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Abstract
We consider the non-classical heat conduction equation, in the domain
D =R

n–1 ×R
+, for which the internal energy supply depends on an integral function

in the time variable of the heat flux on the boundary S = ∂D, with homogeneous
Dirichlet boundary condition and an initial condition. The problem is motivated by
the modeling of temperature regulation in the medium. The solution to the problem
is found using a Volterra integral equation of second kind in the time variable t
with a parameter inRn–1. The solution to this Volterra equation is the heat flux (y, s) �→
V(y, t) = ux(0, y, t) on S, which is an additional unknown of the considered problem.
We show that a unique local solution, which can be extended globally in time,
exists. Finally a one-dimensional case is studied with some simplifications. We obtain
the solution explicitly by using the Adomian method, and we derive its properties.
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1 Introduction
Let us consider the domain D and its boundary S defined by

D = R
n– ×R

+ =
{

(x, y) ∈R
n : x = x > , y = (x, . . . , xn) ∈R

n–}, (.)

S = ∂D = R
n– × {} =

{
(x, y) ∈R

n : x = , y ∈ R
n–}. (.)

The aim of this paper is to study the following Problem . with a non-classical heat-flow
feedback problem in the domain D with nonlocal source, for which the internal energy
supply depends on the integral

∫ t
 ux(, y, s) ds on the boundary S.

Problem . Find the temperature u at (x, y, t) such that it satisfies the following condi-
tions:

ut – �u = –F
(∫ t


ux(, y, s) ds

)
, x = x > , y ∈R

n–, t > ,

u(, y, t) = , y ∈R
n–, t > ,

u(x, y, ) = h(x, y), x > , y ∈R
n–,
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where � denotes the Laplacian in R
n. This problem is motivated by the modeling of tem-

perature regulation in an isotropic medium, with non-uniform and nonlocal sources that
provide cooling or heating system; this could represent a feedback air-conditioning sys-
tem in a macro scale installation. According to the properties of the function F with
respect to the heat flow, V (y, s) = ux(, y, s) at the boundary S. For example, assuming
that

VF (V ) > , ∀V �= ,F () = , (.)

with

F
(
V (y, t)

)
= F

(∫ t


V (y, s) ds

)
(.)

then, see [, ], the cooling source occurs when V (y, t) >  and the heating source occurs
when V (y, t) < .

Some references on the subject are [] whereF (V ) = F(V ) and [–] where the following
semi-one-dimension of this nonlinear problem was considered. The non-classical one-
dimensional heat equation in a slab with fixed or moving boundaries was studied in [–
]. More references on the subject can be found in [–]. To our knowledge, it is the
first time that the solution to a non-classical heat conduction of the type of Problem . is
given. Other non-classical problems can be found in [].

The goal of this paper is to obtain in Section  the existence and uniqueness of the
global solution of the non-classical heat conduction Problem ., which is given through
a Volterra integral equation. In Section  we obtain the explicit solution of the one-
dimensional case of Problem ., with some simplifications, which is obtained by using
the Adomian method through a double induction principle.

We recall here the Green’s function for the n-dimensional heat equation with homoge-
neous Dirichlet’s boundary conditions, given the following expression [, ]

G(x, y, t; ξ ,η, τ ) =
exp[– ‖y–η‖

(t–τ ) ]
(

√
π (t – τ ))n–

G(x, t, ξ , τ ), (.)

where G is the Green’s function for the one-dimensional case given by

G(x, t, ξ , τ ) =
e– (x–ξ )

(t–τ ) – e– (x+ξ )
(t–τ )


√

π (t – τ )
, t > τ .

2 Existence results
In this section, we give first in Theorem . the integral representation (.) of the solution
of considered Problem ., but it depends on the heat flow V on the boundary S, which
satisfies Volterra integral equation (.) with initial condition (.). Then we prove, in
Theorem ., under some assumptions on the data, that there exists a unique solution of
Problem . locally in times which can be extended globally in times.
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Theorem . The integral representation of a solution of considered Problem . is given
by the following expression:

u(x, y, t) = u(x, y, t)

–
∫ t



erf( x

√

t–τ
)

(
√

π (t – τ ))n–

[∫

Rn–
exp

[
–

‖y – η‖

(t – τ )

]
F

(
V (η, τ )

)
dη

]
dτ , (.)

where

erf(ζ ) =
(

√
π

∫ ζ


e–X

dX
)

is the error function, with

u(x, y, t) =
∫

D
G(x, y, t; ξ ,η, )h(ξ ,η) dξ dη, (.)

