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Abstract
In this paper, we consider a discrete delta-nabla boundary value problem for the
fractional difference equation with p-Laplacian

�β
v–2(ϕp(b∇νx(t))) + λf (t – ν + β + 1, x(t – ν + β + 1),

[
b∇εx(t)

]
t–ν+β+ε+1) = 0,

x(b) = 0,
[
b∇νx(t)

]
ν–2 = 0, x(–1) =

b–1∑

t=0

x(t)A(t),

where t ∈ T = [ν – β – 1,b + ν – β – 1]Nν–β–1 . �β
ν–2, b∇ν are left and right fractional

difference operators, respectively, and ϕp(s) = |s|p–2s, p > 1.
By using the method of upper and lower solution and the Schauder fixed point

theorem, we obtain the existence of positive solutions for the above boundary value
problem; and applying a monotone iterative technique, we establish iterative
schemes for approximating the solution.
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1 Introduction
In this paper, we investigate the existence of positive solutions for the following discrete
delta-nabla fractional boundary value problem (FBVP) with p-Laplacian:

�β
ν–

(
ϕp

(
b∇νx(t)

))
+ λf

(
t – ν + β + , x(t – ν + β + ),

[
b∇εx(t)

]
t–ν+β+ε+

)

= , t ∈ T, (.)

x(b) = ,
[

b∇νx(t)
]
ν– = , x(–) =

b–∑

t=

x(t)A(t), (.)

where t ∈ T = [ν –β –, b+ν –β –]Nν–β– , �β
ν–, b∇ν are left and right fractional difference

operators, respectively. ϕp(s) = |s|p–s, p > , ϕ–
p = ϕq, 

p + 
q = , β ,ν, ε ∈ (, +∞), and they

satisfy the following:
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(H) ν ∈ (, ], β , ε ∈ (, ], ν – ε –  > ;
(H) A(t) is a function defined on [, b]N ;
(H) f : [, b]N × R × R −→ [,∞) is continuous for any t ∈ [, b]N , f (t, , ) �= ,

f (t, , ) �= , and let

σ = max
t∈[,b]N

f (t, , ) �= . (.)

The equation with p-Laplacian operator arises in the modeling of different physical and
natural phenomena, non-Newtonian mechanics [], combustion theory [], population
biology [], nonlinear flow laws [] and the system of Monge-Kantorovich mass transfer
[]. Integral and derivative operators of fractional order can describe the characteristics
exhibited in many complex processes and systems having long-memory in time. Then
many classical integer order models for complex systems are substituted by fractional or-
der models. Fractional calculus has recently developed into a relatively vibrant research
area. It also provides an excellent tool to describe the hereditary properties of materials
and processes. Many successful new applications of fractional calculus in various fields
have also been reported recently. For example, Nieto and Pimentel [] extended a second-
order thermostat model to the fractional model; Ding and Jiang [] used waveform relax-
ation methods to study some fractional functional differential equation models. For the
basic theories of fractional calculus and some recent work in application, the reader is
referred to Refs. [–].

On the other hand, discrete fractional calculus has attracted slowly but steadily increas-
ing attention in the past seven years or so. In particular, several recent papers by Atici and
Eloe as well as other recent papers by the present authors have addressed some basic the-
ory of both discrete fractional initial value problems and discrete FBVPs. More specifically,
Atici and Eloe [] have already analyzed a transform method in discrete fractional calcu-
lus. Goodrich [] considered a discrete right-focal fractional boundary value problem. All
of the fundamental background in discrete fractional calculus can be found in [] which
is written by Goodrich and Peterson. Other recent work has considered discrete FBVPs
with a variety of boundary conditions, see [–]. There are also a few papers for the
discrete delta-nabla boundary value problems. For example, Malinowska and Torres []
propose a more general approach to the calculus of variations on time scales that allows to
obtain both delta and nabla results as particular cases. Martins and Torres [] study the
calculus of variations on time scales with nabla derivatives and so on. What is more, []
is the first paper to consider a discrete fractional difference equation with a p-Laplacian
operator.

From the above works, we can see the fact that although the discrete delta-nabla bound-
ary value problem has been studied by many authors, to the best of our knowledge, there
are very few papers on the discrete delta-nabla FBVPs. For example, Xie, Jin and Hou []
obtained some results which ensure the existence of a well precise interval of the param-
eter for which the problem admits multiple solutions.

Our aim is to use the method of upper and lower solution and the Schauder fixed point
theorem to obtain the existence of positive solutions for the above boundary value prob-
lem; and to apply a monotone iterative technique to establish iterative schemes for ap-
proximating the solution.
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The rest of this paper has the following structure. In Section , we recall some basic
definitions of fractional calculus, establish some lemmas and use symbols to replace with
some formula which plays a pivotal role in the text. Section  contains an existence result
for problem (.) and (.) which is established by applying the method of upper and lower
solution and the Schauder fixed point theorem. In Section , we show the iterative schemes
for approximating the solution by using a monotone iterative technique.

2 Preliminaries
In this section, we collect some basic definitions and lemmas for manipulating discrete
fractional operators.

For any real number β , let Nβ = {β ,β + ,β + , . . .}, βN = {. . . ,β – ,β – ,β}.
We define tν = �(t+)

�(t+–ν) for any t,ν ∈R, for which the right-hand side is well defined. We
also appeal to the convention that if t +  – ν is a pole of the gamma function and t +  is
not a pole, then tν = .

Definition . ([]) Let f : Na → R and ν >  be given. The νth left fractional sum of f
is given by

�–ν
a f (t) =


�(ν)

t–ν∑

s=a
(t – s – )ν–f (s) for t ∈ Na+ν .

Also, let N ∈ N be chosen such that N –  < ν ≤ N . Then the νth left fractional difference
of f is given by

�ν
af (t) := �N�ν–N

a f (t) for t ∈Na+N–ν .

Definition . ([]) The νth right fractional sum of f (t) for ν >  is defined by

b∇–ν f (t) =


�(ν)

b∑

s=t+ν

(s – t – )ν–f (s) for t ∈b–ν N.

We also define the νth right fractional difference for ν >  by

b∇ν f (t) := (–)N∇N
b ∇ν–N f (t) for t ∈b–N+ν N,

where N ∈N is chosen so that  ≤ N –  < ν ≤ N .

Lemma . ([]) Let b ∈ R and μ >  be given. Then

∇(b – t)μ = –μ(b – t)μ–

for any t, for which both sides are well defined.
Furthermore, for ν >  with N –  < ν ≤ N , N ∈N,

b–μ∇–ν(b – t)μ = μ–ν(b – t)μ+ν , t ∈ b–μ–νN,
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and

b–μ∇ν(b – t)μ = μν(b – t)μ–ν , t ∈ b–μ–N+νN.

Lemma . ([]) Let f : Na →R be given, and suppose ν,μ >  with N –  < ν ≤ N .
Then

�ν
a+μ�–μ

a f (t) = �ν–μ
a f (t), t ∈Na+μ+N–ν .

