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Abstract
An interior regularity criterion of suitable weak solutions is formulated for the
Ericksen-Leslie system of liquid crystals. Such a criterion is point-wise, with respect to
some appropriate norm of velocity u and the gradient of d, and it can be viewed as a
sort of simply sufficient condition on the local regularity of suitable weak solutions.
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1 Introduction and main results
In this paper, we investigate the local regularity of weak solutions to the following D
incompressible Ericksen-Leslie liquid crystal system:

∂tu + (u · ∇)u – �u + ∇P = –∇ · (∇d � ∇d), (.a)

∇ · u = , (.b)

∂td + (u · ∇)d = �d – f (d), (.c)

with the initial boundary conditions

(u, d)(x, t)|t= =
(
u(x), d(x)

)
, ∇ · u = , x ∈ �,

(u, d)(x, t)|x∈∂� =
(
, d(x)

)
, u(x) ∈ H

(�), d(x) ∈ H
(�),

(.)

where u, d, P denote the velocity of the fluid, the uniaxial molecular direction, and the
pressure, respectively, the i, jth element of ∇d � ∇d is ∂idk∂jdk , d(x) is a unit vector, � ⊂
R

 is a smooth domain. Additionally, f (d) = ∇F(d), and F(d) = 
ζ (|d| – ), ζ is a small

number, formally speaking, as ζ → , d tends to a unit vector.
The dynamic flows of liquid crystals have been successfully described by the Ericksen-

Leslie theory [–]. System (.a)-(.c) is a coupled system of the Navier-Stokes equations
with a parabolic system. It is Leray [] and Hopf [] that established the global existence
of weak solutions to the D Navier-Stokes; however, the regularity of the weak solutions
is still an open problem. Since the regularity of weak solutions to the D Navier-Stokes
equations is hard to get, some related conditions or criteria for the regularity of the weak
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solutions are considered, such as the well-known Serrin type criterion [] and the Beale-
Kato-Majda type criterion []. Furthermore, based on the suitable weak solutions, some
point-wise sufficient regularity criteria were imposed in [–].

The global existence of suitable weak solutions to system (.a)-(.c) was established in
[, ] by Lin and Liu; however, noticing that system (.a)-(.c) contains the D Navier-
Stokes equations as a subsystem, the uniqueness and regularity of these weak solutions are
not known. In this paper, we would extend some point-wise sufficient conditions, which
guarantee the local regularity of weak solutions for D Navier-Stokes equations, to the
Ericksen-Leslie system (.a)-(.c). We would like to mention that when f (d) in system
(.a)-(.c) is replaced by –|∇d|d, the global existence of weak solutions to the resulting
system in three dimensions has only been known under the additional assumption that
d ≥  or small initial data (see [, ]). Without these conditions, the general existence of
weak solutions is still open. However, the Serrin type criterion and the Beale-Kato-Majda
type criterion still hold true even for a weak solution (if it exists) (see [, ]).

The suitable weak solution established in [] can be stated as below.

Definition . (Suitable weak solutions in �× (, T) ⊂R
 × (,∞)) A pair (u, d) is called

a suitable weak solution to system (.a)-(.c) and (.) in an open set O ⊂ R
 × (,∞)

(we set Ot = O ∩ (R × {t})), if it satisfies the following properties:
• (u, d) is a weak solution in the sense of distribution;
• u ∈ L∞(, T ; L(�)) ∩ L(, T ; H(�)), d ∈ L∞(, T ; H(�)) ∩ L(, T ; H(�)), or

generally, there exist constants E, E, such that

∫

Ot

[|u| + |∇d| + F(d)
]

dx < E,

∫ ∫

O

[|∇u| +
∣
∣�d – f (d)

∣
∣ + F(d)

]
dx dt < E;

• for any ϕ ∈ C∞
c (O), more specifically, for any ϕ ∈ C∞

c (B(x, R) × (t – R, t)), the
following generalized energy inequality holds

∫

B(x,R)

