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Abstract

We consider the Boussinesq system in the homogeneous spaces of degree —1.To
narrow the gap for the existence of small regular solutions in B;;VOO(R”), the biggest
homogeneous space of degree —1 among those embedded in the space of tenmpered

.y
distributions, we show small solutions in the homogeneous Besov space Bp,oo" (RM,
withn>2,n<p<oo.
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1 Introduction and main results
The Cauchy problem of the Boussinesq system in R” (n > 2) reads

oiu+u-Vu—uAu+Vr =0e,, (x,t)€R” x(0,00),
0,0 +u-VO0—-xA6 =0,

V.-u=0,

u(x, 0) = ug, 6(x,0) = 6,

(1.1)

where u = u(x,t) and 6 = 6(x, t) denote the unknown velocity field and the scalar temper-
ature in the content of thermal convection, respectively, and = = 7 (x, ) the scalar density
of the geophysical fluids, u the constant kinematic viscosity, ¥ > 0 the thermal diffusivity,
and e, = (0,0,...,1)T. While uy, § are given initial data, with V - %y = 0 in the sense of
distribution.

The Boussinesq system is extensively used in the atmospheric sciences and oceano-
graphic turbulence (see [1-3] and references therein). The problem of the global regularity
of the weak solutions of the 3D Boussinesq equations is a big open problem. It is meaning-
ful to study the regularity of the weak solutions under additional critical growth conditions
on the velocity or the pressure. Based on some analysis technique, there are some regular-
ity criteria via the velocity of weak solutions in Besov spaces have been obtained in [4—-6].
The pressure criterion is in [7-9]. By the velocity criterion, for the n-dimensional Boussi-
nesq system, Yao et al. in [10] showed the local well-posedness and blow-up criteria in
Besov-Morrey spaces N;‘q‘,(R”) in supercritical case s > 1 + [%, l<g<p<oo,1<r=<oo,
and critical case s =1 + 2, 1<q <p<oo,r=1.Zhang et al. [11] got the existence of the
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241
2-dimensional inviscid Boussinesq equations in critical Besov spaces B;:,l (R?) and some

blow-up criteria.

The global regularity of smooth solution of the 2D Boussinesq equations with the frac-
tional dissipation has been researched recently in [12-18]. Several Beale-Kato-Majada-
type regularity criterion have been obtained in [19-25]. There are also some results for
the blow-up criteria for the Boussinesq equations (see [26, 27] and the references therein).

For the Navier-Stokes equations, Xin and Chen in [28] researched the small regular solu-
tions in Boé > Which is the biggest homogeneous space of degree —1. The authors studied
small solutions in the homogeneous Besov space Bp oo” (R") and a homogeneous space
defined by M,,(R”). Here, motivated by the results in [28], our aim is to do some work
addressing the small regular solutions of the n-dimensional Boussinesq system in subcrit-

n

L 142 ~
ical spaces Bp,;f (R™). The corresponding content in the space M,(R") is of our further
interest. This result partially extends the result in [28] in another system. More precisely,
we will prove the following.

L -1+2 R
Theoremll Supposen = 2,n <p<00,2 -2 <a <2, up eBp;p(]R”), o eBp,;”(R”)ﬂ

B P(R™) with div ug = 0 in R", and lluoll 3 +160]l . 3 +160]l S < € for some small
poo poo poo

constant € = €(n, p,a). Then system (1.1) admits a unique regular solution satisfying

@] 1o + 2 @], + 15 [u®] oy < CQluoll g + 1601 p),
Bp,oo Bp,oo Bpoo pco

p

l6() ||B};1;olg ve2 o), +ef o) ugz;?ﬂ = Cllol 1.5

This paper is structured as follows. In Section 2, we introduce the Besov spaces and the
lemmas used later. In Section 3, we provide the proof of Theorem 1.1.

2 Preliminary lemmas
We denote (cf [28])

(€)@ = [ -y, 01

R

with the heat kernel h(x, t) = (4mt)™" 2¢-14*/40  And the Fourier transformf of feSis
defined by

FE)=@2n)? /l;wf(x)e""c'E dx.

