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Abstract
This paper investigates a radially symmetric inverse heat conduction problem, which
determines the internal surface temperature distribution of the hollow sphere from
measured data at the fixed location inside it. This is an inverse and ill-posed problem.
A conditional stability estimate is given on its solution by using Hölder’s inequality.
A wavelet regularization method is proposed to recover the stability of solution, and
the technique is based on the dual least squares method and Shannon wavelet.
A quite sharp error estimate between the approximate solution and the exact ones is
obtained by choosing a suitable regularization parameter.
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1 Introduction
A physical model considered here is a hollow sphere, and R and r denote its external and
internal radius, respectively. Let the hollow sphere be adiabatic at its external surface, and
a thermocouple is installed inside the hollow sphere at the radius r = r, r < r < R, as
illustrated in Figure . Assuming a spherically symmetric temperature distribution of the
model, the correspondingly mathematical model can be described as the following radially
symmetric heat conduction problem:

ut = urr +

r

ur , r < r < R, t > ,

u(r, ) = , r ≤ r ≤ R,

u(r, t) = g(t), t ≥ ,

ur(R, t) = , t ≥ ,

(.)

where r denotes the radial coordinate, g(t) is the temperature history at one fixed radius
r, r < r < R. We want to recover the temperature distribution u(r, ·) (r ≤ r < r) based
on the measured data of g(·). This is an inverse heat conduction problem.

The inverse heat conduction problem (IHCP) has numerous important applications in
various sciences and engineering []. For example, determination of thermal fields at sur-
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Figure 1 Physical model.

faces without access, obtaining the force applied to a complex structure from knowledge
of the response and transfer function which describes the system, or the diagnosis of a
disease by computerized tomography []. In all cases, the boundary conditions of these
problems are inaccessible to measurements or not known. Usually sensors are installed
beneath the surface and the unknown boundary conditions of these problems are esti-
mated.

The solutions of inverse heat conduction problems (IHCPs) are very challenging, be-
cause IHCPs are severely ill-posed in the Hadamard sense that the solution (if it exists)
does not depend continuously on the given data, i.e., a small measurement error in the
given data can cause an enormous error in the solution [, ]. Therefore, an appropriate
regularization method needs to be applied. These methods include the filtering method
[], the spectral method [], the mollification method [, ], the boundary element method
[], the fundamental solution method [], the wavelet and wavelet-Galerkin method
[–], the Fourier method [], the differential-difference method [], the global time
method [], the modified Tikhonov method [], the iterative method [] etc. However,
the results already published in the works on IHCP are mainly devoted to the heat equation
with constant coefficient. The works presented for heat equation with variable coefficient
are still limited. A few works have been developed for the inverse problems on heat equa-
tion with variable coefficient [–]. In [], Fu used a simplified Tikhonov and a Fourier
regularization methods to deal with an IHCP on heat equation with variable coefficient
and provided two kinds of convergence rates. Grabski et al. [] applied the method of
fundamental solutions for identifying a time-dependent perfusion coefficient in the bio-
heat equation. A non-iterative inverse determination of temperature-dependent thermal
conductivity was solved by Mierzwiczak and Kolodziej []. Chang and Chang [] inves-
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tigated the determination of spatially- and temperature- dependent thermal conductivity
by a semi-discretization method. In this work, we will use a wavelet method to deal with
IHCP (.) (r ≤ r < r) with variable coefficient and to obtain a quite sharp error estimate
between the approximate solution and the exact solution.

The wavelet method has become a powerful method for solving partial differential equa-
tions (PDEs). And the method has been applied to direct problems as well as to various
types of inverse problems such as the IHCP [], the Cauchy problem of Laplace equation
[, ], the backward heat conduction problem [], the inverse source identification
problems [, ] and the Cauchy problem for the modified Helmholtz equation [, ]. It
is worth mentioning that Feng and Ning [] used a Meyer wavelet regularization method
for solving numerical analytic continuation and presented the Hölder-type stability es-
timates. In this paper, we solve the radially symmetric inverse heat conduction problem
(.) in the interval [r, r) by determining the temperature distribution using a wavelet
dual least squares method generated by the family of Shannon wavelets.