(|u| + |∇d|)ϕ dx + 
∫ t

t–R

∫

B(x,R)

(|∇u| +
∣∣∇d

∣∣)
ϕ dx dτ

≤
∫ t

t–R

∫

B(x,R)

{(|u| + |∇d|)(ϕt + �ϕ) +
(|u| + |∇d| + P

)
u · ∇ϕ

}
dx dτ

+ 
∫ t

t–R

∫

B(x,R)

(
(u · ∇)d∇d∇ϕ – ∇f (d) : ∇dϕ

)
dx dτ . (.)

In the following, we can take Q((x, t), R) ≡ B(x, R) × (t – R, t), B(x, R) ≡ {y ∈R
||y –

x| < R}, z ≡ (x, t) for simplicity.
We now state our main result of this paper.

Theorem . Let (u, d) be a suitable weak solution to liquid crystal system (.a)-(.c) in
Q(z, R). The real numbers l ≥  and s ≥  satisfy




≥ 
s

+

l

–



> max

{

l

,



–

s

,

s

–



}
.
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Then there is a positive number ε = ε(s, l), such that if

Ms,l(z, R) =


Rκ

∫ t

t–R

(∫

B(x,R)
|u|s + |∇d|s dx

) l
s

dt < ε, κ =
l
s

+  – l,

then z is a regular point of (u,∇d), i.e. (u,∇d) is Hölder continuous in Q(z, r), for some
r ∈ (, R].

Throughout this paper, we use c to denote a generic positive constant which can be
different from line to line.

2 Preliminaries
As the preparation for proving Theorem ., we first give two auxiliary lemmas.

Lemma . We have

D(z, r; p) ≤ c
[

r
ρ

D(z,ρ; p) +
(

ρ

r

)

C(z,ρ; u,∇d)
]

, (.)

where

C(z, r; u,∇d) =

r

∫

Q(z,r)

(|u| + |∇d|)dz, D(z, r; p) =

r

∫

Q(z,r)
|p| 

 dz.

Proof Step . For (.a), we choose the test function w = χ∇q, for any χ ∈ C∞
c ((t –

ρ, t)), q ∈ C∞
c (B(x,ρ)), then it yields

∫

Q(z,ρ)
–u · ∂tχ∇q – (u ⊗ u + ∇d � ∇d) : χ∇q – u · χ∇�q dz =

∫

Q(z,ρ)
pχ�q dz.

It follows from ∇ · u =  that

–
∫

Q(z,ρ)
pχ�q dz =

∫

Q(z,ρ)
χ (u ⊗ u + ∇d � ∇d) : ∇q dz.

Therefore, for a.e. t ∈ (t – ρ, t), we have

–
∫

B(x,ρ)
p�q dx =

∫

B(x,ρ)
(u ⊗ u + ∇d � ∇d) : ∇q dx, ∀q ∈ C∞

c
(
B(x,ρ)

)
. (.)

Step . Approximate p with p by confining q in W ,(B(x,ρ)).
Set p ∈ L 

 (Q(z,ρ)) such that, for a.e. t ∈ (t – ρ, t),

–
∫

B(x,ρ)
p�q dx =

∫

B(x,ρ)
(u ⊗ u + ∇d � ∇d) : ∇q dx, (.)

for any q(·, t) ∈ W ,(B(x,ρ)), and q(·, t) =  on ∂B(x,ρ). The existence of p is established
due to the Lax-Milgram theorem with appropriate approximating process on u and d (see
[]).



Ma and Feng Boundary Value Problems  (2017) 2017:62 Page 4 of 7

Next, choose q(·, t) ∈ W ,(B(x,ρ)), such that, for a.e. t ∈ (t – ρ, t),

�q(·, t) = –
∣∣p(·, t)

∣∣

 sgn p(·, t), in B(x,ρ), q(·, t) = , on ∂B(x,ρ).