and the heat flux V (y, t) = ux(, y, t) on the surface x =  satisfies the following Volterra
integral equation:

V (y, t) = V(y, t)

– 
∫ t




(

√
π (t – τ ))n

[∫

Rn–
exp

[
–

‖y – η‖

(t – τ )

]
F

(
V (η, τ )

)
dη

]
dτ (.)

in the variable t > , with y ∈R
n– is a parameter and

V(y, t) =
∫

D
G,x(, y, t; ξ ,η, )h(ξ ,η) dξ dη, (.)

where the function (y, t) �→F (V (y, t)) is defined by (.) for y ∈R
n– and t > .

Proof As the boundary condition in Problem . is homogeneous, we have from []

u(x, y, t) =
∫

D
G(x, y, t; ξ ,η, )h(ξ ,η) dξ dη

+
∫ t



∫

D
G(x, y, t; ξ ,η, τ )

[
–F

(
V (η, τ )

)]
dξ dη dτ , (.)

and therefore

ux(x, y, t) =
∫

D
G,x(x, y, t; ξ ,η, )h(ξ ,η) dξ dη

+
∫ t



∫

D
G,x(x, y, t; ξ ,η, τ )

[
–F

(
V (η, τ )

)]
dξ dη dτ . (.)

From (.) (the definition of G) by derivation with respect to x, then taking x = , we
obtain

∫

D
G,x(, y, t; ξ ,η, τ )F

(
V (η, τ )

)
dξ dη
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=
∫

Rn–

F (V (η, τ ))e– ‖y–η‖
(t–τ )

(t – τ ) n+
 (

√
π )n

(∫ +∞


ξe– ξ

(t–τ ) dξ

)
dη

=


(
√

π (t – τ ))n

∫

Rn–
F

(
V (η, τ )

)
e– ‖y–η‖

(t–τ ) dη, (.)

as
∫ +∞


ξe– ξ

(t–τ ) dξ = (t – τ ).

Thus, taking x =  in (.) with (.), we get (.).
Also by (.) we obtain

∫

D
G(x, y, t; ξ ,η, τ )F

(
V (η, τ )

)
dξ dη

=


(
√

π (t – τ ))n

∫

D
e

–‖y–η‖
(t–τ )

[
e– (x–ξ )

(t–τ ) – e– (x+ξ )
(t–τ )

]
F

(
V (η, τ )

)
dξ dη

=


(
√

π (t – τ ))n

∫

R+

[
e– (x–ξ )

(t–τ ) – e– (x+ξ )
(t–τ )

]
dξ

∫

Rn–
e

–‖y–η‖
(t–τ ) F

(
V (η, τ )

)
dη,

and by using

∫ +∞


e

–(x–ξ )
(t–τ ) dξ = 

√
t – τ

(∫ 

–∞
e–X

dX +
∫ x


√

t–τ


e–X

dX
)

=
√

π (t – τ )
(

 + erf

(
x


√

t – τ

))

and

∫ +∞


e

–(x+ξ )
(t–τ ) dξ = 

√
t – τ

(∫ +∞


e–X

dX –
∫ x


√

t–τ


e–X

dX
)

=
√

π (t – τ )
(

 – erf

(
x


√

t – τ

))
,

we get

∫

D
G(x, y, t; ξ ,η, τ )F

(
V (η, τ )

)
dξ dη =

erf( x

√

t–τ
)

(
√

π (t – τ ))n–

∫

Rn–
e– ‖y–η‖

(t–τ ) F
(
V (η, τ )

)
dη.

Taking this formula in (.), we obtain (.). �

To solve Volterra integral equation (.), we rewrite it in a suitable form.

Lemma . Volterra integral equation (.) can be rewritten in the following form:

V (y, t) =


t(
√

π t)n

∫

R+
ξe– ξ

t

(∫

Rn–
e– ‖y–η‖

t h(ξ ,η) dη

)
dξ

–


(
√

π )n

∫ t




(t – τ )n/

∫

Rn–
F

(
V (η, τ )

)
e– ‖y–η‖

(t–τ ) dη dτ . (.)
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Proof Using the derivative, with respect to x, of (.), then taking x =  and τ = , then
taking the new expression of V(y, t) in Volterra integral equation (.), we obtain (.). �

Theorem . Assume that h ∈ C(D), F ∈ C(R) and locally Lipschitz in R, then there exists
a unique solution of Problem . locally in times which can be extended globally in times.