Here S(R”) stands for the Schwartz class of rapidly decreasing smooth functions and
S’(R") is the space of tempered distributions. The fractional order of the Laplacian is
showed by the Fourier transform. For @ € R,

CAEF(E) = |E1F(®).

Due to the homogeneous counterpart Theorem 2.12.2 and the lifting property Theo-
rem 5.2.3/1 in [29], the homogeneous Besov spaces can be given as follows.
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Definition 2.1 For 1 < p,q < 0o and —00 < & < 00, the homogeneous Besov spaces are
defined

By (R") = {u e S'(R") : llullg, < oo},
where

(fy" 42| Aetbul?, %)”q, for0 <a <2 (g #00),

llullgg, = | supeo 272 AefPu| 1, for 0 <a <2 (g = 00),

[ (—A)(“_l)/zullg},,q, for others.

An important property of the homogeneous spaces is its invariance under the following

space scaling:
], =5 ),

And furthermore, if s < 0, the homogeneous Besov spaces B;yq(R”) can be equivalently
defined as follows (cf. [30]).

Lemma 2.1 Supposel <p,q <00,s<0. Thenf € B;,q(R”) if and only if

gdt

S i
([T 1)) <00 1205

supt 2 Hemf”w(ﬂen) <00, g=o00.
t>0
In particular, for the degree of —1, we have
Bl (R") = {f €S (R"): Ifllpa = supt% ||etAf||LDO < oo}.
. t>0

It is well known that B;,OO(R”) is the biggest critical homogeneous space of degree —1, and
as shown by Frazier, Jaweth and Weiss [31], any critical homogeneous space continuously
embedded in §'(R”) is also continuously embedded into B;,M(Rn)-

Next we introduce the interpolation theorem in [29, 32].

Lemma 2.2 Suppose 0 <6 <1,1 < p,q <00, —00 < a < ff < 00, and
y =(1-0)a +6B.

Then
(B (R"), B) o (RY)),,, = B}, (R"),

where (-, )g,4 denotes the real interpolation functor.
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We express (1.1); 5 in the integral form as

u(t) = e"*Puy —/

¢ t
APy | (u(s) ® u(s)) ds + / 92 Phe, ds,
o 0

0(t) = ey — fte(ts)AV . (u(s) ® 9(3)) ds,
0

where P is the Helmholtz-Weyl projection onto a divergence free vector fields defined by

here §; 4 is the Kronecker symbol and R; = 8,»(—A)‘% are the Riesz transforms. To prove the
existence of the regular solution in L*°((0, 00), L"(R")), we need the L? — L7 type estimate
for e’ in Lebesgue spaces and Besov spaces. See [30] for the proof of the following lemma.

Lemma 2.3 Suppose 1 < p,q < co. Thus, the following estimates hold:

|21 pgeny < CIF lpeny,
[BVE L [ gy = CE2 If v,

”etAf

5152
. < T2 . <
B;l'q(R”) = Ct |U(”B;2_q(]R”)’ Sy = 81.

If 51,8 < 1% and s1 + S, + nmin{0,1 — [%} > 0, then, for a positive constant C, we have

91 10 = Cllshy, Nl

Due to the linearization of the Boussinesq system (1.1), we consider a priori estimates
for the Stokes equations. Chen and Xin in [28] gave the estimates in homogeneous spaces.

The Stokes equations in R”, n > 2 read

Qu—Au+Vr =V-f (f = (i) nxn)
V.-u=0, (2.1)
u(0) = a.

We now state the main estimate about the Stokes equations in homogeneous spaces of
Chen and Xin in [28], which will be used later.

Lemma2.4 LetO<w<2,2<n<p<o0,1<g=<o0,and
L a-2+2
acS (R,  f(t)€By * (R).
Then the solution of equation (2.1) in the following integral formulation:

u(t) = e“Pa + /te(t‘s)AIP’V f(s)ds (2:2)
0
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satisfies the estimates

||u(t)H g = Cllal g +Csups7}[f S)|| walts

% | u(z) H o = Cllal 1oy -+ C sup 53 |f(s H w2l
poc

provided that the right-hand sides of the above inequalities are finite, respectively.

Similar to Lemma 2.4, we have the analogous results.

