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Abstract
In this study, we first establish a stabilized mixed finite element (SMFE) model based
on parameter-free and two local Gauss integrals for the two-dimensional (2D)
nonlinear incompressible viscoelastic fluid system. And then, we prove the existence,
uniqueness, and convergence of the SMFE solutions. Finally, we use a numerical
example to verify the correctness of the previous theoretical results.
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1 Introduction
In this study, we take into account the following two-dimensional (D) nonlinear incom-
pressible viscoelastic fluid system (see []):

Problem I Find F = (Fl,m)×, u = (ux, uy)T , and p such that

⎧
⎪⎪⎨

⎪⎪⎩

Ft + (u · ∇)F = ∇uF, (x, y, t) ∈ � × (, T),

ut – μ�u + (u · ∇)u + ∇p = ∇ · (FFT ), (x, y, t) ∈ � × (, T),

∇ · u = , (x, y, t) ∈ � × (, T),

()

subject to initial conditions

F(x, y, ) = ψ(x, y), u(x, y, ) = ϕ(x, y), (x, y) ∈ � ()

and boundary conditions

F(x, y, t) = F(x, y, t), u(x, y, t) = u(x, y, t), (x, y, t) ∈ ∂� × [, T], ()

where � ⊂ R is the connected and bounded polygonal domain, F = (Fl,m)× represents
the unknown deformation tensor, u = (ux, uy)T denotes the unknown fluid velocity, and
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p represents the unknown pressure, μ = /Re is the known viscosity coefficient and Re
is the Reynolds number, and ψ(x, y), ϕ(x, y), F(x, y, t), and u(x, y, t) are four given func-
tions. For convenience and without loss of universality, we presume that F(x, y, t) =  and
u(x, y, t) =  in hereinafter discussion.

The nonlinear incompressible viscoelastic fluid system ()-() is often used to describe
some specific physical phenomena, for example, the rheological behaviors of complex flu-
ids and the electromagnetic behaviors (see [–]).

Although the existence of the generalized solution for the nonlinear incompressible vis-
coelastic fluid system ()-() has been provided in [, ], because the system not merely
contains the pressure and the velocity vector but also includes the deformation tensor ma-
trix, i.e., it includes seven unknown functions, it is a difficult task to obtain its analytical
solution. We have to count on numerical solutions.

However, for all we know, up to now, there has not been any report that the stabilized
mixed finite element (SMFE) model for the D nonlinear incompressible viscoelastic fluid
system ()-() is developed. Even though Bellet [] established a mixed finite element
(MFE) model for the purely viscoplastic compressible flow including three-field formula-
tion (velocity, volumetric strain rate, and pressure), the problem discussed was stationary
and linear, and the existence and uniqueness as well as the convergence of the numer-
ical solutions was not presented. Sampaio [, ] also developed some MFE models for
incompressible viscous flows, but the existence and uniqueness as well as the convergence
of the numerical solutions had not been given yet. Faria and Karam-Filho [] also pro-
posed a regularized-stabilized MFE formulation for the steady flow of an incompressible
fluid of Bingham type, but their problem is also stationary and linear. Whereas Problem I
here is nonlinear, involves seven unknown functions, and its unknown deformation ten-
sor is an unsymmetrical matric; therefore, it is entirely different from those problems in
[–] and is more complex than those equations in [–]. Thus, the theoretical analy-
sis of the existence and uniqueness as well as the convergence of the SMFE solutions to
Problem I faces more difficult and greater challenges than those mentioned above, but the
problem has some specific applications. Therefore, in Section , we first address a time
semi-discrete model and deduce the existence, uniqueness, and convergence for the time
semi-discrete solutions. And then, in Section , we address a fully discretized SMFE model
based on parameter-free and two local Gauss integrals for the D nonlinear incompress-
ible viscoelastic fluid system and deduce the existence, uniqueness, and convergence of
the SMFE solutions. Finally, we give a numerical example to verify the correctness of the
previous theoretical results in Section . Thus, we would verify the effectiveness of the
SMFE model from two aspects of theory and numerical experiments. This signifies that
the current work is significant and is development and improvement over the existing
results mentioned above.