Lemma . ([]) Let f : bN→R be given, and suppose ν,μ >  with N –  < ν ≤ N .
Then

b–μ∇ν
b∇–μf (t) =b ∇ν–μf (t), t ∈ b–μ–N+νN.

Lemma . ([]) Let f : Na →R and ν >  be given with N –  < ν ≤ N . The following two
definitions for the left fractional difference 	ν

af : Na+N–ν → R are equivalent:

	ν
af (t) = 	N	–(N–ν)

a f (t),

	ν
af (t) =

⎧
⎨

⎩


�(–ν)

∑t+ν
s=a(t – s – )–ν–f (s), N –  < ν ≤ N ,

	N f (t), ν = N .

Lemma . ([]) Let f : bN→ R and ν >  be given with N –  < ν ≤ N . The following two
definitions for the right fractional difference b∇ν f : b–N+νN→R are equivalent:

b∇ν f (t) = (–)N∇N
b ∇–(N–ν)f (t),

b∇ν f (t) =

⎧
⎨

⎩


�(–ν)

∑b
s=t–ν(s – t – )–ν–f (s), N –  < ν ≤ N ,

(–)N∇N f (t), ν = N .

Lemma . ([]) Let f : Na → R be given and suppose k ∈ N and ν > . Then for t ∈
Na+M–μ+ν ,

�–ν
a �kf (t) = �k–ν

a f (t) –
k–∑

j=

�jf (a)
�(ν – k + j + )

(t – a)ν–k+j.

Moreover, if μ >  with M –  < μ ≤ M, then for t ∈ Na+ν ,

�–ν
a+M–μ�μ

a f (t) = �μ–ν
a f (t) –

M–∑

j=

�j–M+μ
a f (a + M – μ)
�(ν – M + j + )

(t – a – M + μ)ν–M+j.

Lemma . ([]) Let f : bN →R be given, and suppose k ∈ N and ν > . Then for t ∈ b–νN,

b∇–ν
b∇kf (t) =b ∇k–ν f (t) –

k–∑

j=

b∇ jf (b)
�(ν – k + j + )

(b – t)ν–k+j.
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Moreover, if μ >  with M –  < μ ≤ M, then for t ∈ b–M+μ–νN,

b–M+μ∇–ν
b∇μf (t) =b ∇μ–ν f (t) –

M–∑

j=

b∇ j–M+μf (b – M + μ)
�(ν – M + j + )

(b – M + μ – t)ν–M+j.

Remark . When we choose t ∈ T = [ν – β – , b + ν – β – ]Nν–β– in (.), problem (.)
(.) is significative. In fact, by Definitions ., ., Lemmas . and ., we have

�β
ν–ϕp

(
b∇νx(t)

)
=


�(–β)

t+β∑

s=ν–

(t – s – )–β–ϕp

(


�(–ν)

b∑

u=s–ν

(u – s – )–ν–x(u)

)

,

and

[
b∇εx(t)

]
t–ν+β+ε+ =


�(–ε)

b∑

s=t–ν+β+

(s + ν – β – ε – t – )–ε–x(s).

We can see that the domain of the function x is {–, –, , . . . , b}.

In the following paragraphs, we define
∑j

t=i y(t) =  for j < i.
Next, we denote

G(t, s) =


�(ν)

⎧
⎪⎪⎨

⎪⎪⎩

sν–(b+ν––t)ν–

(b+ν–)ν– – (s – t – )ν–,

ν –  ≤ t + ν –  < s ≤ b + ν – ,
sν–(b+ν––t)ν–

(b+ν–)ν– , ν –  ≤ s ≤ t + ν –  ≤ b + ν – .

GA(s) =
b–∑

t=

G(t, s)A(t)
(b + ν – )ν– , C =

b–∑

t=

(b + ν –  – t)ν–

(b + ν – )ν– A(t),

(.)

J(t, s) =
(b + ν –  – t)ν–

( – C)�(ν)
GA(s) + G(t, s). (.)

For variable t, we denote

t′ = t – ν + β + , t′′ = b + ν – t – β – .

By Lemmas . and ., for ν –  ≤ s ≤ b + ν – , we have

b∇ε
t (s – t – )ν– =


�(–ε)

b∑

u=t–ε

(u – t – )–ε–(s – u – )ν–

=


�(–ε)

s–ν∑

u=t–ε

(u – t – )–ε–(s – u – )ν–

= s–ν∇ε
t (s – t – )ν–

= (ν – )ε(s – t – )ν–ε–

=
�(ν)

�(ν – ε)
(s – t – )ν–ε–.
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Thus

b∇ε
t G(t, s) =


�(ν – ε)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

sν–(b+ν––t)ν–ε–

(b+ν–)ν– – (s – t – )ν–ε–,

ν –  ≤ t + ν – ε –  < s ≤ b + ν – ,
sν–(b+ν––t)ν–ε–

(b+ν–)ν– ,

ν –  ≤ s ≤ t + ν – ε –  ≤ b + ν – .

(.)

We denote

G(t, s) := b∇ε
t G(t, s), J(t, s) := G(t, s) +

(b + ν –  – t)ν–ε–

( – C)�(ν – ε)
GA(s). (.)

Lemma . Let  ≤ C <  and h : [, b]N →R be given, the problem

⎧
⎨

⎩
b∇νx(t) + h(t – ν + ) = , t ∈ [ν – , b + ν – ]Nν– ,

x(b) = , x(–) =
∑b–

t= x(t)A(t),
(.)

has the unique solution

x(t) =
b+ν–∑

s=ν–

J(t, s)h(s – ν + ),

where J(t, s) is given by (.).

Proof Denote

h(s) =
h(s – ν + )

(b + ν – )ν– .

By Lemma ., we have

x(t) = –b+ν–∇–νh(t – ν + ) + k(b + ν –  – t)ν– + k(b + ν –  – t)ν–.

From (.), we have k =  and

k =


( – C)�(ν)

(b+ν–∑

s=ν–

sν–h(s) –
b–∑

t=

A(t)
b+ν–∑

s=t+ν

(s – t – )ν–h(s)

)

.

Then

x(t) = –


�(ν)

b+ν–∑

s=t+ν

(s – t – )ν–h(s – ν + )

+
(b + ν –  – t)ν–

( – C)�(ν)

(b+ν–∑

s=ν–

sν–h(s) –
b–∑

t=

A(t)
b+ν–∑

s=t+ν

(s – t – )ν–h(s)

)

=
b+ν–∑

s=ν–

G(t, s)h(s – ν + ) –


�(ν)

b+ν–∑

s=ν–

sν–(b + ν –  – t)ν–h(s)
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+
(b + ν –  – t)ν–

( – C)�(ν)

(b+ν–∑

s=ν–

sν–h(s) –
b–∑

t=

A(t)
b+ν–∑

s=t+ν

(s – t – )ν–h(s)

)

=
b+ν–∑

s=ν–

G(t, s)h(s – ν + ) +
(b + ν –  – t)ν–

( – C)�(ν)

×
(

C
b+ν–∑

s=ν–

sν–h(s) –
b–∑

t=

A(t)
b+ν–∑

s=t+ν

(s – t – )ν–h(s)

)

=
b+ν–∑

s=ν–

G(t, s)h(s – ν + ) +
(b + ν –  – t)ν–

( – C)�(ν)

×
( b–∑

t=

b+ν–∑

s=ν–

sν–(b + ν –  – t)ν–A(t)h(s)
(b + ν – )ν– –

b–∑

t=

A(t)
b+ν–∑

s=t+ν

(s – t – )ν–h(s)

)

=
b+ν–∑

s=ν–

G(t, s)h(s – ν + ) +
(b –  + ν – t)ν–

( – C)�(ν)

b+ν–∑

s=ν–

b–∑

t=

G(t, s)A(t)h(s)

=
b+ν–∑

s=ν–

J(t, s)h(s – ν + ).