. o-3+2
Lemma 2.5 Under the same conditions with «, p, q in Lemma 2.4, and f € BZ,OO 2 the

following integral equation:

t
u(t) = e*Pa + / e“IAPL(s) ds

0

satisfies the estimation

O<s<t poop

(0] 105 = Clal 1+ € sup 57O o

t7 W(;:)”BZ;I% < CllallB;j + cosigs% |[f(s)||B:jg.

Proof By Definition 2.1, we estimate the term || fot e=IAPf(s) ds|| o122 as follows:
Byoo ¥ @)

o(—l+E

Bpoo ¥ (RY)

AerA / (t—s) APf(S
0

/t E=DAPF(s) ds
0

I—(a—1+2)/2
=supt @ p)

>0

a-1+3
BP

P (wm)

t
< Csuprl—(a—l+5)/2/‘ ||Ae(t+t—s)A]P>f(S) “Lp(Rﬂ) ds
0

>0

§Csuprl (a— 1+ /2/ (7,'+t S —2+(a—-1+% )/2|VS)” a3+7 ds
>0 R")

t
< Csupt1p )/zf (r+t—5) 225 gs sup 5% If (s || w3t

>0 O<s<t By,0o P (Rm)

= Csupt ™ 12 /2(/ /)(7:+t o) 2@ RS g
>0

n
)—2+(a—1+1—9)/2 -

t
Fortheterm /= [’ (Tt +f—s ds, due to 0 <s < £, thus

t 1 1
TH+t—8>—+17==(t+27)>=(t+7)
2 2 2
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and the fact that -2 + (¢ — 1 + 147)/2 < 0, we have

1 —2+(a-1+2 )/2
]S (§> f (t+‘l,’)_2+(a_l+ )2 72dS
0

t

1 —2+(a—1+1%)/2 "
_ <_> (t+ 7'_) —2+(a— 1+ )/2/ 5% ds
2 0

t
<C(t+ r)_2+(“_1+5)/2/ s % ds.
0

1 a
)2l P25% ds, since £ <s<t,

As regards the term II = f%t (t+t-s ‘

therefore

1 _% a ¢ _ a—1+2
1 < (E) t_7/ (r +t—s) @2 g
0

Thereby, the estimate becomes

Ctl+

Bpoo 7 (RY)

H/ E=DAPL(s) ds

<supt " W2 4 1:)_2+(°‘_1+7’)/2/ 5% ds sup s? Hf(s)” a3l
0

>0 O<s<t

+supt @ »P2 /(t+1’ 212 g sups2|[f(s)|| P

>0 O<s<t

=II+1V.

Due to the definite integral fot s ds= ﬁtl‘% , we obtain

o\
I < Csup(m) it 2 sup 52 ”f(S)” a3+

>0 +T O<s<t

<Ct” 3 supsfnfs)” a-34l

O<s<t

According to the fact that

¢ n t _ —1+2
/ (r +t—s)‘2*(""“5)/2d3=/ (v +5) 2L B)2
0

0

¢ —2+(a-1+2)/2
S p
S (1) ds
0 T

t
_ ‘L'2 (- 1+ )/2/ (1+ )—2+(a -1+2 /2_[ dS
0

Page 6 of 12
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thus

t
IV < Csup =@ 152§ p-2rete iz, / (145 2@t p2 g
0

>0

a
X Osip §2 “,f(s) ||Bot—3+§

_ —%sup/ (1+5) 215 ”dssupszlLf(s)ll ase

>0 O<s<t

Finally, we get

12
H / e“IAPL(s) ds
0

<Cr% sups? £ (s) || e (2.3)
R7)

La-1+2
p O<s<t

p,00

For the estimate of the initial term ||e!*Pa/| 142y We have
B

9,00

Joo2al g - supe e A ],

sup plrle-1+5)2 ” AetDAP, ” »
>0

< CSllpTl (a-1+2 /2(t+ ) 1+(a-1+2 /2(t+‘f) s ||ﬂ|| L
>0 Bpoop
< CSllpTl (- 1+ (t+‘[) 1+(a_1+5)/2t_%||6l||._1+ﬂ,
>0 Bp,ocp
because of the inequality
supt 1-(a— 1+ (t+7,') —1+(a-1+2 )/2<L
>0
then we obtain
A _a
|e“Pa oron < CE2lall .. (2.4)
B B
g2 P00

