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Abstract
In this paper we consider a quasilinear viscoelastic wave equation with
initial-boundary conditions, strong damping and source term. Under suitable
assumptions on the initial data and the relaxation function, we establish a blow-up
result of a solution for negative initial energy and some positive initial energy if the
influence of the source term is greater than the dissipation. We show that the solution
exists globally for any initial data if the influence of dissipation is greater than the
source term.
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1 Introduction
In this work, we study the following quasilinear viscoelastic wave equation with initial-
boundary value conditions, strong damping and source term:

⎧
⎪⎪⎨

⎪⎪⎩

|ut|ρutt – �u +
∫ t

 g(t – τ )�u(τ ) dτ – �ut = |u|p–u, in � × (,∞),

u(x, t) = , on ∂� × (,∞),

u(x, ) = u(x), ut(x, ) = u(x), in �̄,

(.)

where � is a bounded domain of Rn (n ≥ ) with smooth boundary ∂�, ρ >  and p > 
are constants. The relaxation function g is a given function to be specified later.

As is well known, the wave equation with memory has been extensively studied. Berrimi
and Messaoudi [] considered the following initial-boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

utt – �u +
∫ t

 g(t – τ )�u(τ ) dτ = |u|γ u, in � × (,∞),

u(x, t) = , on ∂� × (,∞),

u(x, ) = u(x), ut(x, ) = u(x), in �̄,

(.)

where � is a bounded domain of Rn (n ≥ ) with smooth boundary ∂�, γ is a positive
constant, and g is a nonnegative and decreasing function. They obtained a local existence
result and proved, for certain initial data and suitable conditions on g and γ (under weaker
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conditions than those in [, ]), that the solution is global and decays uniformly (expo-
nentially or polynomially depending on the decay rate of the relaxation function g) if the
initial data is small enough. For further work on the existence and the decay of solutions,
we refer the reader to [–]. Messaoudi [] discussed the following initial-boundary value
problem:

⎧
⎪⎪⎨

⎪⎪⎩

utt – �u +
∫ t

 g(t – τ )�u(τ ) dτ + a|ut|m–ut = b|u|p–u, in � × (,∞),

u(x, t) = , on ∂� × (,∞),

u(x, ) = u(x), ut(x, ) = u(x), in �̄,

(.)

where � is a bounded domain of Rn (n ≥ ) with smooth boundary ∂�, m ≥ , p > ,
a, b >  are constants and g : R+ → R+ is a positive nonincreasing function. Under suit-
able conditions on g , he proved that solutions with negative initial energy blow up in finite
time if p > m, and continue to exist if p ≤ m. For the same problem, Messaoudi [] ex-
tended this result to certain solutions with initial positive energy. A similar result was also
obtained by Lu and Li [], Guo and Lin [].

Recently, Song and Zhong [] studied a nonlinear viscoelastic problem with strong
damping:

⎧
⎪⎪⎨

⎪⎪⎩

utt – �u +
∫ t

 g(t – τ )�u(τ ) dτ – �ut = |u|p–u, in � × (,∞),

u(x, t) = , on ∂� × (,∞),

u(x, ) = u(x), ut(x, ) = u(x), in �̄,

(.)

where � is a bounded domain of Rn (n ≥ ) with smooth boundary ∂�,  < p < n–
n– . They

proved that solutions with positive initial energy blow up in finite time using the poten-
tial well method introduced by Payne and Sattinger []. Furthermore, Song and Xue []
extended this result to arbitrarily high initial energy.

In the same direction Cavalcanti et al. [] considered the following initial-boundary
value problem:

⎧
⎪⎪⎨

⎪⎪⎩

|ut|ρutt – �u – �utt +
∫ t

 g(t – τ )�u(τ ) dτ – γ�ut = , in � × (,∞),

u(x, t) = , on ∂� × (,∞),

u(x, ) = u(x), ut(x, ) = u(x), in �̄,

(.)

where � is a bounded domain of Rn (n ≥ ) with smooth boundary ∂� and ρ > . They
proved a global existence result for γ ≥  and an exponential decay result for γ > . Cav-
alcanti et al. [] studied problem (.) with ρ ≥  and γ ≥ . The authors showed that
the energy decays to zero uniformly with the rate that is determined from the solutions
of the ODE quantifying the behavior of g(t), and they improved many previous results. In
the case of γ = , Liu [] discussed the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

|ut|ρutt – �u – �utt +
∫ t

 g(t – τ )�u(τ ) dτ = b|u|p–u, in � × (,∞),

u(x, t) = , on ∂� × (,∞),

u(x, ) = u(x), ut(x, ) = u(x), in �̄,

(.)
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where � is a bounded domain of Rn (n ≥ ) with smooth boundary ∂�, and ρ, b > , p > 
are constants. He obtained a general decay of the solution for certain class of relaxation
functions and initial data in the stable set, and showed that the solution blows up in a larger
class of initial positive energy. Furthermore, Song [] studied the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

|ut|ρutt – �u +
∫ t

 g(t – τ )�u(τ ) dτ + |ut|m–ut = b|u|p–u, in � × [, T],

u(x, t) = , on ∂� × [, T],

u(x, ) = u(x), ut(x, ) = u(x), in �̄,

(.)

where � is a bounded domain of Rn (n ≥ ) with smooth boundary ∂�, m > , g : R+ → R+

is a positive nonincreasing function. He proved the nonexistence of global solution of (.)
with initial positive energy.