The proof is complete. �

Lemma . Let  ≤ C <  and h : [, b]N →R. Problem (.) is equivalent to the following
problem:

⎧
⎨

⎩
b+ε–∇ν–εy(t) + h(t + ν – ) = , t ∈ [ν – , b + ν – ]Nν– ,

y(b + ε) = , [b+ε–∇–εy(t)]– =
∑b–

t= (b+ε–∇–εy(t))A(t).
(.)

Proof Suppose that x(t) is a solution of (.). Let

y(t) =b ∇εx(t).

Then by Lemma . and x(b) = , we have x(t) =b+ε– ∇–εy(t).
By Lemma ., we get

b∇νx(t) =b– ∇νx(t) =b– ∇ν
b+ε–∇–εy(t) =b+ε– ∇ν–εy(t).

Therefore

b+ε–∇ν–εy(t) + h(t + ν – ) = ,

and

x(b) = y(b + ε) = , x(–) =
[

b+ε–∇–εy(t)
]

– =
b–∑

t=

(
b+ε–∇–εy(t)

)
A(t).

Same if vice versa. �

Using Lemmas . and ., we may easily obtain the following Lemmas . and ..



Liu et al. Boundary Value Problems  (2017) 2017:60 Page 8 of 23

Lemma . Let  ≤ C < , problem (.) and (.) is equivalent to the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

�β
ν–(ϕp(b+ε–∇ν–εy(t))) = –λf (t′, b+ε–∇–εy(t′), y(t′ + ε)),

y(b + ε) = , [b+ε–∇ν–εy(t)]ν– = ,

[b+ε–∇–εy(t)]– =
∑b–

t= b+ε–∇–εy(t)A(t).

(.)

Lemma . FBVP (.) has the unique solution

y(t) =
b+ν–∑

s=ν–

J(t, s)ϕq
(
λ�–β

ν–β–f
(
s′, b+ε–∇–εy

(
s′), y

(
s′ + ε

)))
. (.)

Conversely, if y(t) satisfies (.), then y(t) is a solution of (.), where J(t, s) is given by (.).

Lemma . The function J(t, s) has the following properties:
(i) J(t, s) ≥ , (t, s) ∈ [ε, b + ε]Nε × [ν – , b + ν – ]Nν– ,

(ii) (b + ν –  – t)ν–ε–m(s) ≤ J(t, s) ≤ M(b + ν –  – t)ν–ε–, t ∈ [ε, b + ε]Nε , where J(t, s) is
given by (.), and

m(s) =
GA(s)

( – C)�(ν – ε)
,

M =  +
‖GA‖

( – C)�(ν – ε)
, ‖GA‖ = max

s∈[ν–,b+ν–]Nν–

∣∣GA(s)
∣∣.

The proof of (i) is similar to Theorem . of [], hence it is omitted. For (ii), we note
that

J(t, s) ≤ sν–(b + ν –  – t)ν–ε–

(b + ν – )ν– +
‖GA‖(b + ν –  – t)ν–ε–

( – C)�(ν – ε)

≤
(

 +
‖GA‖

( – C)�(ν – ε)

)
(b + ν –  – t)ν–ε–.

Then it is easy to get properties (ii).

Definition . A function φ(t) is called a lower solution of (.) if it satisfies

⎧
⎪⎪⎨

⎪⎪⎩

–�β
ν–(ϕp(b+ε–∇ν–εφ(t))) ≤ λf (t′, b+ε–∇–εφ(t′),φ(t′ + ε)),

φ(b + ε) ≥ , [b+ε–∇ν–εφ(t)]ν– ≥ ,

[b+ε–∇–εφ(t)]– ≥ ∑b–
t= (b+ε–∇–εφ(t))A(t).

(.)

Definition . A function ψ(t) is called an upper solution of (.) if it satisfies

⎧
⎪⎪⎨

⎪⎪⎩

–�β
ν–(ϕp(b+ε–∇ν–εψ(t))) ≥ λf (t′, (b+ε–∇–εψ(t′)),ψ(t′ + ε)),

ψ(b + ε) ≤ , [b+ε–∇ν–εψ(t)]ν– ≤ ,

[b+ε–∇–εψ(t)]– ≤ ∑b–
t= (b+ε–∇–εψ(t))A(t).

(.)
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Remark . Assume  ≤ C < , GA(s) ≥  for s ∈ [ν – , b + ν – ]Nν– , and y : [ε,
b + ε]Nε → R with

y(b + ε) = ,
[

b+ε–∇–εy(t)
]

– =
b–∑

t=

(
b+ε–∇–εy(t)

)
A(t),

–b+ε–∇ν–εy(t) ≥ , t ∈ [ν, b + ν]Nν .

Then y(t) ≥ , t ∈ [ε, b + ε]Nε .
In fact, let –b+ε–∇ν–εy(t) = η(t). Then y(t) =

∑b+ν–
s=ν– J(t, s)η(s).

From η(t) ≥ , we can get the conclusion y(t) ≥ , t ∈ [ε, b + ε]Nε .

Lemma . (Schauder fixed point theorem) Let T be a continuous and compact mapping
of a Banach space E into itself such that the set

{x ∈ E : x = σTx}

for some  ≤ σ ≤  is bounded. Then T has a fixed point.

3 The method of upper and lower solutions
To establish the existence of a solution for the boundary value problem, we need to make
the following assumptions.

(H) A is defined on [, b]N , satisfying GA(s) ≥  for s ∈ [ν – , b + ν – ]Nν– , and  ≤
C < .

(H) f (·, u, s) : [, b]N × [, +∞) × [, +∞) → [, +∞) is continuous and is nonincreasing
on u and s. For all λ∈ (, ), there exist two constants μ,μ >  such that, for any
(t, u, s) ∈ [, b]N × [, +∞) × [, +∞),

f (t,λu, s) ≤ λ–μ f (t, u, s), (.)

f (t, u,λs) ≤ λ–μ f (t, u, s). (.)

Remark . Inequalities (.), (.) are equivalent to the following inequalities (.), (.),
respectively:

f (t,λu, s) ≥ λ–μ f (t, u, s), ∀λ > , (.)

f (t, u,λs) ≥ λ–μ f (t, u, s), ∀λ > . (.)