Then, by the Calderon-Zygmund inequality, it yields

(∫

B(x,ρ)

∣∣∇q(·, t)
∣∣ dx

) 
 ≤ c

(∫

B(x,ρ)

∣∣p(·, t)
∣∣


 dx

) 


, a.e. t ∈ (
t – ρ, t

)
.

Therefore, it follows from (.) and the Hölder inequality that

∫

B(x,ρ)

∣
∣p(·, t)

∣
∣


 dx ≤ c

(∫

B(x,ρ)
|u| + |∇d| dx

) 

(∫

B(x,ρ)

∣
∣∇q

∣
∣ dx

) 


≤ c
(∫

B(x,ρ)
|u| + |∇d| dx

) 

(∫

B(x,ρ)
|p| 

 dx
) 


,

which yields
∫

Q(z,ρ) |p(·, t)| 
 dz ≤ cρC(z,ρ; u,∇d).

Step . Estimates for the remainder p – p.
For a.e. t ∈ (t – ρ, t), let p = p – p, then from (.)-(.) one infers that

�p(·, t) = , in B(x,ρ).

By the harmonic property, one can get


r

∫

Q(z,r)
|p| 

 dz ≤ c
ρ

∫

Q(z,ρ)
|p| 

 dz, ∀r < ρ,

while
∫

Q(z,ρ)
|p| 

 dz ≤
∫

Q(z,ρ)

(|p| 
 + |p| 


)

dz ≤ cρ(D(z,ρ; p) + C(z,ρ; u,∇d)
)
.

Step . Estimates for p.
We have

D(z, r; p) ≤ c
(


r

∫

Q(z,r)
|p| 

 dz +
r
ρ

∫

Q(z,ρ)
|p| 

 dz
)

≤ c
(

ρ

r

ρ

∫

Q(z,r)
|p| 

 dz +
r
ρ


ρ

∫

Q(z,ρ)
|p| 

 dz
)

≤ c
[

ρ

r C(z,ρ; u,∇d) +
r
ρ

(
D(z,ρ; p) + C(z,ρ; u,∇d)

)]

≤ c
[

r
ρ

D(z,ρ; p) +
(

ρ

r

)

C(z,ρ; u,∇d)
]

. �

We denote

A(ρ) = ess sup
t–ρ<t<t


ρ

∫

B(x,ρ)

(∣∣u(t)
∣
∣ +

∣
∣∇d(t)

∣
∣)dx,
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E(ρ) =

ρ

∫

Q(z,ρ)

(|∇u| +
∣∣∇d

∣∣)dz, H(ρ) =

ρ

∫

Q(z,ρ)

(|u| + |∇d|)dz.

Lemma . Under the assumptions of Theorem ., we have

C(ρ) ≤ cε

q
(
E(ρ) + A(ρ) + 

)
,

where q = l( 
s + 

l – 
 ), and q′ = q

q– .

Proof With the help of the Hölder and Sobolev embedding inequalities, one gets

∫

B(x,ρ)
|v| dx =

∫

B(x,ρ)
|v|λs+μ+γ dx

≤
(∫

B(x,ρ)
|v| dx

)μ(∫

B(x,ρ)
|v|s dx

)λ(∫

B(x,ρ)
|v| dx

)γ

≤ c

ρμ

(
ess sup

t–ρ<t<t


ρ

∫

B(x,ρ)
|v| dx

)μ(∫

B(x,ρ)
|v|s dx

)λ

×
(∫

B(x,ρ)
|∇v| +


ρ |v| dx

)γ

,

where λs + μ + γ = ,λ + μ + γ = . Substituting v by u and ∇d, respectively, then one
can get the summation

∫

B(x,ρ)
|u| + |∇d| dx ≤ cρμAμ(ρ)

(∫

B(x,ρ)

(|u|s + |∇d|s)dx
)λ

×
(∫

B(x,ρ)

(|∇u| +
∣∣∇d

∣∣) +

ρ

(|u| + |∇d|)dx
)γ

.