Equations (2.3) and (2.4) imply the second inequality of the lemma. Now we turn to the
first inequality. By a similar method, we have

Jutt) - eFal z<9/W”f®Ww

poo

SC/ SO (1P

t
SC/( ) HEg stsupSZHf(s)” a-3+
0

O<s<t

< C sup s3 Hf s) ” a-3el (2.5)
O<s<t Bp,oo
On the other hand, by Lemma 2.3, we get

OC

|e*Pal 1.y < Cllal (26)
P

P00

Therefore, the expressions (2.5) and (2.6) verify the first inequality of the lemma. O
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Lemma 2.6 SupposeZ—Iﬂ?<a<2,2§n§p§oo,and

. -3+2 . a4+

n
a€B,o’,  f€By’.
Thus equation (2.2) satisfies the estimate

t% Hu(t)” La-3+2 = C”ﬂ” . -3+2 + C Sup S% |V(S) “ Lo—4+ 1.
Byoo ¥ Byoo Byoo ¥

’ O<s<t

Proof By the definition in Lemma 2.1 and Lemma 2.3, we have

t
(t-s)A
/e Vfds "
0 b
'p,00
oz—3+}ﬂ7 ¢
<supt~ 2 | e(‘”’S)AVf”U, ds
>0 0
Bias N 4 _1, M s P
<supt 2 (t+t—5)7"2""2 (t+T1-5)" 2 ”e VfHU,dS
>0 0
a——3+ﬂ t Q(75+1ﬂ7 o a
<supt 2 / (t+t-5)"72 s zdssups?|f oa:2,
>0 0 >0 By,0o ’

the way to deal with the above estimate is similar to the one in Lemma 2.4, we omit it here.
Finally, we get

_2 @
<Ct2 sups? Hf” La-4+ 2.
B p

. oz—3+1ﬂ, -
'p,00

t
/ eIV ds

0

>0 p,00

For the initial term, according to Lemma 2.3, we obtain
le260 | asen < CEENOON 50
Byoo ¥ By oo
Therefore, we get the proof. g
3 The proof of Theorem 1.1
This section is devoted to the proof of Theorem 1.1. For simplicity, without loss of gen-

erality, we assume p = x = 1. In order to deal with the convection terms, we observe the
interesting interpolation results

(Bpo (R), By (RY)) 1, = B, (R”),
L —1+2 . a-1+2 . o-2+2

(Bp" (R"): Bpoo " (R")),_1 o0 = Bpoo * (R”)-

It is well known that, for s > 0, B;,q(]R”) N L*(R") is an algebra. Moreover, there exists
the following embedding relations (cf. [28, 29]):

B (R") <> BY (R") = L®(R") = B, _(R").
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Thus by the embedding and interpolation results, we have

1-1 1
llullzee < llullgo = IIMIIBg = Cllull Fonllull®
pl Bp,cx) Bp,oo

and

1 1-1
ol oo < Cllaell* o Nl 2y
Bp,oc Bp,oo Bp,oc

And then due to the inequality a'#bf <a+b,0< B <1,a,b> 0, we have

1 1 1 1
it )y + [t ) | g = (0] g+ [t p): @)

Bp,oo p.00 'p,00

By a variable transformation, (3.1) implies

1 a-1 a
t2 ||u(t) ||LOQ +12 ||u(t) ”BZ,;ZJ < C(”u(t) “B;,l;’ﬂ’ +12 ||u(t) ||BZ;+§ ) (3.2)

p
Equation (3.2) means
1 o
) = (0] ¢ [0 )
Thus to prove the two equations in Theorem 1.1, we only need to show that

)] 105 + £ O] sy = Cllol g + 101 5)

p,00 ) gZiss] 'p,00

lo@ ||B;};§ 20 ”BZ,;”% < Cloll 1.5
Set
U={ueL>(0, oo;B;,,l;’% (R"))IV - u =0, ||ully < oo},