Now we denote

ξ =
ly

–(μ+μ)

�(β)
, ζ =

ly
μ+μ

�(β)

and g(t) = f (t′, b+ε–∇–ε(t′′)ν–ε–, (t′′ – ε)ν–ε–), t ∈ T. Then g(t) ∈ C(T,R), for m ∈ (, ), we
define

‖g‖ 
m

:=

(b+ν–β–∑

s=ν–β–

g

m (s)

)m

.



Liu et al. Boundary Value Problems  (2017) 2017:60 Page 10 of 23

Theorem . Suppose that (H) and (H) hold. Then there exists a constant λ∗ >  such
that FBVP (.) has at least one positive solution w(t) for any λ ∈ (λ∗, +∞). Moreover, there
exists a constant  < l <  such that

l(b + ν –  – t)ν–ε– ≤ w(t) ≤ l–(b + ν –  – t)ν–ε–.

Proof Let Q = C([ε, b + ε]Nε ,R), and define a subset P of Q as follows:

P =
{

y ∈ Q : ∃l ∈ (, ), such that l(b + ν –  – t)ν–ε– ≤ y(t) ≤ l–(b + ν –  – t)ν–ε–}.

Clearly, P is a nonempty set since (b + ν –  – t)ν–ε– ∈ P. Now define the operator Tλ in P.

Tλy(t) =
b+ν–∑

s=ν–

J(t, s)ϕq
(�–β

ν–β–λf
(
s′,b+ε– ∇–εy

(
s′), y

(
s′ + ε

)))
, (.)

where J(t, s) is given by (.).
We assert that Tλ is well defined and Tλ(P) ⊂ P.
In fact, for any y ∈ P, there exists a positive number  < ly <  such that

ly(b + ν –  – t)ν–ε– ≤ y(t) ≤ l–
y (b + ν –  – t)ν–ε–, t ∈ [ε, ε + b]Nε .

Thus, by Lemma ., condition (H), Hölder’s inequality and noticing m ∈ (, ), we get

Tλy(t) =
b+ν–∑

s=ν–

J(t, s)ϕq
(�–β

ν–β–λf
(
s′, b+ε–∇–εy

(
s′), y

(
s′ + ε

)))

≤ λq–
b+ν–∑

s=ν–

J(t, s)ϕq
(�–β

ν–β–f
(
s′, b+ε–∇–εly

(
s′′)ν–ε–, ly

(
s′′ – ε

)ν–ε–))

≤ λq–
b+ν–∑

s=ν–

J(t, s)ϕq

(

ξ

s–β∑

u=ν–β–

(s – u – )β–g(u)

)

≤
b+ν–∑

s=ν–

λq–M(b + ν –  – t)ν–ε–ξ q–

( s–β∑

u=ν–β–

(s – u – )β–g(u)

)q–

≤ (ξλ)q–M(b + ν –  – ε)ν–ε–‖g‖q–

m

×
b+ν–∑

s=ν–

( s–β∑

u=ν–β–

(
(s – u – )β–) 

–m

)(–m)(q–)

< +∞,

i.e.,

Tλy(t) < +∞. (.)
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On the other hand, using Lemma . and Remark ., we have

Tλy(t) =
b+ν–∑

s=ν–

J(t, s)ϕq
(�–β

ν–β–λf
(
s′, b+ε–∇–εy

(
s′), y

(
s′ + ε

)))

≥ λq–
b+ν–∑

s=ν–

J(t, s)ϕq
(�–β

ν–β–f
(
s′, b+ε–∇–εl–

y
(
s′′)ν–ε–, l–

y
(
s′′ – ε

)ν–ε–))

≥ λq–
b+ν–∑

s=ν–

J(t, s)ϕq

(

ζ

s–β∑

u=ν–β–

(s – u – )β–g(u)

)

≥ (λζ )q–
b+ν–∑

s=ν–

m(s)(b + ν –  – t)ν–ε–ϕq

( s–β∑

u=ν–β–

(s – u – )β–g(u)

)

.

Therefore

Tλy(t) ≥ (λζ )q–(b + ν –  – t)ν–ε–
b+ν–∑

s=ν–

m(s)

( s–β∑

u=ν–β–

(s – u – )β–g(u)

)q–

. (.)

Choose

Iy = min

{



,

[

(λξ )q–M‖g‖q–

m

b+ν–∑

s=ν–

( s–β∑

u=ν–β–

(
(s – u – )β–) 

–m

)(–m)(q–)]–

,

(λζ )q–
b+ν–∑

s=ν–

m(s)

( s–β∑

u=ν–β–

(s – u – )β–g(u)

)q–}

. (.)

Then it follows from (.), (.) and (.) that

Iy(b + ν –  – t)ν–ε– ≤ Tλy(t) ≤ I–
y (b + ν –  – t)ν–ε–.

Next we shall devote our attention to finding the upper and lower solutions of FBVP
(.). Let

e(t) =
b+ν–∑

s=ν–

J(t, s)ϕq
(�–β

ν–β–g(s)
)
.

By Lemma ., we have

e(t) ≥ (b + ν –  – t)ν–ε–
b+ν–∑

s=ν–

m(s)ϕq
(�–β

ν–β–g(s)
)
, ∀t ∈ [ε, b + ε]Nε ,

and consequently there exists a constant λ ≥  such that

λe(t) ≥ (b + ν –  – t)ν–ε–. (.)
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Thus, for any λ > λ, by (H) and similar to (.), we have

b+ν–∑

s=ν–

J(t, s)ϕq
(�–β

ν–β–f
(
s′, b+ε–∇–ελe

(
s′),λe

(
s′ + ε

)))

≤
b+ν–∑

s=ν–

J(t, s)ϕq
(�–β

ν–β–f
(
s′, b+ε–∇–ελe

(
s′),λe

(
s′ + ε

)))

≤
b+ν–∑

s=ν–

J(t, s)ϕq

[ s–β∑

u=ν–β–

(
(s – u – )β–

�(β)
f
(
u′,

(
b+ε–∇–ε

(
u′′)ν–ε–),

(
u′′ – ε

)ν–ε–)
)]

=
b+ν–∑

s=ν–

J(t, s)ϕq

[ s–β∑

u=ν–β–

(
(s – u – )β–

�(β)
g(u)

)]

< +∞,

and

e(t) ≤ M(b + ν –  – t)ν–ε–
b+ν–∑

s=ν–

ϕq

( s–β∑

u=ν–β–


�(β)

(s – u – )β–g(u)

)

< +∞.

Now let

ρ = M(b + ν –  – ε)ν–ε–
(


�(β)

)q–

‖g‖q–

m

b+ν–∑

s=ν–

( s–β∑

u=ν–β–

(
(s – u – )β–) 

–m

)(–m)(q–)

+ .

Take

λ∗ = max

{

λ


q–
 ,

[

ρ–(μ+μ)(q–)
b+ν–∑

s=ν–

m(s)ϕq
(�–β

ν–β–f
(
s′, b+ε–∇–ε, 

))
] 

[(μ+μ)(q–)–](q–)
}

.