2 Establishment of time semi-discrete model
The Sobolev spaces and their norms used hereinafter are normative (see []). Let H =
[H

(�)] and W = [H
(�)]× as well as M = L

(�) =: {q ∈ L(�) :
∫

�
q dx dy = }. Thus,

the mixed variational form for the D nonlinear incompressible viscoelastic fluid system
can be described in the following.
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Problem II Find (u, F, p) ∈ H × W × M such that, for  < t ≤ T ,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(ut , v) + A(u, v) + A(u, u, v) – B(p, v) = (div(FFT ), v), ∀v ∈ H ,

(Ft ,τ ) + A(u, F,τ ) = (∇uF,τ ), ∀τ ∈ W ,

B(q, u) = , ∀q ∈ M,

F(x, y, ) = ψ(x, y), u(x, y, ) = ϕ(x, y), (x, y) ∈ �,

()

where (·, ·) represents the scalar product of L(�)× or L(�), and

A(u, v) = μ

∫

�

∇u · ∇v dx dy, ∀u, v ∈ H ,

B(q, v) =
∫

�

q div v dx dy, ∀v ∈ H , q ∈ M,

A(v, w, u) =



∫

�

[(
(v · ∇)w

) · u –
(
(v · ∇)u

) · w
]

dx dy, ∀v, w, u ∈ H ,

A(w, F,τ ) =



∫

�

[(
(w · ∇)F

)
τ –

(
(w · ∇)τ

)
F
]

dx dy, ∀w ∈ H ,∀F,τ ∈ W .

The aforesaid trilinear functions A(·, ·, ·) and A(·, ·, ·), bilinear functions A(·, ·) and B(·, ·)
satisfy the following (see, e.g., [–]):

A(v, w, u) = –A(v, u, w), A(v, w, w) = , ∀v, w, u ∈ H , ()

A(w, F,τ ) = –A(w,τ , F), A(w,τ ,τ ) = , ∀w ∈ H ,∀F,τ ∈ W , ()

A(v, v) ≥ μ‖∇v‖
,

∣
∣A(u, v)

∣
∣ ≤ μ‖∇u‖‖∇v‖, ∀u, v ∈ H , ()

sup
v∈X

B(q, v)
‖∇v‖

≥ β‖q‖, ∀q ∈ M, ()

here β is the known coefficient. Put

N = sup
v,w,u∈X

A(v, w, u)
‖∇v‖ · ‖∇w‖ · ‖∇u‖

. ()

By using the same approach as the one in [, ], we can obtain the following conclusion
for Problem II.

Theorem  If the initial functions ϕ(x, y) ∈ [L(�)] and ψ(x, y) ∈ [L(�)]×, then Prob-
lem II has one and only one solution (u, F, p) ∈ H × W × M, relying only on the initial
functions ψ(x, y) and ϕ(x, y).

Let k be the time step, N = [T/k] indicate the integer part for T/k, and (un, Fn, pn) denote
the time semi-discrete solutions of (u(t), F, p) at tn = nk (n = , , . . . , N ). If the derivatives
ut and Ft at time t = tn are replaced with (un – un–)/k and (Fn – Fn–)/k, separately, then
the time semi-discrete model for Problem II is described in the following.
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Problem III Find (un, Fn, pn) ∈ H × W × M ( ≤ n ≤ N ) such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(un, v) + kA(un, v) + kA(un, un, v) – kB(pn, v)

= k(div(FnFnT ), v) + (un–, v), ∀v ∈ H ,

(Fn,τ ) + kA(un–, Fn,τ ) = k(∇un–Fn,τ ) + (Fn–,τ ), ∀τ ∈ W ,

B(q, un) = , ∀q ∈ M,

F = ψ(x, y), u = ϕ(x, y), (x, y) ∈ �.

()

For Problem III, we have the following main conclusions.