When we deal with problem (.) in L(R) with respect to variable t, we extend all func-
tions of variable t appearing in the paper to be zero for t < . Since the measurement data
of g(t) contain noises, the solutions have to be sought from the data function gδ(t) ∈ L(R),
which satisfy

∥
∥g – gδ

∥
∥ ≤ δ, (.)

where the constant δ >  denotes a bound on the measurement error, and ‖ · ‖ represents
the L(R) norm. It is also assumed that there exists an a priori bound for function u(r, t)

∥
∥u(r, ·)∥∥Hp ≤ E, p ≥ , (.)

where ‖u(r, ·)‖Hp denotes the norm in the Sobolev space Hp(R) defined by

∥
∥u(r, ·)∥∥Hp :=

(∫ ∞

–∞

(

 + ξ )p∣
∣f̂ (ξ )

∣
∣
 dξ

) 


.

Using the Fourier transform with respect to the variable t, problem (.) can be formulated
in a frequency space as follows:

⎧

⎪⎪⎨

⎪⎪⎩

iξ û(r, ξ ) = ∂û(r,ξ )
∂r + 

r
∂û(r,ξ )

∂r , r ∈ (r, R], ξ ∈R,

û(r, ξ ) = ĝ(ξ ), ξ ∈R,

ûr(R, ξ ) = , ξ ∈R.

(.)

We can get a formal solution for problem (.), refer to [],

û(r, ξ ) = (r/r)ϕ(r, ξ )e(r–r)
√

iξ ĝ(ξ ), r ∈ [r, R), ξ ∈R, (.)

where

ϕ(r, ξ ) =
(
√

iξR + )er
√

iξ + (
√

iξR – )eR
√

iξ

(
√

iξR + )er
√

iξ + (
√

iξR – )eR
√

iξ
.
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According to Lemma . in [], function ϕ(r, ξ ) satisfies

c ≤ ∣
∣ϕ(r, ξ )

∣
∣ ≤ c, r ∈ [r, r), ξ ∈R, (.)

where c and c are positive constants. Due to |(r/r)ϕ(r, ξ )e(r–r)
√

iξ | increases rapidly with
exponential order as |ξ | → ∞, the Fourier transform of the exact data g(t) must decay
rapidly at high frequencies for r > r. But such a decay is not likely to occur in gδ(t). So, a
small measurement error in the given data gδ(t) in high frequency components can com-
pletely destroy the solution of problem (.) for r ∈ [r, r).

For problem (.), we define an operator Ar : u(r, ·) 	−→ g(·) in the space X = L(R). Then
problem (.) can be rewritten as

Aru(r, t) = g(t), ∀u(r, ·) ∈ X, r ≤ r < r. (.)

According to expression (.), there holds

Âru(r, ξ ) = ĝ(ξ ) = (r/r)e(r–r)
√

iξϕ–(r, ξ )û(r, ξ ), r ∈ [r, r). (.)

Then we have ̂Aru(r, ξ ) := Ârû(r, ξ ) and a multiplication operator Âr : L(R) 	−→ L(R)
given by

Ârû(r, ξ ) = (r/r)e(r–r)
√

iξϕ–(r, ξ )û(r, ξ ). (.)

Therefore, we have the following lemma.

Lemma . If A∗
r is the adjoint of Ar , then A∗

r corresponds to the following problem:

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

– ∂U
∂t = ∂U

∂r + 
r

∂U
∂r , r < r ≤ R, t ≥ ,

U(r, ) = , r ≤ r ≤ R,

U(r, t) = g(t), t ≥ ,

Ur(R, t) = , t ≥ ,

(.)

and

Â∗
r = (r/r)e(r–r)

√
iξϕ–(r, ξ ). (.)

Proof Using the following relations and expression (.)