Then by Lemma ., (.) and (.), for ∀t ∈ [ε, b + ε]Nε , we can get

+∞ >
b+ν–∑

s=ν–

J(t, s)ϕq
(�–β

ν–β–λ
∗f

(
s′, b+ε–∇–ε

(
λ∗)q–e

(
s′),

(
λ∗)q–e

(
s′ + ε

)))

≥ (b + ν –  – t)ν–ε–(λ∗)[–(μ+μ)(q–)](q–)

×
b+ν–∑

s=ν–

m(s)ϕq
(�–β

ν–β–f
(
s′, b+ε–∇–εe

(
s′), e

(
s′ + ε

)))

≥ (b + ν –  – t)ν–ε–(λ∗)[–(μ+μ)(q–)](q–)
b+ν–∑

s=ν–

m(s)ϕq
(�–β

ν–β–f
(
s′, b+ε–∇–ερ,ρ

))

≥ (b + ν –  – t)ν–ε–(λ∗)[–(μ+μ)(q–)](q–)
ρ–(μ+μ)(q–)
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×
b+ν–∑

s=ν–

m(s)ϕq
(�–β

ν–β–f
(
s′, b+ε–∇–ε, 

))

≥ (b + ν –  – t)ν–ε–.

That is to say,

b+ν–∑

s=ν–

J(t, s)ϕq
(�–β

ν–β–λ
∗f

(
s′, b+ε–∇–ε

(
λ∗)q–e

(
s′),

(
λ∗)q–e

(
s′ + ε

)))

≥ (b + ν –  – t)ν–ε–. (.)

Let

φ(t) =
(
λ∗)q–e(t) = Tλ∗

(
(b + ν –  – t)ν–ε–), ψ(t) = Tλ∗

(
φ(t)

)
. (.)

It follows from (.) and (.) that for any t ∈ [ε, b + ε]Nε ,

⎧
⎨

⎩
φ(t) =

∑b+ν–
s=ν– J(t, s)ϕq(�–β

ν–β–λ
∗g(s)) ≥ λe(t) ≥ (b + ν –  – t)ν–ε–,

ψ(t) =
∑b+ν–

s=ν– J(t, s)ϕq(�–β

ν–β–λ
∗f (s′, b+ε–∇–ε(λ∗)q–e(s′), (λ∗)q–e(s′ + ε))).

(.)

Moreover, by (.) and (.), we know

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

φ(b + ε) = , [b+ε–∇ν–εφ(t)]ν– = ,

[b+ε–∇–εφ(t)]– =
∑b–

t=(b+ε–∇–εφ(t))A(t),

ψ(b + ε) = , [b+ε–∇ν–εψ(t)]ν– = ,

[b+ε–∇–εψ(t)]– =
∑b–

t=(b+ε–∇–εψ(t))A(t).

(.)

Proceeding as in (.)-(.), we get that φ(t),ψ(t) ∈ P. By (.), we have

ψ(t) = (Tλ∗φ)(t) ≥ (b + ν –  – t)ν–ε–, (.)

which implies

ψ(t) = (Tλ∗φ)(t)

=
b+ν–∑

s=ν–

J(t, s)ϕq
(�–β

ν–β–λ
∗f

(
s′, b+ε–∇–ε

(
λ∗)q–e

(
s′),

(
λ∗)q–e

(
s′ + ε

)))

≤
b+ν–∑

s=ν–

J(t, s)ϕq
(�–β

ν–β–λ
∗g(s)

)
= φ(t), ∀t ∈ [ε, b + ε]Nε . (.)

Thus, taking account of f being nonincreasing, and by (.), (.) and (.), we have

�β
ν–

(
ϕp

(
b+ε–∇ν–εψ

))
(t) + λ∗f

(
t′, b+ε–∇–εψ

(
t′),ψ

(
t′ + ε

))

= �β
ν–

(
ϕp

(
b+ε–∇ν–ε(Tλ∗φ)

))
(t) + λ∗f

(
t′, b+ε–∇–εψ

(
t′),ψ

(
t′ + ε

))

≥ �β
ν–

(
ϕp

(
b+ε–∇ν–ε(Tλ∗φ)

))
(t) + λ∗f

(
t′, b+ε–∇–εφ

(
t′),φ

(
t′ + ε

))
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= –λ∗f
(
t′, b+ε–∇–εφ

(
t′),φ

(
t′ + ε

))
+ λ∗f

(
t′, b+ε–∇–εφ

(
t′),φ

(
t′ + ε

))

= , (.)

�β
ν–

(
ϕp

(
b+ε–∇ν–εφ

))
(t) + λ∗f

(
t′, b+ε–∇–εφ

(
t′),φ

(
t′ + ε

))

= �β
ν–

(
ϕp

(
b+ε–∇ν–ε

(
Tλ∗

(
(b + ν –  – t)ν–ε–)))) + λ∗f

(
t′, b+ε–∇–εφ

(
t′),φ

(
t′ + ε

))

= –λ∗f
(
t′, b+ε–∇ν–ε

(
t′′)ν–ε–,

(
t′′ – ε

)ν–ε–) + λ∗f
(
t′, b+ε–∇–εφ

(
t′),φ

(
t′ + ε

))

≤ –λ∗f
(
t′, b+ε–∇ν–ε

(
t′′)ν–ε–,

(
t′′ – ε

)ν–ε–)

+ λ∗f
(
t′, b+ε–∇ν–ε

(
t′′)ν–ε–,

(
t′′ – ε

)ν–ε–)

= . (.)

It follows from (.) and (.)-(.) that ψ(t),φ(t) are upper and lower solutions of
FBVP (.) and ψ(t),φ(t) ∈ P.

Now we define a function

F
(
t′, b+ε–∇–εy

(
t′), y

(
t′)) =

⎧
⎪⎪⎨

⎪⎪⎩

f (t′, b+ε–∇–εψ(t′),ψ(t′ + ε)), y < ψ(t),

f (t′, b+ε–∇–εy(t′), y(t′ + ε)), ψ(t) ≤ y ≤ φ(t),

f (t′, b+ε–∇–εφ(t′),φ(t′ + ε)), y > φ(t).

(.)

It then follows from (H) and (.) that F(t, u, s) : [, b]N × [, +∞)× [, +∞) −→ [, +∞)
is continuous.

We now show that the FBVP

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�β
ν–(ϕp(b+ε–∇ν–εy(t))) = –λ∗F(t′, b+ε–∇–εy(t′), y(t′ + ε)),

t ∈ [ε, b + ε]Nε ,

y(b + ε) = , [b+ε–∇ν–εy(t)]ν– = ,

[b+ε–∇–εy(t)]– =
∑b–

t=(b+ε–∇–εy(t))A(t)

(.)

has a positive solution.
Define the operator Dλ∗ by

Dλ∗y(t) =
b+ν–∑

s=ν–

J(t, s)ϕq
(�–β

ν–β–λ
∗F

(
s′, b+ε–∇–εy

(
s′), y

(
s′ + ε

)))
,

t ∈ [ε, b + ε]Nε . (.)

Then Dλ∗ : C([ε, b + ε]Nε ,R) → C([ε, b + ε]Nε ,R), and a fixed point of the operator Dλ∗ is
a solution of FBVP (.).