Theorem  Under the conditions of Theorem , if there exists a constant α >  that sat-
isfies ‖∇un–‖,∞ ≤ α and k is sufficiently small that satisfies ( – kα) > , Problem III
has one and only one sequence of solutions (un, Fn, pn) ∈ H × W × M (n = , , . . . , N ) that
satisfies

∥
∥Fn∥∥

 ≤ 
(
√

 – kα)N
‖ψ‖, ()

∥
∥un∥∥

 +
∥
∥pn∥∥

 + μk
n∑

i=

∥
∥∇ui∥∥

 ≤ C
(∥
∥FnFnT∥

∥
 + ‖ϕ‖


)
, ()

where C used hereinafter is a constant that does not rely on k; however it relies on ψ , ϕ,
and Re. Further, when the exact solution to Problem I satisfies (u, F, p) ∈ [H

(�)∩H(�)] ×
[H

(�) ∩ H(�)]× × [H(�) ∩ M], there hold the error estimations

∥
∥u(tn) – un∥∥

 + k
n∑

i=

[∥
∥∇(

u(ti) – ui)∥∥
 +

∥
∥p(ti) – pi∥∥



] ≤ Ck, ()

∥
∥F(tn) – Fn∥∥

 ≤ Ck,  ≤ n ≤ N . ()

Proof Because the second equation in Problem III is linear, in order to deduce that the
second equation in Problem III has one and only one sequence of solutions {Fn}N

n= ⊂ W ,
we only need to prove that when ψ(x, y) = , there holds Fn =  (n = , , . . . , N ). Thus,
we only prove that () is correct. To this end, by taking τ = Fn in the second equation in
Problem III, if ‖∇un–‖,∞ ≤ α, by means of using () and Hölder and Cauchy inequalities,
we have

∥
∥Fn∥∥

 = k
(∇un–Fn, Fn) +

(
Fn–, Fn) ≤ kα

∥
∥Fn∥∥

 +


(∥
∥Fn∥∥

 +
∥
∥Fn–∥∥



)
. ()

When k is sufficiently small that satisfies ( – kα) > , we have

∥
∥Fn∥∥

 ≤ ‖Fn–‖√
 – kα

≤ · · · ≤ ‖ψ‖

(
√

 – kα)n
≤ ‖ψ‖

(
√

 – kα)N
. ()

Thus, if ψ = , then the second equation in Problem III has only a sequence of zero solu-
tions, which signifies that it has one and only one sequence of solutions {Fn}N

n=.
After we have obtained {Fn}N

n= from the second equation in Problem III, the first and
third equations in Problem III constitute the weak-form of nonstationary Navier-Stokes
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equations. Thus, with the theory of the weak-form of nonstationary Navier-Stokes equa-
tions (see, e.g., [, , , ]), the first and third equations in Problem III have one and
only one sequence of solutions (un, pn) (n = , , . . . , N ) that satisfies ().

Finally, with Taylor’s expansion and by using the same proof methods as the ones in
Theorems . and . in [] or referring to [], the error formulas () and () are easily
obtained. �

Remark  Theorem  implies that the sequence of solutions to Problem III is stabilized
and achieves the optimal order convergence about time. Moreover, it is known via the
regularity for PDEs that, when the initial data ψ and ϕ are properly smooth, it can be
ensured that ‖∇un–‖,∞ of the sequence of solutions for Problem III are bounded so that
the assumptions ‖∇un–‖,∞ ≤ α are reasonable.

3 Establishment of the fully discretized SMFE model
In the section, we firsthand formulate the fully discretized SMFE model via the time semi-
discrete form so that we could avoid the semi-discrete MFE method about spatial vari-
ables.

Let h = {K} be the quasi-regular triangulation of � (see [, ]). The MFE subspaces
are chosen as

Wh =
{
τ h ∈ W ∩ [

C(�)
]×;τ h|K ∈ [

P(K)
]×,∀K ∈ h

}
,

Hh =
{

vh ∈ H ∩ [
C(�)

]; vh|K ∈ [
P(K)

],∀K ∈ h
}

,

Mh =
{

qh ∈ M ∩ C(�); qh|K ∈ P(K),∀K ∈ h
}

,

where P(K) represents the bivariate linear polynomial set on K .
The next lemma is classical and very serviceable (see []).