Proof We know from Theorem . that, to prove the existence and uniqueness of the so-
lution (.) of Problem ., it is enough to solve Volterra integral equation (.). So we
rewrite it again as follows:

V (y, t) = f (y, t) +
∫ t


g
(
y, τ , V (y, τ )

)
dτ (.)

with

f (y, t) =


t(
√

π t)n

∫

R+
ξe– ξ

t

(∫

Rn–
e– ‖y–η‖

t h(ξ ,η) dη

)
dξ (.)

and

g
(
t, τ , y, V (y, τ )

)
= –

(t – τ )–n/

(
√

π )n

∫

Rn–
F (V (η, τ ))e– ‖y–η‖

(t–τ ) dη. (.)

We have to check conditions H to H in Theorem . page , and H and H in The-
orem . page  in [].

• The function f is defined and continuous for all (y, t) ∈R
n– ×R

+, so H holds.
• The function g is measurable in (t, τ , y, x) for  ≤ τ ≤ t < +∞, x ∈ R, y ∈R

n–, and
continuous in x for all (y, t, τ ) ∈R

n– ×R
+ ×R

+, g(y, t, τ , x) =  if τ > t, so here we
need the continuity of

V (η, τ ) �→F
(
V (η, τ )

)
= F

(∫ τ


V (η, s) ds

)
,

which follows from the hypothesis that F ∈ C(R). So H holds.
• For all k >  and all bounded sets B in R, we have

∣∣g(y, t, τ , X)
∣∣ ≤ 

(
√

π )n sup
X∈B

∣∣F (X)
∣∣(t – τ )–n/

∫

Rn–
e–‖y–η‖


(t–τ ) dη

≤ 
(

√
π )n sup

X∈B

∣∣F (X)
∣∣(t – τ )–n/(

√
π (t – τ )

)n–

=
√
π

sup
X∈B

∣∣F (X)
∣∣ √

(t – τ )
,

thus there exists a measurable function m given by

m(t, τ ) =
√
π

sup
X∈B

∣∣F (X)
∣∣ √

(t – τ )
(.)

such that

∣∣g(y, t, τ , X)
∣∣ ≤ m(t, τ ) ∀ ≤ τ ≤ t ≤ k, X ∈ B, (.)
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and it satisfies

sup
t∈[,K ]

∫ t


m(t, τ ) dτ =

√
π

sup
X∈B

∣∣F (X)
∣∣ sup

t∈[,k]

∫ t



√
t – τ

dτ

=

π

sup
X∈B

∣∣F (X)
∣∣ sup

t∈[,k]

(
–

√
(t – τ )|t

)

=

π

sup
X∈B

∣∣F (X)
∣∣ sup

t∈[,k]

√
t ≤ 

√
k

π
sup
X∈B

∣∣F (X)
∣∣ < ∞,

so H holds.
• Moreover, we have also

lim
t→+

∫ t


m(t, τ ) dτ =

√
π

sup
X∈B

∣∣F (X)
∣∣ lim

t→+

∫ t



dτ√
t – τ

=
√
π

sup
X∈B

∣∣F (X)
∣∣ lim

t→+
(

√
t) = , (.)

and

lim
t→+

∫ T+t

T
m(t, τ ) dτ =

√
π

sup
X∈B

∣∣F (X)
∣∣ lim

t→+
(

√
t) = . (.)

• For each compact subinterval J of R+, each bounded set B in R
n–, and each t ∈R

+,
we set

A
(
t, y, V (η)

)
=

∣∣g
(
t, τ ; y, V (η, τ )

)
– g

(
t, τ ; y, V (η, τ )

)∣∣,

A
(
t, y, V (η)

)
=


(

√
π )n

∫

J

∣∣∣∣

∫

Rn–
e– ‖y–η‖

(t–τ )
F (V (η, τ ))
(t – τ )–n/ – e– ‖y–η‖

(t–τ )
F (V (η, τ ))
(t – τ )–n/ dη

∣∣∣∣dτ

as the function τ �→ V (η, τ ) is continuous, then

τ �→
∫ τ


V (η, s) ds

is C(R) and is in the compact B ⊂R for all η ∈R
n–, so by the continuity of F we get

F (V (η, τ )) ⊂F (B). That is, there exists M >  such that |F (V (η, τ ))| ≤ M for all
(η, τ ) ∈R

n– ×R
+. So

sup
V (η)∈C(J ,B)

A
(
t, y, V (η)

)

≤ M
(

√
π )n sup

V (η)∈C(J ,B)

∣∣∣∣

∫

Rn–

e– ‖y–η‖
(t–τ )

√
(t – τ )n dη –

∫

Rn–

e– ‖y–η‖
(t–τ )

√
(t – τ )n dη

∣∣∣∣.