On the other hand, from the definition of F and the fact that the function f is nonin-
creasing on the second and third variable, we obtain

f
(
t′, b+ε–∇–εφ

(
t′),φ

(
t′ + ε

)) ≤ F
(
t′, b+ε–∇–εy

(
t′), y

(
t′ + ε

))

≤ f
(
t′, b+ε–∇–εψ

(
t′),ψ

(
t′ + ε

))
,
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provided that ψ(t) ≤ y(t) ≤ φ(t);

F
(
t′, b+ε–∇–εy

(
t′), y

(
t′ + ε

))
= f

(
t′, b+ε–∇–εψ

(
t′),ψ

(
t′ + ε

))

provided that y(t) < ψ(t);

F
(
t′, b+ε–∇–εy

(
t′), y

(
t′ + ε

))
= f

(
t′, b+ε–∇–εφ

(
t′),φ

(
t′ + ε

))

provided that y(t) > φ(t). So we have

f
(
t′, b+ε–∇–εφ

(
t′),φ

(
t′ + ε

)) ≤ F
(
t′, b+ε–∇–εy

(
t′), y

(
t′ + ε

))

≤ f
(
t′, b+ε–∇–εψ

(
t′),ψ

(
t′ + ε

))
. (.)

Furthermore, by (.), (.) and (.), we have

f
(
t′, b+ε–∇–εφ

(
t′),φ

(
t′ + ε

)) ≤ f
(
t′, b+ε–∇–εψ

(
t′),ψ

(
t′ + ε

))

≤ f
(
t′, b+ε–∇–ε

(
t′′)ν–ε–,

(
t′′ – ε

)ν–ε–)

= g(t). (.)

It follows from Lemma . and (.) that for any y ∈ P,

Dλ∗y(t) =
b+ν–∑

s=ν–

J(t, s)ϕq
(�–β

ν–β–λ
∗F

(
s′, b+ε–∇–εy

(
s′), y

(
s′ + ε

)))

≤
(

λ∗

�(β)

)q–

M(b + ν –  – t)ν–ε–
b+ν–∑

s=ν–

( s–β∑

u=ν–β–

(s – u – )β–g(u)

)q–

≤
(

λ∗

�(β)

)q–

M(b + ν – )ν–ε–‖g‖q–

m

b+ν–∑

s=ν–

×
( s–β∑

u=ν–β–

(
(s – u – )β–) 

–m

)(–m)(q–)

< +∞, (.)

namely the operator Dλ∗ is uniformly bounded.
Next, let � ⊂ P be bounded. Since the right side of (.) is finite sum, we can prove that

D() is equicontinuous. By the Arzela-Ascoli theorem, we have Dλ∗ : P → P is completely
continuous. Moreover, (.) implies that Dλ∗ satisfies the conditions of Lemma ..
Thus, by using the Schauder fixed point theorem, Dλ∗ has at least one fixed point w such
that w = Dλ∗w.

Now we prove

ψ(t) ≤ w(t) ≤ φ(t), t ∈ [ε, b + ε]Nε .
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Since w is a fixed point of Dλ∗ , we have

w(b + ε) = ,
[

b+ε–∇ν–εw(t)
]
ν– = ,

[
b+ε–∇–εw(t)

]
– =

b–∑

t=

(
b+ε–∇–εw(t)

)
A(t).

(.)

From (.), (.) and noticing that w is a fixed point of Dλ∗ , we also have

�β
ν–

(
ϕp

(
b+ε–∇ν–εφ(t)

))
– �β

ν–
(
ϕp

(
b+ε–∇ν–εw(t)

))

= –λ∗f
(
t′, b+ε–∇–ε

(
t′′)ν–ε–,

(
t′′ – ε

)ν–ε–) + λ∗F
(
t′, b+ε–∇–εw

(
t′), w

(
t′ + ε

))

= –λ∗f
(
t′, b+ε–∇–ε

(
t′′)ν–ε–,

(
t′′ – ε

)ν–ε–) + λ∗f
(
t′, b+ε–∇–εψ

(
t′),ψ

(
t′ + ε

))

≤ –λ∗f
(
t′, b+ε–∇–ε

(
t′′)ν–ε–,

(
t′′ – ε

)ν–ε–)

+ λ∗f
(
t′, b+ε–∇–ε

(
t′′)ν–ε–,

(
t′′ – ε

)ν–ε–)

= .

Let

z(t) = ϕp
(

b+ε–∇ν–εφ(t)
)

– ϕp
(

b+ε–∇ν–εw(t)
)
.

Then

�β
ν–z(t) = �β

ν–
(
ϕp

(
b+ε–∇ν–εφ(t)

))
– �β

ν–
(
ϕp

(
b+ε–∇ν–εw(t)

)) ≤ , t ∈ [ε, b + ε]Nε ,

z(ν – ) = ϕp
(

b+ε–∇ν–εφ(ν – )
)

– ϕp
(

b+ε–∇ν–εw(ν – )
)

= .

Moreover, we have z(t) ≤ , i.e., ϕp(b+ε–∇ν–εφ(t)) – ϕp(b+ε–∇ν–εw(t)) ≤ .
In fact, if we denote that

�β
ν–z(t) = –η(t) ≤ ,

according to Lemma ., we have

z(t) = –�–β

ν–β–η(t) + K(t – ν + β + )β–,

z(ν – ) = .

In view of K = , hence z(t) ≤ .
Noticing that ϕp is monotone increasing and b+ε–∇ν–ε is a linear operator, we have

b+ε–∇ν–ε(φ – w)(t) ≤ .

It follows from Remark . and (.) that

φ(t) – w(t) ≥ .
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Thus we have w(t) ≤ φ(t) for t ∈ [ε, b + ε]Nε . In the same way, we also have w(t) ≥ ψ(t) for
t ∈ [ε, b + ε]Nε , so

ψ(t) ≤ w(t) ≤ φ(t), t ∈ [ε, b + ε]Nε . (.)

Consequently,

F
(
t′, b+ε–∇–εw

(
t′), w

(
t′ + ε

))
= f

(
t′, b+ε–∇–εw

(
t′), w

(
t′ + ε

))
, t ∈ [ε, b + ε]Nε .

Hence w(t) is a positive solution of FBVP (.), i.e., y(t) =b+ε– ∇–εw(t) is a positive solu-
tion of problem (.) and (.).

Finally, by (.) and φ,ψ ∈ P, we have

lψ (b + ν –  – t)ν–ε– ≤ ψ(t) ≤ w(t) ≤ φ(t) ≤ l–
φ (b + ν –  – t)ν–ε–.

Let ly = min{lψ , lφ}, then

ly(b + ν –  – t)ν–ε– ≤ ψ(t) ≤ w(t) ≤ φ(t) ≤ l–
y (b + ν –  – t)ν–ε–. �

4 Iteration of positive solutions
To study the iteration of positive solutions to FBVP (.) and (.), we need the following
assumption.

(H) f (·, u, s) : [, b]N × [, +∞) × [, +∞) → [, +∞) is continuous, and there exist two
constants r, r >  such that for any t ∈ [, b]N , u, s ∈ [, +∞).

f (t,λu, s) ≥ λr f (t, u, s), ∀λ ∈ (, ), (.)

f (t, u,λs) ≥ λr f (t, u, s), ∀λ ∈ (, ). (.)