Lemma  Suppose that Ph : H → Hh represents an elliptic operator, i.e., ∀u ∈ H , there is
one and only one Phu ∈ Xh that satisfies

(∇(Phu – u),∇vh
)

= , ∀vh ∈ Xh.

Then the following error estimates hold:

‖Phu – u‖s ≤ Ch–s‖u‖, s = , ,∀u ∈ [
H(�)

],

where C used hereinafter represents a general positive constant which is possibly different
at different occurrence and does not rely on h and k.

Suppose that Qh : M → Mh represents an L-operator, i.e., ∀ω ∈ M, there is one and only
one Qhω ∈ Mh that satisfies

(Qhω – ω,ωh) = , ∀ωh ∈ Mh.

When ω ∈ Hl(�), the following error estimates hold:

‖Qhω – ω‖s ≤ Chl–s‖ω‖l, s = , , l = , .
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Suppose that Rh : W → Wh represents also an L-operator, i.e., ∀τ ∈ W , there is one and
only one Rhτ ∈ Wh that satisfies

(Rhτ – τ ,τ h) = , ∀τ h ∈ Wh.

Then the following error estimates hold:

‖Rhτ – τ‖s ≤ Ch–s‖τ‖, s = , ,∀τ ∈ [
H(�)

]×.

Then the fully discrete SMFE model based on parameter-free and two local Gauss inte-
grals is described in the following.

Problem IV Find (un
h, pn

h, Tn
h ) ∈ Xh × Mh × Wh ( ≤ n ≤ N ) such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂̄tun
h, vh) + A(un

h, vh) + A(un
h, un

h, vh) – B(pn
h, vh)

= (div(Fn
hFnT

h ), vh), ∀vh ∈ Xh,

B(qh, un
h) + Dh(pn

h, qh) = , ∀qh ∈ Mh,

(∂̄tFn
h,τ h) + A(un–

h , Fn
h,τ h) = (∇un–

h Fn
h,τ h), ∀τ h ∈ Wh,

u
h = Phϕ, F

h = Rhψ(x, y), (x, y) ∈ �,

()

where

Dh
(
pn

h, qh
)

= ε
∑

K∈h

{∫

K ,
pn

hqh dx dy –
∫

K ,
pn

hqh dx dy
}

, ph, qh ∈ Mh, ()

here ε > , called parameter-free, represents a constant,
∫

K ,i λ(x, y) dx dy (i = , ) are two
proper Gauss integrals on K and accurate for ith order multinomials (i = , ), and λ(x, y) =
qhph is the ith order multinomial (i = , ).

Hence, if qh ∈ Mh, then ph ∈ Mh is just a piecewise constant as i = . Suppose that the op-
erator 	h : L(�) → M̂h := {qh ∈ L(�) : qh|K ∈ P(K)∀K ∈ h} that satisfies, ∀p ∈ L(�),

(p, qh) = (	hp, qh), ∀qh ∈ M̂h, ()

where P(K) is the zero degree polynomial set on K . Therefore, the operator 	h has the
following properties (see [, ]):

‖	hp‖ ≤ C‖p‖, ∀p ∈ L(�), ()

‖p – 	hp‖ ≤ Ch‖p‖, ∀p ∈ H(�). ()

Thus, by using 	h, the bilinear function Dh(·, ·) may be indicated into:

Dh(qh, ph) = ε(qh – 	hqh, ph) = ε(qh – 	hqh, ph – 	hph). ()

To discuss the existence, uniqueness, and convergence of the SMFE solutions, it is nec-
essary to use the following discrete Gronwall lemma (see [, ]).
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Lemma  (Discrete Gronwall lemma) Suppose that the positive sequences {αn} and {βn}
and the monotone positive sequence {εn} satisfy αn + βn ≤ εn + λ̄

∑n–
i= αi (λ̄ > ) and α +

β ≤ ε, then αn + βn ≤ εn exp(nλ̄) (n ≥ ).