Using that

∫

Rn–
exp

[
–

‖y – η‖

(t – τ )

]
dη =

(

√

π (t – τ )
)n–,
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we obtain

sup
V (η)∈C(J ,B)

A
(
t, y, V (η)

) ≤ M
(

√
π )n sup

V (η)∈C(J ,B)

∣∣∣∣
(

√
π (t – τ ))n–

(
√

t – τ )n
–

(
√

π (t – τ ))n–

(
√

t – τ )n

∣∣∣∣

thus

sup
V (η)∈C(J ,B)

A
(
t, y, V (η)

) ≤ M√
π

sup
V (η)∈C(J ,B)

∣∣∣∣

√
t – τ –

√
t – τ√

(t – τ )(t – τ )

∣∣∣∣.

Thus we deduce that

lim
t→t

∫

J
sup

V (η)∈C(J ,B)
A

(
t, y, V (η)

)
dτ = .

So H holds.
• For all compact I ⊂ R

+, for all functions ψ ∈ C(I,Rn), and all t > ,

∣∣g
(
t, τ ;ψ(τ )

)
– g

(
t, τ ,ψ(τ )

)∣∣

=


(
√

π )n

∣∣∣∣

∫

Rn–
F

(
ψ(τ )

)( e– ‖y–η‖
(t–τ )

(t – τ )n/ –
e– ‖y–η‖

(t–τ )

(t – τ )n/

)
dτ

∣∣∣∣

as F ∈ C(R) and ψ ∈ C(I,Rn), then there exists a constant M >  such that
|F (ψ(τ ))| ≤ M for all τ ∈ I . Then we obtain, as for H, that

lim
t→t

∫

I

∣∣g
(
t, τ ;ψ(τ )

)
– g

(
t, τ ,ψ(τ )

)∣∣dτ = .

So H holds.
• Now, for each constant K >  and each bounded set B ⊂R

n–, there exists a
measurable function ϕ such that

∣∣g(y, t, τ , x) – g(y, t, τ , X)
∣∣ ≤ ϕ(t, τ )|x – X|

whenever  ≤ τ ≤ t ≤ K and both x and X are in B. Indeed, as F is assumed to be a
locally Lipschitz function in R, there exists a constant L >  such that

∣∣F (x) – F (X)
∣∣ ≤ L(τ )|x – X| ∀(x, X) ∈ B

with L(τ ) = Lτ . Then we have

∣∣g(y, t, τ , x) – g(y, t, τ , X)
∣∣ =


(

√
π )n

∣∣∣∣

∫

Rn–
(t – τ )–n/e– ‖y–η‖

(t–τ )
(
F (x) – F (X)

)
dη

∣∣∣∣

≤ 
(

√
π )n

(∫

Rn–
e– ‖y–η‖

(t–τ ) dη

)
(t – τ )–n/Lτ |x – X|

≤ Lτ√
π (t – τ )

|x – X|,
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then ϕ(t, τ ) = Lτ√
π (t–τ ) . We have also for each t ∈ [, k] the function ϕ ∈ L(, t) as a

function of τ and

∫ t+l

t
ϕ(t + l, τ )τ dτ =

L√
π

∫ t+l

t

τ dτ√
t + l – τ

=
L√
π

∫ 

l

(
u – t – l

)
du

=
Ll√
π

(
l + t –




)
→  with l → ,

where u =
√

t + l – τ .
So H holds. All the conditions H to H are satisfied with (.) and (.).
Thus from [] (Theorem . p., Theorem . p. and Theorem . p.) there

exists a unique local times solution of Volterra integral equation (.) which can be
extended globally in times. Then the proof of this theorem is complete. �

3 The one-dimensional case of Problem 1.1
Let us consider now the one-dimensional case of Problem . for the temperature defined
by

Problem . Find the temperature u at (x, t) such that it satisfies the following conditions:

ut – uxx = –F
(∫ t


ux(, s) ds

)
, x > , t > ,

u(, t) = , t > ,

u(x, ) = h(x), x > .