Remark . Inequalities (.), (.) are equivalent to the following inequalities, respec-
tively:

f (t,λu, s) ≤ λr f (t, u, s), ∀λ > , (.)

f (t, u,λs) ≤ λr f (t, u, s), ∀λ > . (.)

Definition . ([]) Let E be a real Banach space. Let P be a nonempty, convex closed set
in E. We say that P is a cone if it satisfies the following properties:

(i) λu ∈ P for u ∈ P, λ ≥ ;
(ii) u, –u ∈ P implies u = θ (θ denotes the null element of E).

Let the Banach space E = C[ε, ε + b]Nε be endowed with the norm

‖y‖ = max
{

max
t∈[ε,ε+b]Nε

∣
∣y(t)

∣
∣, max

t∈[ν,ν+b]Nν

∣
∣
b+ε–∇ν–εy(t)

∣
∣
}

.

In addition, E+ = {u ∈ E | u(t) ≥ , t ∈ [ε, ε + b]Nε }.
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Define the cone P ⊂ E by

P =
{

y ∈ E
+ | b+ε–∇ν–εy(t) ≤ , t ∈ [ν,ν + b]Nν

}

for any y(t) ∈ E
+, λ > . Define an operator

(Ty)(t) =
b+ν–∑

s=ν–

J(t, s)ϕq
(�–β

ν–β–λf
(
s′, b+ε–∇–εy

(
s′), y

(
s′ + ε

)))
, (.)

where J(t, s) is given by (.).

Lemma . Assume that (H), (H) and (H) hold, then the operator T : P → P is com-
pletely continuous.

Proof From (H), (H), (H) and the definition of T , we deduce that for any y ∈ P , there is
(Ty)(t) ≥ .

b+ε–∇ν–εTy(t) = –ϕq
(�–β

ν–β–λf
(
t′, b+ε–∇–εy

(
t′), y

(
t′ + ε

))) ≤ , t ∈ [ν,ν + b]N ,

which implies T(P) ⊂ P. �

For convenience, we use the following notations. Let

B = max

{

max
t∈[ε,ε+b]Nε

b+ν–∑

s=ν–

J(t, s), 

}

, N = Bϕq

(


�(β + )
(β + b – )β

)
.

We now give our results for the iteration of a positive solution for (.).

Theorem . Suppose that (H)-(H) and (H) hold. If there exists a positive constant a > 
such that

(H) f (t, u, s) ≤ f (t, u, s) for any t ∈ [, b]N ,  ≤ u < u ≤ a,  ≤ s < s ≤ a,
(H) ϕp(N) ≤ ϕp(a)

λσar+r kr , where k = (b+ε–)ε
�(ε+) . r, r, σ are defined by (.), (.) and (.), re-

spectively. Then FBVP (.) has two positive solutions u∗ and w∗ such that  ≤ ‖u∗‖ ≤
a,  ≤ ‖w∗‖ ≤ a.

Moreover,

lim
n→∞ un = lim

n→∞ Tnu = u∗, lim
n→∞ b+ε–∇ν–εun = b+ε–∇ν–εu∗,

lim
n→∞ wn = lim

n→∞ Tnw = w∗, lim
n→∞ b+ε–∇ν–εwn = b+ε–∇ν–εw∗,

where u(t) = a
B

∑b+ν–
s=ν– J(t, s), w(t) = , t ∈ [ε, ε + b]Nε . T is defined by (.).

The iterative schemes in the theorem are

u(t), un+ = Tun = Tnu, n = , , , . . . ,

and

w(t), wn+ = Twn = Tnw, n = , , , . . . .
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Proof Let Pa = {u ∈ P :  ≤ ‖u‖ ≤ a}, we firstly prove TPa ⊂ Pa.
If u ∈ Pa, Tu ∈ P, by (H) we have

 ≤ u(t) ≤ max
∣∣u(t)

∣∣ = ‖u‖ ≤ a,

 ≤ f
(
t′,b+ε– ∇–εu, u

) ≤ f
(
t′, ka, a

) ≤ kr ar+r f
(
t′, , 

)
= σkr ar+r ,

where k = (b+ε–)ε
�(ε+) ≥ b+ε–∇–ε =  + 

�(ε)
∑b+ε–

s=t+ε+(s – t – )ε– > .
Since

‖Tu‖ = max
t∈[ε,ε+b]Nε

∣∣(Tu)(t)
∣∣ = max

t∈[ε,ε+b]Nε

∣
∣∣
∣∣

b+ν–∑

s=ν–

J(t, s)ϕq
(�–β

ν–β–λf
(
s′,b+ε– ∇–εu, u

))
∣
∣∣
∣∣

= max
t∈[ε,ε+b]Nε

b+ν–∑

s=ν–

J(t, s)ϕq
(
λσkr ar+r

)
ϕq

(�–β

ν–β–
)

≤ ϕq
(
σλkr ar+r

)
max

t∈[ε,ε+b]Nε

b+ν–∑

s=ν–

J(t, s)ϕq

(
(β + b – )β

�(β + )

)

≤ a,

we get ‖Tu‖ ≤ a. So we have shown that TPa ⊂ Pa.
Let u(t) = a

B
∑b+ν–

s=ν– J(t, s), t ∈ [ε, ε + b]Nε .
Then

b+ε–∇ν–εu(t) = –
a
B

≤ .

It is easy to get

∣∣u(t)
∣∣ ≤ a

∑b+ν–
s=ν– J(t, s)

∑b+ν–
s=ν– J(t, s)

= a,
∣∣b+ε–∇ν–εu(t)

∣∣ ≤ a.

So u ∈ Pa.
Let u = Tu, we have u ∈ Pa.
We define un+ = Tun = Tn+u, n = , , , . . . .
It follows from TPa ⊂ Pa that un ∈ Pa, n = , , , . . . . Since T is completely continuous,

we can assert that {un} is a sequentially compact set.
Since

u(t) = Tu(t)

=
b+ν–∑

s=ν–

J(t, s)ϕq

(
λ

�(β)

s–β∑

τ=ν–β–

(s – τ – )β–λf
(
τ ′,b+ε– ∇–εu

(
τ ′), u

(
τ ′ + ε

))
)

≤
b+ν–∑

s=ν–

J(t, s)ϕq

(


�(β)
λσkr ar+r

s–β∑

τ=ν–β–

(s – τ – )β–

)

≤ u(t)B
a

ϕq
(
λσkr ar+r

)
ϕq

(
(b + β – )β

�(β + )

)
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=
u(t)N

a
ϕq

(
λσkr ar+r

)

≤ u(t)

and

∣
∣
b+ε–∇ν–εu(t)

∣
∣

= ϕq
(�–β

ν–β–λf
(
t′, b+ε–∇–εu

(
t′), u

(
t′ + ε

)))

≤ ϕq
(
λσkr ar+r

)
ϕq

(
(b + β – )β

�(β + )

)

≤ a
N

ϕq

(
(b + β – )β

�(β + )

)
=

a
B

≤ a,

we obtain u(t) ≤ u(t), |b+ε–∇ν–εu(t)| ≤ |b+ε–∇ν–εu(t)| and

u(t) = Tu(t) ≤ Tu(t) = u(t),
∣∣
b+ε–∇ν–εu(t)

∣∣ =
∣∣
b+ε–∇ν–εTu(t)

∣∣ ≤ ∣∣
b+ε–∇ν–εTu(t)

∣∣ =
∣∣
b+ε–∇ν–εu(t)

∣∣,

t ∈ [ε, ε + b]Nε .

