{
h�(�)

}–α . (.)

From (.), (.), (.), (.), (.), and (.) we obtain GF�ν(G) = o(rι� {h�(�)}–α) for
any G = (r,�) ∈ �n(�; (L, +∞)) – EX(ε;ν ′, n – α) as r → ∞, where L is sufficiently large
number. Finally, Lemma  gives the conclusion of Theorem .
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