Taking into account that

∫ t


G(x, t, ξ , τ ) dξ = erf

(
x


√

t – τ

)
, (.)

thus the solution of Problem . is given by

u(x, t) = u(x, t) –
∫ t


erf

(
x


√

t – τ

)
F
(∫ τ


W (σ ) dσ

)
dτ (.)

with

u(x, t) =
∫ t


G(x, t, ξ , )h(ξ ) dξ , (.)

and W (t) = ux(, t) is the solution of the following Volterra integral equation:

W (t) = V(t) –
∫ t



F(
∫ τ

 W (σ ) dσ )√
π (t – τ )

dτ , (.)

where

V(t) =



√

π t/

∫ +∞


ξe–ξ/th(ξ ) dξ =

√
π t

∫ +∞


ηe–η

h(
√

tη) dη. (.)
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For the particular case

h(x) = h >  pour x > , and F(W ) = λW for λ ∈R, (.)

we have

u(t, x) = h erf

(
x


√

t

)
, (.)

and integral equation (.) becomes

W (t) =
h√
π t

– λ

∫ t



∫ τ

 W (σ ) dσ√
π (t – τ )

dτ . (.)

Lemma . Assume (.) holds. The solution of Problem . is given by

u(x, t) = h erf

(
x


√

t

)
– λ

∫ t


erf

(
x


√

t – τ

)
U(τ ) dτ , (.)

where U is given by

U(t) =
h√
π

∫ t



g(τ )√
t – τ

dτ , (.)

and g is the solution of the Volterra integral equation

g(t) =  –
λ√
π

∫ t


g(τ )

√
t – τ dτ . (.)

Moreover, the heat flux on x =  is given by

ux(, t) = U ′(t) =
h√
π t

– hλ

∫ t


g(τ ) dτ , t > . (.)

Proof We set

U(t) =
∫ t


W (τ ) dτ , (.)

thus the function U satisfies the following new Volterra integral equation:

U(t) = h

√
t
π

–
λ√
π

∫ t



∫ τ



U(σ )√
τ – σ

dσ dτ

= h

√
t
π

–
λ√
π

∫ t


U(τ )

√
t – τ dτ , t >  (.)

by using the following equality:

∫ t

σ

dτ√
τ – σ

= 
√

t – σ ,  < σ < t. (.)
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From [], p., the solution t �→ U(t) of integral equation (.) is given by (.), where
g is the solution of Volterra equation (.).

From (.) we obtain that

∫ t



g(τ )√
t – τ

dτ = 
√

t – λ
√

π

∫ t


g(τ )

√
t – τ dτ , (.)

using the following equality:

∫ t

σ

√
τ – σ√
t – τ

dτ = (t – σ )
∫ 



√
ξ√

 – ξ
dξ = (t – σ )B

(



,



)

= (t – σ )

( 

 )
( 
 )


()
=

π


(t – σ ), (.)

where B and 
 are the classical beta and gamma functions defined below.
Therefore, we have that

U(t) = h

√
t
π

– λh

∫ t


g(τ )(t – τ ) dτ , (.)

and then the heat flux on x =  is given by ux(, t) = W (t) = U ′(t), that is, (.) holds. �

We recall here the well-known beta and gamma functions defined respectively by

B(x, y) =
∫ 


tx–( – t)y– dt, x > , y > ,


(x) =
∫ +∞


tx–e–t dt, x > .

We will use in the next theorem the well-known relations

B(x, y) =

(x)
(y)

(x + y)

, 
(x + ) = x
(x) ∀x > ,




(



)
=

√
π , 
(n + ) = n! ∀n ∈N,

and in particular the following one.

Lemma . For all integers n ≥ , we have




(
n +




)
=

(n – )!!
n

√
π ,

and we use the definition

(n – )!! = (n – )(n – )(n – ) · · · ·  · 

for compactness expression.
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Proof For n = , we get 
( 
 ) =

√
π

 , which is true. By induction we obtain that




(
n +  +




)
= 


((
n +




)
+ 

)
=

(
n +




)



(
n +




)

=
(

n +



)
(n – )!!

n

√
π =

(n + )!!
n+

√
π ,

thus the lemma is true. �

Corollary . For all integers n ≥ , we have also




(
n +  +




)
=

(n + )!!
n+

√
π ,

B
(




, n + 
)

=

( 

 )
((n + ) + )

(n +  + 

 )
=

((n + ))!(n+)+

(n + )!!
,

B
(




, n +



)
=


( 
 )
(n + 

 )

((n + ) + )

=
π (n + )!!

((n + ))!(n+) ,

which will be useful in the next lemma.