By induction we get

un+(t) ≤ un(t),
∣∣
b+ε–∇ν–εun+(t)

∣∣ ≤ ∣∣
b+ε–∇ν–εun(t)

∣∣, t ∈ [ε, ε + b]Nε , n = , , , . . . .

Thus, there exists u∗ ∈ Pa such that un → u∗. Applying the continuity of T and un+(t) =
Tun(t), we get Tu∗(t) = u∗(t), which implies that u∗ is a nonnegative solution of FBVP (.).

On the other hand, let w = , t ∈ [ε, ε + b]Nε , then w ∈ Pa. Let w = Tw, then w ∈ Pa.
Denote

wn+ = Twn = Tn+w, n = , , , . . . .

It follows from TPa ⊂ Pa that wn ∈ Pa, n = , , , . . . . Since T is completely continuous,
we can assert that {wn} is a sequentially compact set.

Since w = Tw ∈ Pa, we have

w(t) = (Tw)(t) ≥ w, t ∈ [ε, ε + b]Nε .

So

w(t) = (Tw)(t) ≥ w, t ∈ [ε, ε + b]Nε ,
∣
∣
b+ε–∇ν–εw(t)

∣
∣ =

∣
∣
b+ε–∇ν–ε(Tw)(t)

∣
∣ ≥ ∣

∣
b+ε–∇ν–εw(t)

∣
∣, t ∈ [ν,ν + b]Nν .

By induction we get

wn+(t) ≥ wn(t),
∣∣
b+ε–∇ν–εwn+(t)

∣∣ ≥ ∣∣
b+ε–∇ν–εwn(t)

∣∣, n = , , , . . . .
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Hence, there exists w∗ ∈ Pa such that wn → w∗. Applying the continuity of T and wn+(t) =
Twn(t), we obtain Tw∗(t) = w∗(t), which implies that w∗ is a nonnegative solution of FBVP
(.).

Thus FBVP (.) has two positive solutions u∗, w∗ such that  ≤ ‖u∗‖ ≤ a,  ≤ ‖w∗‖ ≤ a,
and from the above proof, we know that the iterative sequences hold. �

In order to illustrate the main result, we give the following example.

Example . Consider the following FBVP:

� 

– 



(
ϕ

(


∇ 

 y(t)
))

= –
[

et
((



∇– 

 y(t)
) 

 + y



(
t +




))
+ 

]
, (.)

y
(




)
= , 


∇ 

 y
(

–



)
= , 


∇– 

 y(–) =
∑

t=


∇– 

 y(t)A(t), (.)

where p = , ν = 
 , β = 

 , ε = 
 , λ = , b = ,

A(t) =

⎧
⎪⎪⎨

⎪⎪⎩

, t = ,

, t = ,

, t = .

Let

f (t, u, s) = et(u

 + s



)

+ , r =



, r =



,

then for any λ ∈ (, ) and u, s ∈ [, +∞), t ∈ [, ]N , we have

f (t,λu, s) = et[(λu)

 + s



]

+  ≥ λ


[
et(u


 + s



)

+ 
] ≥ λ


 f (t, u, s),

f (t, u,λs) = et[u

 + (λs)



]

+  ≥ λ


[
et(u


 + s



)

+ 
] ≥ λ


 f (t, u, s),

which implies that (H) holds.
On the other hand, it is clear that (H), (H) and (H) are satisfied, and

σ = max
t∈[,]N

f (t, , ) = max
t∈[,]N

(
et + 

)
= e + .

Next we compute k, C, B and N . We have

C =



, k =



,


∑

s= 


J
(




, s
)

=



(
�( 

 )
�( 

 )�( 
 )

+


�( 
 )

)
,


∑

s= 


J
(




, s
)

=



�( 
 )

�( 
 )�( 

 )
+


�( 

 )
,


∑

s= 


J
(




, s
)

= ,



Liu et al. Boundary Value Problems  (2017) 2017:60 Page 22 of 23

so

B = max

{

max
t∈[ε,ε+b]Nε

b+ν–∑

s=ν–

J(t, s), 

}

=



(
�( 

 )
�( 

 )�( 
 )

+


�( 
 )

)
,

N = Bϕq

(



)
, ϕp(N) =



ϕp(B) =




(
�( 

 )
�( 

 )�( 
 )

+


�( 
 )

)

.

Take a = [ 
 ( �( 

 )
�( 

 )�( 
 )

+ 
�( 

 )
)(e + )]


 , then

ϕp(a)
σar+r kr

≈ .
(

�( 
 )

�( 
 )�( 

 )
+


�( 

 )

)

>




(
�( 

 )
�( 

 )�( 
 )

+


�( 
 )

)

= ϕp(N),

which implies that (H) holds. For a = [ 
 ( �( 

 )
�( 

 )�( 
 )

+ 
�( 

 )
)(e + )]


 , it is clear that (H)

holds. So by Theorem ., FBVP (.) and (.) has two solutions u∗ and w∗ such that

 < u∗ <
[




(
�( 

 )
�( 

 )�( 
 )

+


�( 
 )

)(
e + 

)
] 


,

 <
∣
∣ 


∇– 

 u∗∣∣ <
[




(
�( 

 )
�( 

 )�( 
 )

+


�( 
 )

)(
e + 

)]



,

lim
n→∞ un = lim

n→∞ Tnu = u∗, lim
n→∞

(


∇– 

 un
)

= lim
n→∞ 


∇– 

 Tnu = 

∇– 

 u∗,

where

u(t) =



(
e + 



) 


[
�( 

 )
�( 

 )�( 
 )

+


�( 
 )

] 


×

⎧
⎪⎪⎨

⎪⎪⎩

( 
 –t)




�( 
 )

– ( 
 –t)




�( 
 )

+ ( 
 –t)




�( 
 )�( 

 )
, t ∈ [, ),

( 
 –t)




�( 
 )

+ ( 
 –t)




�( 
 )�( 

 )
, t ∈ [, ],

and

 < w∗ <
[




(
�( 

 )
�( 

 )�( 
 )

+


�( 
 )

)(
e + 

)]



,

 <
∣
∣ 


∇– 

 w∗∣∣ <
[




(
�( 

 )
�( 

 )�( 
 )

+


�( 
 )

)(
e + 

)]



,

lim
n→∞ wn = lim

n→∞ Tnw = w∗, lim
n→∞

(


∇– 

 wn
)

= lim
n→∞ 


∇– 

 Tnw = 

∇– 

 w∗,

where w(t) = , t ∈ [, ]N .
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