〈Aru,υ〉 = 〈Ârû, υ̂〉 =
〈

û, Âr
∗
υ̂
〉

=
〈

u, A∗
r υ

〉

=
〈

û, Â∗
r υ̂

〉

,

where 〈·, ·〉 denotes the inner product, we can obtain the adjoint operator A∗
r of Ar in the

frequency domain

Â∗
r = Âr

∗ = (r/r)e(r–r)
√

iξϕ–(r, ξ ).
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Applying the Fourier transform with respect to the variable t, we can rewrite problem
(.) in the following form (in the frequency space):

⎧

⎪⎪⎨

⎪⎪⎩

–iξÛ(r, ξ ) = ∂Û(r,ξ )
∂r + 

r
∂Û(r,ξ )

∂r , r ∈ (r, R], ξ ∈ R,

Û(r, ξ ) = ĝ(ξ ), ξ ∈R,

|Ûr(R, ξ )| = , ξ ∈R.

(.)

Taking the conjugate operator for problem (.), we know that Û(r, ξ ) = û(r, ξ ). So, com-
bining with (.), we get

Û(r, ξ ) = û(r, ξ ) = (r/r)e(r–r)
√

iξ ϕ(r, ξ )ĝ(ξ ) (.)

and

ĝ(ξ ) = (r/r)e(r–r)
√

iξϕ–(r, ξ )Û(r, ξ ) = Â∗
r Û(r, ξ ) = Â∗

r U . (.)
�

The outline of the paper is as follows. In Section , using Hölder’s inequality, we prove
the conditional stability for IHCP (.) in the interval [r, r). The relevant properties of
Shannon wavelets are summarized in Section . The last section presents error estimates
via wavelet dual least squares method approximation.

2 A conditional stability estimate
In this section, we give a conditional stability in the following theorem.

Theorem . Let u(r, t) be the exact solution of problem (.) given by (.) and the a priori
bound (.) hold. Then, for a fixed r ∈ (r, r), we have the following estimate:

∥
∥u(r, ·)∥∥ ≤ c(c)

r–r
r–r (r/r)

r–r
r–r

∥
∥u(r, ·)∥∥

r–r
r–r ‖g‖

r–r
r–r , (.)

where c and c are constants given by (.).

Proof Using Parseval’s formula, expression (.) and Hölder’s inequality, we have

∥
∥u(r, ·)∥∥ =

∥
∥û(r, ·)∥∥ =

∫ ∞

–∞

∣
∣(r/r)ϕ(r, ξ )e(r–r)

√
iξ ĝ(ξ )

∣
∣
 dξ

=
∫ ∞

–∞

[∣
∣(r/r)ϕ(r, ξ )

∣
∣

(r–r)
r–r

∣
∣e(r–r)

√
iξ ĝ(ξ )

∣
∣
] r–r

r–r
[∣
∣ĝ(ξ )

∣
∣
] r–r

r–r dξ

≤
(∫ ∞

–∞

∣
∣(r/r)ϕ(r, ξ )

∣
∣

(r–r)
r–r

∣
∣e(r–r)

√
iξ ĝ(ξ )

∣
∣
 dξ

) r–r
r–r

(∫ ∞

–∞

∣
∣ĝ(ξ )

∣
∣
 dξ

) r–r
r–r

=
(∫ ∞

–∞

∣
∣(r/r)ϕ(r, ξ )

∣
∣

(r–r)
r–r

∣
∣(r/r)ϕ(r, ξ )

∣
∣
–∣

∣û(r, ξ )
∣
∣
 dξ

) r–r
r–r ‖g‖

(r–r)
r–r

≤ sup
ξ∈R

[∣
∣(r/r)ϕ(r, ξ )

∣
∣
∣
∣(r/r)ϕ(r, ξ )

∣
∣

(r–r)
r–r

]∥
∥û(r, ·)∥∥

(r–r)
r–r ‖g‖

(r–r)
r–r .
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From inequalities (.), we get

∣
∣(r/r)ϕ(r, ξ )

∣
∣
∣
∣(r/r)ϕ(r, ξ )

∣
∣

(r–r)
r–r ≤ ∣

∣(r/r)c
∣
∣
∣
∣(r/r)c

∣
∣

(r–r)
r–r .