Motivated by the above pioneering work, we consider the problem (.). Under suitable
assumptions on the initial data and the relaxation function g , we obtain a blow-up result
for the solution with negative initial energy and some positive initial energy if p > ρ + ,
and get a global existence result for any initial data if p ≤ ρ +  using the perturbed energy
functional technique. This paper is organized as follows. In Section , we present some
assumptions and preliminaries. Section  is devoted to the blow-up result. In Section ,
we obtain the global existence result.

2 Preliminaries
In this section, we shall give some notations and preliminaries used throughout this paper.
Denote by ‖ · ‖p the usual norm in Lp(�) (p ≥ ). Let B be the best embedding constant
such that ‖φ‖p ≤ B‖∇φ‖, φ ∈ H

(�). Besides, C and Ci (i ∈ N+) denote general positive
constants, which may be different in different estimates.

Now, we make the following assumptions.
(G) g(t): R+ → R+ is a C function satisfies

g ′(s) ≤ , (.)

 –
∫ ∞


g(s) ds = l > . (.)

(G) For the nonlinear term, we assume

⎧
⎨

⎩

 < p < ∞, if n = ,  and  < p ≤ (n–)
n– , if n ≥ ,

 < ρ < ∞, if n = ,  and  < ρ ≤ 
n– , if n ≥ .

(.)

We first state, without a proof, a local existence theorem which can be established by the
Faedo-Galerkin method. The interested reader can refer to Cavalcanti et al. [] for details.

Theorem . Assume (G) and (G) hold and (u, u) ∈ H
(�) × L(�) is given. Then

problem (.) has a unique local solution

u ∈ C
(
[, T]; H

(�)
)
, ut ∈ C

(
[, T]; H

(�)
)
. (.)
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Lemma . Assume (G) and (G) hold. Let u(t) be a solution of (.). Then E(t) is non-
increasing. Moreover, for t > , the following inequality holds:

E′(t) = –
∥
∥∇ut(t)

∥
∥

 +


(
g ′ ◦ ∇u

)
(t) –




g(t)
∥
∥∇u(t)

∥
∥

 ≤ , (.)

where

E(t) =


ρ + 
‖ut‖ρ+

ρ+ +



(

 –
∫ t


g(s) ds

)
∥
∥∇u(t)

∥
∥

 +



(g ◦ ∇u)(t) –

p
∥
∥u(t)

∥
∥p

p

and

(g ◦ v) =
∫ t


g(t – τ )

∥
∥v(t) – v(τ )

∥
∥

 dτ .

Proof Multiplying the first equation of (.) by ut , integrating over �, we obtain (.). �

Lemma . ([], Lemma .) Assume (G) and (G) hold. Let u(t) be a solution of (.).
Assume further that

E() < E =
(




–

p

)

B
– p

p–


and

‖∇u‖ ≥ B
– p

p–
 ,

where B = B√
l
. Then there exists a constant β > B

– p
p–

 such that for t > 

(

 –
∫ t


g(s) ds

)
∥
∥∇u(t)

∥
∥

 ≥ β (.)

and

‖u‖p ≥ Bβ . (.)

Lemma . For  ≤ p ≤ ρ + , we have

‖ut‖p
p ≤ ‖ut‖

p + ‖ut‖ρ+
ρ+. (.)

Proof If ‖ut‖p < , then we get ‖ut‖p
p ≤ ‖ut‖

p. If ‖ut‖p ≥ , then have

‖ut‖p
p ≤ C‖ut‖ρ+

p ≤ C‖ut‖ρ+
ρ+.

Together with the two cases, we obtain (.). �
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3 Blow-up result
In this section we state and prove the blow-up result.

Theorem . Assume that (G) and (G) hold and

∫ ∞


g(s) ds <

p/ – 
p/ –  + /p

. (.)

Assume further that p > ρ + , and (u, u) ∈ H
(�) × L(�) is given. Then the solution u(t)

of problem (.) blows up in finite time, i.e. there exists T < +∞ such that

lim
t→T–



(‖ut‖ρ+
ρ+ + ‖∇u‖

 + ‖u‖p
p
)

= ∞, (.)

if

E() <
(

 –


p(p – )
 – l

l

)(



–

p

)

B
– p

p–
 , (.)

and

‖∇u‖ > B
– p

p–
 . (.)

Proof Assume that there exists some positive constant C such that for t >  the solution
u(t) of (.) satisfies

‖ut‖ρ+
ρ+ + ‖∇u‖

 + ‖u‖p
p ≤ C. (.)

We set

H(t) = E – E(t),

where the constant E ∈ (E(), E) shall be chosen later. By Lemma .,

H ′(t) = –E′(t) ≥ . (.)