There is the next main conclusion for Problem IV.

Theorem  Under the assumptions of Theorem , if there exists a constant α >  such that
‖∇un–

h ‖,∞ ≤ α and when k is sufficiently small such that ( – kα) > , Problem IV has
one and only one sequence of solutions (un

h, Fn
h, pn

h) ∈ Hh × Wh × Mh (n = , , . . . , N ) that
satisfies

∥
∥Fn

h
∥
∥

 ≤ 
(
√

 – kα)n
‖ψ‖, ()

∥
∥un

h
∥
∥

 +
∥
∥pn

h
∥
∥

 + μk
n∑

i=

∥
∥∇ui

h
∥
∥

 ≤ C
(∥
∥Fn

hFnT
h

∥
∥

 + ‖ϕ‖

)
, ()

where C used hereinafter represents a constant that does not rely on k and h, but relies on
ψ , ϕ, and Re. And if the exact solution to Problem I satisfies (u, F, p) ∈ [H

(�) ∩ H(�)] ×
[H

(�) ∩ H(�)]× × [H(�) ∩ M] and Nμ
–‖∇un‖ ≤ / and Nμ

–‖∇un
h‖ ≤ / as

well as ‖un–
h ‖,∞ and ‖div Fn‖,∞ are bounded (n = , , . . . , N ), we have the following error

formulas:

∥
∥F(tn) – Fn

h
∥
∥

 +
∥
∥u(tn) – un

h
∥
∥

 + k
n∑

i=

[∥
∥∇(

u(ti) – ui
h
)∥
∥

 +
∥
∥p(ti) – pi

h
∥
∥



]

≤ C
(
k + h),  ≤ n ≤ N . ()

Proof Because the third equation in Problem IV is linear, in order to deduce that the third
equation in Problem IV has one and only one sequence of solutions {Fn

h}N
n= ⊂ Wh, we

only need to prove that when ψ(x, y) = , there holds Fn
h =  (n = , , . . . , N ). Thus, we

only prove that () is correct. To this end, by choosing τ h = Fn
h in the third equation in

Problem IV, if ‖∇un–
h ‖ ≤ α, using () and Hölder and Cauchy inequalities, we have

∥
∥Fn

h
∥
∥

 = k
(∇un–Fn

h, Fn
h
)

+
(

Fn–
h , Fn

h
) ≤ kα

∥
∥Fn

h
∥
∥

 +


(∥
∥Fn

h
∥
∥

 +
∥
∥Fn–

h
∥
∥



)
. ()

When k is sufficiently small such that ( – kα) > , we have

∥
∥Fn

h
∥
∥

 ≤ ‖Fn–
h ‖√

 – kα
≤ · · · ≤ ‖ψ‖

(
√

 – kα)n
≤ ‖ψ‖

(
√

 – kα)N
. ()

Thus, if ψ = , then the third equation in Problem IV has only a sequence of zero solutions,
therefore, it has one and only one sequence of solutions {Fn

h}N
n=.

After we have obtained {Fn
h}N

n= from the third equation in Problem IV, the first and sec-
ond equations in Problem IV constitute the fully discrete SMFE model for the nonstation-
ary Navier-Stokes equations. Thus, with the SMFE methods for the nonstationary Navier-
Stokes equations (see, e.g., [, –]), it is obtained that the first and second equations
in Problem IV have one and only one sequence of solutions {(un

h, pn
n)}N

n= ⊂ Hh × Mh that
satisfies ().
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If we let Problem III to subtract Problem IV, and then choose v = vh, q = qh, and τ = τ h,
we gain three error equations:

(
un – un

h, vh
)

+ kA
(

un – un
h, vh

)
+ kA

(
un, un, vh

)
– kA

(
un

h, un
h, vh

)