Then there holds

∥
∥u(r, ·)∥∥ ≤ c

(c)
(r–r)
r–r (r/r)

(r–r)
r–r

∥
∥u(r, ·)∥∥

(r–r)
r–r ‖g‖

(r–r)
r–r .

The conclusion of Theorem . is proved. �

Remark . If u(r, t) and u(r, t) are the solutions of problem (.) with the exact data
g(t) and g(t), respectively, then for a fixed r ∈ (r, r), there holds

∥
∥u(r, ·) – u(r, ·)∥∥ ≤ C

∥
∥u(r, ·) – u(r, ·)∥∥

r–r
r–r

∥
∥g(·) – g(·)∥∥

r–r
r–r , (.)

where C = c(c)
r–r

r–r (r/r)
r–r

r–r . It is obvious that if ‖g(·) – g(·)‖ → , then ‖u(r, ·) –
u(r, ·)‖ for r < r ≤ r.

In the next section, the relevant properties of Shannon wavelets are summarized.

3 The Shannon wavelets
Suppose that φ and ψ are the Shannon scaling and wavelet functions whose Fourier trans-
forms are given by

φ̂(ξ ) =

⎧

⎨

⎩

, |ξ | ≤ π ,

, otherwise,
(.)

and

ψ̂(ξ ) =

⎧

⎨

⎩

e–i ξ
 , π ≤ |ξ | ≤ π ,

, otherwise.
(.)

Let φj,k(t) := 
j
 φ(jt – k), ψj,k(t) := 

j
 ψ(jt – k), j, k ∈ Z, 
–,k := φ,k and 
l,k := ψl,k for

l ≥ , the index set

Ĩ =
{{j, k} : j, k ∈ Z

} ⊂ Z
,

ĨJ =
{{j, k} : j = –, , . . . , J – ; k ∈ Z

} ⊂ Z
.

Then the subspaces VJ can be defined

VJ = span{
λ}λ∈ĨJ
(.)

and an orthogonal projection PJ : L(R) 	−→ VJ :

PJϕ =
∑

λ∈ĨJ

〈ϕ,
λ〉
λ, ∀ϕ ∈ L(R). (.)
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We have, for any k ∈ Z,

supp(ψ̂j,k) =
{

ξ : πj ≤ |ξ | ≤ πj+}, (.)

supp(φ̂j,k) =
{

ξ : |ξ | ≤ πj}. (.)

Expression (.) shows that PJ can be considered as a low pass filter.

4 Regularization and error estimates
In this section, the wavelet dual least squares method will be described and error estimates
be given by Theorems .-..

4.1 Dual least squares method
We now introduce the dual least squares method for approximation of the solutions of
problem (.). For the operator equation Au = g , a general projection method is generated
by two subspace families {Vj} and {Yj} of X. Then the approximate solution uj ∈ Vj is
defined to be the solution of the following problem:

〈Auj, y〉 = 〈g, y〉, ∀y ∈ Yj. (.)

If Vj ⊂ R(A∗) and subspaces Yj are chosen in such a way that

A∗Yj = Vj,

then there is a special case of projection method known as the dual least squares method.
Suppose that {ψλ}λ∈Ĩj

is an orthogonal basis of Vj and yλ is the solution of the equation

A∗yλ = kλψλ, ‖yλ‖ = . (.)

Then we can obtain the approximate solution

uj =
∑

λ∈Ĩj

〈g, yλ〉 
kλ

ψλ. (.)

According to (.), we easily conclude uJ = PJ u. In order to give an error estimate for the
regularized solution, we need a sequence of subspaces Yj approximating the space X and
contained in the range of A∗. From A∗Yj = Vj, the subspaces Yj are spanned by wλ, λ ∈ ĨJ ,
where

A∗wλ = 
λ and kλ = ‖wλ‖–, yλ =
wλ

‖wλ‖ = kλwλ. (.)

We know that wλ is a solution of the following problem (see Lemma .):

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

– ∂U
∂t = ∂U

∂r + 
r

∂U
∂r , r < r ≤ R, t ≥ ,

U(r, ) = , r ≤ r ≤ R,

U(r, t) = 
j,k(t), t ≥ ,

Ur(R, t) = , t ≥ .