© = {0 € L%(0, 003 By (R™)110]10 < o0},

with
el = sup(ae)] iy + 62 O] o)
1610 = sup(10@)] 1vg +£2[0@)] orep).
and

t

t
Mu(t) = e®ug— | e“92PV . (u(s) ® u(s)) ds + / e Poe,, ds,
0

S~

M6O(t) = 26y — ‘/te(”)AV . (u(s) ® 9(5)) ds.
0
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We will show M and M are the contraction operators mapping a ball of I/ into itself and
a ball of @ into itself, respectively. Now we deal with the operator M. Observing that (3.1)
and (3.2) are also true for 6, we have

o] oy < (0], o 1] o).

pOO

And using Lemma 2.4, we obtain the estimates of 6. It is more simple for 6 here, as the
absence of the operator P, but the estimates are still true, which are

[600] 15 = €N 1 +C s 5% 1) @00, (33)
tZ He H - 1+Z < C”e()” ; +Csup52 ” ®8 H o 2+P7 (34)
Bp.oo s<t Bpioo

Summing (3.3) and (3.4) up, we have

| m(6)

(C]

= Cllbl g + C gup [t @)
Bp,oo 0<s<

1
< CHGO” Ot 1+7 + C sup52 Hu(s)”LOO ” o 2+17
poo O<s< p,co
= Cliboll o Cllulluliflle- (3.5)
poo

Define two complete metric spaces by

Uo={uelllulusel,  ©.=[ocollbo+ S O] e}.
> 'p,00

Suppose 61,6, € ©, by (3.5), we have

IM6lle < Cli6o|l. sis C'elblle, foruel,

1700

M) — M6, ]l < C'ell6r — 6, ]|e-

According to the contraction mapping principle, equation (2.1) admits a unique solution
0 € O, provided that C||6y]| . ,1+_ < 5 and € > 0 is sufficiently small.

pOC

Remark 3.1 To show the boundedness of the term sup,,, sT6]l -3, We choose f(s) =
B
u(s) ® 6(s) in Lemma 2.6, and by Lemma 2.3, we have

'p,00

49 ©00 g = Cla9] g [09] o
thus we get
16oll 5.
supst 06 sy = O

that is to say, if |||y is small enough, the term sup,., s2100)] o342 is bounded.

p,00
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Now we deal with the operator M. Choosing f(s) = u(s) ® u(s) in Lemma 2.4 and f(s) =
0(s)e, in Lemma 2.5, respectively, and using (3.2), we have

o
””(t)”B;}j = Cloll 1y + C sup s® |us) ® uls) ”BZ;?'%

+ C sup s3 ”Q(s) H w3 (3.6)

O<s<t By,co »

t5 |u(@)] arvy < Clluoll 1o + C sup s? | u(s) @ u(s)] azen
Bp,oo Bp,oo O<s<t Bp,oo

+Csup 52 06)| wsen. (3.7)
0O<s<t Bpoo ¥
Adding (3.6) to (3.7), and by the definition of U/, we have
1Mully < Clluoll 1.5 +C sup s% [u(s) ® u(s)]| o0n
By,eo O<s<t By,o
+C sup s? [0 asn
O<s<t By0o v

1 _
< Clluoll 1.4 + C sup 52 [u(s)] P O] s

’p,00 ’p,00

+ C sup s3 ||0(s)|| -3+
O<s<t By,0o

< Cluoll 1.5 +Cllully +C sup s [6()] os.n. (3.8)
Bp,oo O<s<t By,

Due to Remark 3.1, we know C sup0<s<ts% N0 s z is bounded. Similarly, by (3.8), we
Byoo

get
1M~ Myl < Cllullu + 1V lu=vilu,  foru,vell,

that is, due to PMu(t) = Mu(t), we obtain V - Mu(t) = 0. By the definition of U, the previ-

ous analysis shows that

2
Mull < Clluolqu% + Cllully; + Cliolle
p,00

Cliéoll 5.1

By,co

< Clluoll 1oz +Cellully, foruell,

+7
Po1=-Clullu

'p,00

|Mu—Mv|y < Cellu-v|y, foru,vell.

Therefore, on the basis of the contraction mapping principle, equation (2.1) admits a
unique solution u € U, provided that C||u|| 12 € 5 Cliéoll 342 € 5 and € > 0 is suffi-
B B

gZis8] P00

ciently small.
The proof of Theorem 1.1 is done.
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