= k
(
div

(
FnFnT – Fn

hFnT
h

)
, vh

)
+ kB

(
pn – pn

h, vh
)

+
(

un– – un–
h , vh

)
, ∀vh ∈ Hh, ()

B
(
qh, un – un

h
)

– ε
(
pn

h – 	hpn
h, qh – 	hqh

)
= , ∀qh ∈ Mh, ()

(
Fn – Fn

h,τ h
)

+ kA
(

un–, Fn,τ h
)

– kA
(

un–
h , Fn

h,τ h
)

= k
(∇un–Fn – ∇un–

h Fn
h,τ h

)
+

(
Fn– – Fn–

h ,τ h
)
, ∀τ h ∈ Wh, ()

where n = , , . . . , N .
Let �n = Fn – RhFn, En = RhFn – Fn

h , en = Phun – un
h , ρn = un – Phun, ηn = Qhpn – pn

h , and
ξn = pn – Qhpn.

First, by noting that div(Fn
hEn) is the piecewise bivariate linear polynomial and ‖un–

h ‖,∞
and ‖div Fn‖,∞ are bounded and by using the error equation (), Lemma , the proper-
ties of A(·, ·, ·), Green’s formula, and Hölder and Cauchy inequalities, we have

‖En‖
 = (En, En) = –(�n, En) +

(
Fn – Fn

h, En
)

= k
(∇un–Fn – ∇un–

h Fn
h, En

)
+

(
Fn– – Fn–

h , En
)

+ kA
(

un–
h , Fn

h, En
)

– kA
(

un–, Fn, En
)

= k
(∇un–(�n + En), En

)
– k

(
en–, div

(
Fn

hEn
))

+ (En–, En)

+ kA
(

un–
h , Fn

h, En
)

– kA
(

un–, Fn, En
)

= k
(∇un–(�n + En), En

)
– k

(
en– div Fn,�n) + (En–, En)

+ kA
(

un–
h , Fn

h, En
)

– kA
(

un–, Fn, En
)

≤ Ckh + αk‖En‖
 +

k


∥
∥en–∥∥

 +


‖En–‖

 +


‖En‖

. ()

By simplifying (), we obtain

‖En‖
 ≤ Ckh + αk‖En‖

 +
k

∥
∥en–∥∥

 + ‖En–‖
. ()

By summing () from  to n, using Lemma , and noting that ‖E‖ = ‖τ n – Rhτ‖ ≤ Ch,
we obtain

‖En‖
 ≤ Cnkh + αk

n∑

i=

‖Ei‖
 +

k


n–∑

i=

∥
∥ei∥∥

. ()

When k is sufficiently small so that αk ≤ /, from (), we obtain

‖En‖
 ≤ Cnkh + αk

n–∑

i=

‖Ei‖
 + k

n–∑

i=

∥
∥ei∥∥

. ()
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Thus, applying Lemma  (Gronwall lemma) to () yields

‖En‖
 ≤

[

Ch + k
n–∑

i=

∥
∥ei∥∥



]

exp(αnk) ≤ Ch + Ck
n–∑

i=

∥
∥ei∥∥

. ()

Next, by using the error equations () and (), (), and Lemma , Hölder and Cauchy
inequalities, we have

∥
∥en∥∥

 + kμ
∥
∥∇en∥∥



=
(
Phun – un

h, en) + ka
(
Phun – un

h, en)

= –
(
ρn, en) +

(
un – un

h, en) + kA
(

un – un
h, en) + kA

(
Phun – un, en)

=
(
ρn– – ρn, en) + kB

(
pn – pn

h, en) + k
(
div

(
FnFnT – Fn

hFnT
h

)
, en)

+
(

en–, en) – kA
(

un, un, en) + kA
(

un
h, un

h, en)

=
(
ρn– – ρn, en) – kA

(
un, un, en) + kA

(
un

h, un
h, en) +

(
en–, en)

+ k
(
div

(
FnFnT – Fn

hFnT
h

)
, en) – kε

(
ηn – 	hη

n,ηn – 	hη
n) + kB

(
ξn, en)