(.)
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Because supp ψ̂j,k is compact, the solution exists for any t ∈ (,∞). Analogously, the so-
lution of the adjoint equation is unique. So, for given 
λ, wλ can be uniquely determined
according to (.). From (.), there holds

ŵλ =
r

r
e(r–r)

√
iξϕ(r, ξ )
̂λ(ξ ), λ = {j, k}, (.)

combining with (.), we have

ŷλ =
r

r
e(r–r)

√
iξϕ(r, ξ )kλ
̂λ(ξ ), λ = {j, k}. (.)

Thus we have the approximate solution for noisy data gδ given by

PJ uδ(r, t) = uδ
J =

∑

λ∈ĨJ

〈

uδ ,
λ

〉


λ =
∑

λ∈ĨJ

〈

gδ , yλ

〉 
kλ


λ. (.)

4.2 Error estimates
We estimate firstly the errors ‖PJ u – PJ uδ‖ and ‖u – PJ u‖ by Theorems . and ., respec-
tively.

Theorem . (Stability) Let PJ u(r, t) given by (.) and PJ uδ(r, t) given by (.) be the reg-
ularized approximate solutions to u(r, t) for the data g and gδ , respectively. If the measured
data gδ(t) satisfy condition (.), then for any fixed r ∈ [r, r), we have

∥
∥PJ u – PJ uδ

∥
∥ ≤ (cr/r)e(r–r)

√

 πJ

δ. (.)

Proof Due to (.), (.) and (.), for any fixed r ∈ [r, r), there holds

∥
∥PJ u(r, ·) – PJ uδ(r, ·)∥∥ =

∥
∥
∥
∥

∑

λ∈ĨJ

〈

g – gδ , yλ

〉 
kλ


λ

∥
∥
∥
∥

=
∥
∥
∥
∥

∑

λ∈ĨJ

〈

ĝ – ĝδ , ŷλ

〉 
kλ


̂λ

∥
∥
∥
∥

=
∥
∥
∥
∥

∑

λ∈ĨJ

〈

ĝ – ĝδ ,
r

r
e(r–r)

√
iξϕ(r, ξ )kλ
̂λ

〉


kλ


̂λ

∥
∥
∥
∥

≤ sup
πJ–≤|ξ |≤πJ

∣
∣(r/r)e(r–r)

√
iξ ϕ(r, ξ )

∣
∣ ·

∥
∥
∥
∥

∑

λ∈ĨJ

〈

ĝ – ĝδ , 
̂λ

〉


̂λ

∥
∥
∥
∥

≤ sup
πJ–≤|ξ |≤πJ

∣
∣(r/r)e(r–r)

√
iξ ϕ(r, ξ )

∣
∣ · ∥∥P̂J

(

ĝ – ĝδ
)∥
∥,

combining with inequality (.) and condition (.),

∥
∥PJ u(r, ·) – PJ uδ(r, ·)∥∥ ≤ (cr/r) sup

πJ–≤|ξ |≤πJ
e(r–r)

√|ξ |/δ

≤ (cr/r)e(r–r)
√


 πJ

δ. �
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Theorem . (Convergence) If u(r, t) is the solution of problem (.) satisfying the a priori
condition (.), then for any fixed r ∈ [r, r), we have

∥
∥u(r, ·) – PJ u(r, ·)∥∥ ≤ (c/c)

(

J+)–pe(r–r)
√


 πJ E. (.)

Proof According to (.), we get

u(r, ·) =
∑

λ

〈

u(r, ·),
λ

〉


λ,

PJ u(r, ·) =
∑

λ∈ĨJ

〈

u(r, ·),
λ

〉


λ.