Therefore, by choosing appropriate parameters λ = 
s( 

s + 
l – 

 )
, μ =


s + 

l –
( 

s + 
l – 

 )
, γ =


s + 

l –
( 

s + 
l – 

 )
, and integrating from t – ρ to t with the variable t, it follows from the Hölder

and Young inequalities that

C(ρ) ≤ cρμ–Aμ(ρ)
(∫

Q(z,ρ)

(|∇u| +
∣∣∇d

∣∣) +

ρ

(|u| + |∇d|)dz
) 

q′

×
[∫ t

t–ρ

(∫

B(x,ρ)

(|u|s + |∇d|s)dx
) l

s
dt

] 
q

≤ cρμ–Aμ(ρ)ρ

q′ (E(ρ) + H(ρ)

) 
q′ (ρκMs,l(ρ)

) 
q

≤ cAμ(ρ)
(
E(ρ) + H(ρ)

) 
q′ (Ms,l(ρ)

) 
q

≤ cε

q Aμ(ρ)

(
E(ρ) + H(ρ)

) 
q′

≤ cε

q
(
Aμq(ρ) + E(ρ) + H(ρ)

)

≤ cε

q
(
E(ρ) + A(ρ) + 

)
,
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where κ = l
s +  – l as in Theorem ., and in the last step, we used the fact that μq ≤

, H(ρ) ≤ A(ρ). �

3 Proof of Theorem 1.2
Due to the induction argument as Proposition . in [] or Lemma . in [] (the
parabolic version of the Campanato criterion), to get the desired consequence, it suffices
to prove C(θ k) + D(θ k) < ε for some small ε. Here θ is a small number, which will be
chosen later.

From the generalized energy inequality, it is easy to check that, for ρ ∈ (, R],

A
(

ρ



)
+ E

(
ρ



)
≤ c

[
C


 (ρ) + C(ρ) + D(ρ)

]
.

Denoting G(ρ) = A(ρ) + E(ρ) + D(ρ), due to Lemmas .-., and the fact that C(θρ) ≤


θ C(ρ), we can get

G(θρ) ≤ c
[

C

 (θρ) + C(θρ) + D(θρ) + θD(ρ) +


θ C(ρ)

]

≤ c
[


θ




C

 (ρ) +


θ C(ρ) + θD(ρ)

]

≤ c
[

ε


q

θ



(
G(ρ) + 

) 
 +

ε

q

θ

(
G(ρ) + 

)
+ θG(ρ)

]

≤ c
[(

θ +
ε


q

θ

)
G(ρ) +

ε


q

θ

]
,

where in the last step we have used ε


q

θ



(G(ρ) + ) 
 ≤ c[ε


q + ε


q

θ (G(ρ) + )]. Now choosing

θ and ε such that cθ < 
 and c ε


q

θ < 
 , then it yields G(θρ) ≤ 

 G(ρ) + c ε


q

θ . Iterating the

above process, we obtain G(θ kρ) ≤ 
k G(ρ) + c ε


q

θ , therefore,

D
(
θ kρ

) ≤ 
k G(ρ) + c

ε


q

θ . (.)

For C(θ kρ), by Lemma ., we have

C
(
θ kρ

) ≤ cε

q
[
G

(
θ kρ

)
+ 

] ≤ cε

q

[


k G(ρ) +
ε


q

θ + 
]

≤ c
[


k G(ρ) +

ε


q

θ

]
, (.)

where in the last step we use the fact that ε

q ≤ ε


q

θ for ε small enough. With these inequal-
ities in hand, for fixed ρ and ε, we can choose k large enough such that c 

k G(ρ) < ε
 ,

and choose ε small enough, such that c ε


q

θ < ε
 . With these prerequisites and (.)-(.),

it follows that D(θ kρ) + C(θ kρ) < ε.
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