– kB
(
ηn,ρn) + kε

(
pn

h – 	hpn,ηn – 	hη
n) + kε

(
Qhpn – pn,ηn – 	hη

n)

≤ C
(
k–∥∥ρn– – ρn∥∥

–

)
+

k

∥
∥ηn∥∥

 + Ck
∥
∥ξn∥∥

 + Ckhε
∥
∥ηn – 	hη

n∥∥


+ Ck
∥
∥∇ρn∥∥

 +
kμ


∥
∥∇en∥∥

 +


∥
∥en–∥∥

 +


∥
∥en∥∥

 – kε
∥
∥ηn – 	hη

n∥∥


– kA
(

un, un, en) + kA
(

un
h, un

h, en) + k
(
div

(
FnFnT – Fn

hFnT
h

)
, en)

≤ C
(
k–h + kh) +

k

∥
∥ηn∥∥

 + Ck
∥
∥ξn∥∥

 +
kμ


∥
∥∇en∥∥



+


∥
∥en–∥∥

 +


∥
∥en∥∥

 –
kε


(∥
∥ηn∥∥

 –
∥
∥	hη

n∥∥


)

– kA
(

un, un, en) + kA
(

un
h, un

h, en) + k
(
div

(
FnFnT – Fn

hFnT
h

)
, en). ()

If Nμ
–‖∇ui‖ ≤ / and Nμ

–‖∇ui
h‖ ≤ / (i = , , . . . , N ), by using the properties of

A(·, ·, ·), Hölder and Cauchy inequalities, and Lemma , we have

kA
(

un
h, un

h, en) – kA
(

un, un, en) ≤ Ck
∥
∥∇ρn∥∥

 +
kμ


∥
∥∇en∥∥

. ()

By using Green’s formula and Hölder and Cauchy inequalities, we have

k
(
div

(
FnFnT – Fn

hFnT
h

)
, en)

= –k
(

FnFnT – Fh
nFnT + Fh

nFnT – Fn
hFnT

h ,∇en)

≤ Ck
∥
∥Fn – Fn

h
∥
∥



∥
∥∇en∥∥

 ≤ Ck
∥
∥Fn – Fn

h
∥
∥

 +
kμ


∥
∥∇en∥∥

. ()

If ηn �= , it is easily deduced that ‖ηn‖
 > ‖	hη‖

 from (). Therefore, there exists a con-
stant δ ∈ (, ) such that δ‖ηn‖

 ≥ ‖	hη‖
. By choosing ε = ( – δ)–, combining () with
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() and (), and using Lemma , we obtain

∥
∥en∥∥

 + kμ
∥
∥∇en∥∥

 + k
∥
∥ηn∥∥

 ≤ Ckh + Ck
∥
∥Fn – Fn

h
∥
∥

 +
∥
∥en–∥∥

. ()

Because k‖ηn‖
 ≤ k‖ηn‖

, by summing () from  to n, we have

∥
∥en∥∥

 + k
n∑

i=

(∥
∥∇ei∥∥

 +
∥
∥ηi∥∥



) ≤ Cnkh + Ck
n∑

i=

∥
∥Fn – Fn

h
∥
∥



≤ Ch + Ck
n∑

i=

‖Ei‖
. ()

When k is adequately small that satisfies Ck ≤ /, from () and (), we obtain

‖En‖
 +

∥
∥en∥∥

 + k
n∑

i=

(∥
∥∇ei∥∥

 +
∥
∥ηi∥∥



) ≤ Ch + Ck
n–∑

i=

(‖Ei‖
 +

∥
∥ei∥∥



)
. ()

Applying Lemma  to () gains

‖En‖
 +

∥
∥en∥∥

 + k
n∑

i=

(∥
∥∇ei∥∥

 +
∥
∥ηi∥∥



) ≤ Ch exp(Ck) ≤ Ch. ()

Combining () with Theorem  yields (). If ηn = , () is obviously correct, which
accomplishes the proof of Theorem . �

Remark  Theorem  implies that the sequence of solutions for Problem IV is stabilized
and convergent. This signifies that it is theoretically valid that the SMFE model is used
to solve the D nonlinear incompressible viscoelastic fluid system. Moreover, it is known
from Theorems  and  and their proofs that when ‖ψ‖ and ‖ϕ‖ are sufficiently small,
the assumptions that Nμ

–‖∇un‖ ≤ / and Nμ
–‖∇un

h‖ ≤ / (n = , , . . . , N ) in The-
orem  are reasonable.