By using Parseval’s relation and (.), (.), (.), there holds

∥
∥u(r, ·) – PJ u(r, ·)∥∥

=
∥
∥û(r, ·) – P̂J u(r, ·)∥∥ =

∥
∥
∥
∥

∑

λ∈Ĩ

〈û, 
̂λ〉
̂λ –
∑

λ∈ĨJ

〈û, 
̂λ〉
̂λ

∥
∥
∥
∥

=
∥
∥
∥
∥

∑

λ∈Ĩj≥J+

〈û, 
̂λ〉
̂λ

∥
∥
∥
∥

=
∥
∥
∥
∥

∑

λ∈Ĩj≥J+

〈

(r/r)ϕ(r, ·)e(r–r)
√

i(·)ĝ(·), 
̂λ

〉


̂λ

∥
∥
∥
∥

=
∥
∥
∥
∥

∑

λ∈Ĩj≥J+

〈

(r/r)ϕ(r, ·)ϕ–(r, ·)e(r–r)
√

i(·)û(r, ·), 
̂λ

〉


̂λ

∥
∥
∥
∥

≤ sup
πJ ≤|ξ |≤πJ+

∣
∣
∣
∣

rϕ(r, ξ )
rϕ(r, ξ )

e(r–r)
√

iξ |ξ |–p
∣
∣
∣
∣

∥
∥
∥
∥

∑

λ∈Ĩj≥J+

〈(

 + (·))p/û(r, ·), 
̂λ

〉


̂λ

∥
∥
∥
∥

≤ sup
πJ ≤|ξ |≤πJ+

(c/c)|ξ |–pe(r–r)
√|ξ |/E ≤ (c/c)

(

J+)–pe(r–r)
√


 πJ E.

We have proved estimate (.). �

Theorem . Let u(r, t) be the exact solution of (.) and PJ uδ given by (.) be the regu-
larized approximate solution to u(r, t). If the measured data gδ(t) satisfies condition (.)
and the a priori condition (.) is valid when we select

J = log

[

π

(


r – r
ln

(
E
δ

(

ln
E
δ

)–p))]

, (.)

then for any fixed r ∈ [r, r), we have

∥
∥u(r, ·) – PJ uδ(r, ·)∥∥

≤ E– r–r
r–r δ

r–r
r–r

(

ln
E
δ

)–p(– r–r
r–r

)
(

C + o()
)

for δ → , (.)

where C = (c/c)(r – r)p + (cr/r).
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Proof From Theorem . , Theorem . and the choice rule (.) of J , we can get

∥
∥u(r, ·) – PJ uδ(r, ·)∥∥

≤ (c/c)
(

J+)–pe(r–r)
√


 πJ E + (cr/r)e(r–r)

√

 πJ

δ

≤ (c/c)E(r – r)p
(

ln

(
E
δ

(

ln
E
δ

)–p))–p(E
δ

(

ln
E
δ

)–p) r–r
r–r

+ (cr/r)δ
(

E
δ

(

ln
E
δ

)–p) r–r
r–r

≤ E– r–r
r–r δ

r–r
r–r

(

ln
E
δ

)–p(– r–r
r–r

){ c((r – r) ln E
δ

)p

c(ln( E
δ

(ln E
δ

)–p))p
+

cr

r

}

.

Note that

ln E
δ

ln( E
δ

(ln E
δ

)–p)
=

ln E
δ

ln E
δ

– p ln(ln E
δ

)
→  for δ → .

We have obtained estimate (.). �

Remark .
(i) If p =  and r < r < r, estimate (.) becomes

∥
∥u(r, ·) – PJ uδ(r, ·)∥∥ ≤ (

(c/c) + (cr/r)
)

E– r–r
r–r δ

r–r
r–r , (.)

which is a Hölder stability estimate.
(ii) If p > , estimate (.) is a logarithmical-Hölder stability estimate, especially at

r = r, it becomes

∥
∥u(r, ·) – uδ(r, ·)∥∥ ≤ E

(

ln
E
δ

)–p
(

C + o()
) →  for δ → , (.)

which is a logarithmical stability estimate.

5 Conclusion
In this paper the radially symmetric inverse heat conduction problem is considered. A con-
ditional stability result is established by utilizing the a priori bound. We obtain a regular-
ized solution by a wavelet dual least squares method and the error estimate of logarithmic
Hölder type between the approximate solution and the exact ones by choosing a suitable
regularization parameter.

Abbreviation
IHCP, inverse heat conduction problem.
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