First, we need some preliminary simple results in order to obtain the solution of integral
equation (.).

∫ t



√
t – τ dτ =




t/,
∫ t


τ /√t – τ dτ =

π

 t, (.)

∫ t


τ √t – τ dτ =

!
!!

t/,
∫ t


τ /√t – τ dτ =

π!!
!

t, (.)

∫ t


τ √t – τ dτ =

!
!!

t/,
∫ t


τ /√t – τ dτ =

π!!
!

t, (.)

which can be generalized by the following ones.

Lemma . For all integers n ≥ , we have

∫ t


τ n+√t – τ dτ =

n+((n + ))!
(n + )!!

t(n+)/, (.)

∫ t


τ

(n+)


√
t – τ dτ =

π (n + )!!
(n+)((n + ))!

t(n+). (.)

Proof Taking the change of variable τ = tξ in (.) and using Corollary ., we get

∫ t


τ n+√t – τ dτ = t

(n+)


∫ 


ξ n+( – ξ )


 dξ

= t
(n+)



∫ 


ξ (n+)–( – ξ )


 – dξ

= t
(n+)

 B
(




, n + 
)

=
((n + ))!(n+)+

((n + ))!!
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and

∫ t


τ

(n+)


√
t – τ dτ = t

(n+)


∫ 


ξ (n+ 

 )–( – ξ )

 – dξ

= t
(n+)

 B
(




, n +



)
=

π (n + )!!
((n + ))!(n+) t(n+),

thus (.)-(.) hold. �

Now, we will obtain the explicit solution of the integral equation

y(t) =  –
λ√
π

∫ t


y(τ )

√
t – τ dτ , t > , (.)

by using the Adomian decomposition method [–] through a series expansion.

Theorem . The solution of integral equation (.) is given by the following expression:

y(t) = I(t) –
√


π

J(t), t > , (.)

with

I(t) =
+∞∑

n=

(λ/t)n

(n)!
(.)

and

J(t) =
+∞∑

n=

(λ/t)
(n+)



((n + ))!!
(.)

are series with infinite radii of convergence.

Proof Following the idea of [–], we propose, for the solution of integral equation
(.), the series of expansion functions given by

y(t) =
+∞∑

n=

yn(t), (.)

and we obtain the following recurrence expressions:

y(t) = , yn(t) = –
λ√
π

∫ t


yn–(τ )

√
t – τ dτ , ∀n ≥ . (.)

Then we get

y(t) = –
λ√
π

∫ t



√
t – τ dτ = –

λ


√

π
t/ = –

√

π

(λ/t)/

!!
, (.)

y(t) = –
λ√
π

∫ t



(
–

λ


√

π
τ /

)√
t – τ dτ =

λ

π

∫ t


τ /√t – τ dτ =

λt

!
. (.)
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The first step of the double induction principle is just verified by (.) taking into ac-
count (.), (.). For the second step, we suppose by induction hypothesis that we have

Jn(t) =
λn

(n)!
tn, Jn+(t) = –

n+

((n + ))!!
λn+
√

π
t

(n+)
 . (.)

Therefore, we obtain

Jn+(t) = –
λ√
π

∫ t


yn+(τ )

√
t – τ dτ =

λn+

π

n+

(n + )!!

∫ t


τ

(n+)


√
t – τ dτ

=
λn+

π

(n+)

(n + )!!
π

(n+)
(n + )!!
((n + ))!

t(n+)

=
λn+

((n + ))!
t(n+) (.)

and

Yn+(t) = –
λ√
π

∫ t


yn+(τ )

√
t – τ dτ = –

λn+

((n + ))!
√

π

∫ t


τ n+√t – τ dτ

= –
λn+

((n + ))!
√

π

n+((n + ))!
(n + )!!

t
(n+)



= –
(n+)+λ(n+)+

√
π ((n + ) + )!!

t
(n+)+

 . (.)

This ends the proof. �

Remark . Taking t → + in (.), (.), and (.), we obtain

W
(
+)

= +∞, W ′(+)
= –∞,

U
(
+)

= , U ′(+)
= +∞,

g
(
+)

= , g ′(+)
= .

So we deduce that the heat flux W and the total heat flux U , and also g , are positive func-
tions in a neighborhood of t = .

4 Conclusion
We have obtained the global solution of a non-classical heat conduction problem in a
semi-n-dimensional space. Moreover, for the one-dimensional case, we have obtained the
explicit solution by using the Adomian method with a double induction principle.
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