4 A numerical example
In this section, we give a numerical example of the D nonlinear incompressible viscoelas-
tic fluid system to verify the validity of the SMFE model.

In the D nonlinear incompressible viscoelastic fluid system, we chose the computa-
tional domain as � = {(x, y) :  ≤ x ≤ ,  ≤ y ≤ } ∪ {(x, y) :  ≤ x ≤ ,  ≤ y ≤
}, Re = , and the initial and boundary values of the fluid velocity u = (ux, uy) as ϕ =
u = (ux, uy) = ((y – )( – y), ) (x = ,  ≤ y ≤ ) and ϕ = u = (ux, uy) satisfying
∂ux/∂x = pRe and uy =  on {(x, y) : x = ,  ≤ y ≤ }, but ϕ = u = (ux, uy) = (, )
on other solid boundaries; whereas the initial and boundary values of the deformation ten-
sor F = (Flm)× satisfy F = F =  and F = F = . In addition, we chose h = k = ..
We solved the SMFE model on a ThinkPad E PC to obtain the numerical solutions u,
p, F, F, F, and F at t = , which were still convergent and were drawn in Figures 
to , respectively. These charts show that the SMFE model has very good stability, and the
numerical simulation results could also reflect the actual physical phenomena.
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Figure 1 The streamline of the SMFE solution of the fluid velocity u at t = 10.

Figure 2 The SMFE solution of the pressure p at t = 10.

Figure 3 The component F11 of the SMFE solution of the deformation tensor F at t = 10.
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Figure 4 The component F12 of the SMFE solution of the deformation tensor F at t = 10.

Figure 5 The component F21 of the SMFE solution of the deformation tensor F at t = 10.

Figure 6 The component F22 of the SMFE solution of the deformation tensor F at t = 10.
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Figure 7 The relative error trending charts of the SMFE solutions of the fluid velocity u and the
pressure p on 0 ≤ t ≤ 10.

Figure 8 The relative error trending charts of the SMFE solutions of the deformation tensor
F = (Flm)2×2 on 0 ≤ t ≤ 10.

Figures  and  exhibit the relative errors of the SMFE solutions of the fluid velocity u
and the pressure p as well as the deformation tensor F = (Flm)× on  ≤ t ≤ , respec-
tively. The variation tendencies of the error curves are reasonable because the relative er-
rors of the SMFE solutions gradually increase as the truncation errors are accumulated in
the computational procedure. These relative error curves also express that the numerical
experiment errors are consistent with the theoretical ones because the theoretical and nu-
merical errors all do not exceed –. This signifies that the SMFE model is very effective
for solving the D nonlinear incompressible viscoelastic fluid system.

5 Conclusions and discussions
In this article, we have developed the SMFE model based on parameter-free and two local
Gauss integrals directly from the time semi-discrete model for the D nonlinear incom-
pressible viscoelastic fluid system. Thus, we not only could circumvent the semi-discrete
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SMFE method about spatial variables, but could also eliminate the restriction of Brezzi-
Babuška (B-B) condition so that the theoretical analysis here is far simpler than the subsis-
tent other approaches that have been used in the nonstationary Navier-Stokes equations
(see, e.g., [, , , ]). We have also offered the existence, uniqueness, stability, and
error estimations of the SMFE solutions and given a numerical example to verify the va-
lidity of the SMFE model. This signifies that the approach here is the development of the
existing results (see, e.g., [–, , , , ]).
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