Then, for  ≤ s ≤ t, we have

 < H() ≤ H(s) ≤ H(t) = E – E(t). (.)

From (.), we have

H(t) = E – E(t)

= E –


ρ + 
‖ut‖ρ+

ρ+ –



(

 –
∫ t


g(s) ds

)
∥
∥∇u(t)

∥
∥

 –



(g ◦ ∇u)(t) +

p
∥
∥u(t)

∥
∥p

p

≤ E –



(

 –
∫ t


g(s) ds

)
∥
∥∇u(t)

∥
∥

 +

p
∥
∥u(t)

∥
∥p

p
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≤ E –



(

 –
∫ t


g(s) ds

)
∥
∥∇u(t)

∥
∥

 +

p
∥
∥u(t)

∥
∥p

p

≤ E –



B
– p

p–
 +


p
∥
∥u(t)

∥
∥p

p

≤
(




–

p

)

B
– p

p–
 –




B
– p

p–
 +


p
∥
∥u(t)

∥
∥p

p

≤ 
p
∥
∥u(t)

∥
∥p

p. (.)

Define

L(t) = H–σ (t) +
ε

ρ + 

∫

�

|ut|ρutu dx +
ε



∫

�

|∇u| dx, (.)

where the constant ε >  shall be chosen later and the constant σ satisfies

 < σ <


ρ + 
–


p

. (.)

Taking a derivative of (.) and using Lemma ., we have

L′(t) = ( – σ )H–σ (t)
(

∥
∥∇ut(t)

∥
∥

 –


(
g ′ ◦ ∇u

)
(t) +




g(t)
∥
∥∇u(t)

∥
∥



)

+
ε

ρ + 
‖ut‖ρ+

ρ+ + ε

∫

�

|ut|ρuttu dx + ε

∫

�

∇ut∇u dx

≥ ( – σ )H–σ (t)
∥
∥∇ut(t)

∥
∥

 +
ε

ρ + 
‖u‖ρ+

ρ+ – ε‖∇u‖
 + ε‖u‖p

p

– ε

∫

�

∫ t


g(t – τ )�u(τ ) dτu(t) dx. (.)

For the last term on the right side of (.), using the Green formula, we get

–
∫

�

∫ t


g(t – τ )�u(τ ) dτu(t) dx

=
∫ t


g(t – τ )

∫

�

∇u(τ )∇u(t) dx dτ

=
∫ t


g(t – τ )

∫

�

∇u(t)∇(
u(τ ) – u(t)

)
dx dτ +

∫ t


g(t – τ )

∥
∥∇u(t)

∥
∥

 dτ

=
∫ t


g(t – τ )

∫

�

∇u(t)
(∇u(τ ) – ∇u(t)

)
dx dτ +

∫ t


g(τ ) dτ

∥
∥∇u(t)

∥
∥

. (.)

Substituting (.) into (.), we obtain

L′(t) ≥ ( – σ )H–σ (t)
∥
∥∇ut(t)

∥
∥

 +
ε

ρ + 
‖ut‖ρ+

ρ+ + ε‖u‖p
p

+ ε

∫ t


g(t – τ )

∫

�

∇u(t)
(∇u(τ ) – ∇u(t)

)
dx dτ

– ε

(

 –
∫ t


g(τ ) dτ

)
∥
∥∇u(t)

∥
∥

. (.)
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Using the Cauchy inequality, for  < ε <  we have

∫ t


g(t – τ )

∫

�

∇u(t)
(∇u(τ ) – ∇u(t)

)
dx dτ

≥ –
p( – ε)



∫ t


g(t – τ )

∥
∥∇u(τ ) – ∇u(t)

∥
∥

 dτ

–


( – ε)p

∫ t


g(τ ) dτ

∥
∥∇u(t)

∥
∥

. (.)

By (.), we know

L′(t) ≥ ( – σ )H–σ (t)
∥
∥∇ut(t)

∥
∥

 +
ε

ρ + 
‖ut‖ρ+

ρ+ + ε‖u‖p
p

– ε

(

 –
∫ t


g(τ ) dτ

)
∥
∥∇u(t)

∥
∥



– ε

(
p( – ε)



∫ t


g(t – τ )

∥
∥∇u(τ ) – ∇u(t)

∥
∥

 dτ

+


( – ε)p

∫ t


g(τ ) dτ

∥
∥∇u(t)

∥
∥



)

≥ ( – σ )H–σ (t)
∥
∥∇ut(t)

∥
∥

 + ε

(


ρ + 
+

p( – ε)
ρ + 

)

‖ut‖ρ+
ρ+ + ε( – ε)p

(
E – E(t)

)

+ ε

((
p( – ε)


– 

)(

 –
∫ t


g(τ ) dτ

)
∥
∥∇u(t)

∥
∥



–


( – ε)p

∫ t


g(τ ) dτ

∥
∥∇u(t)

∥
∥



)

– ε( – ε)pE + εε‖u‖p
p

= ( – σ )H–σ (t)
∥
∥∇ut(t)

∥
∥

 + ε

(


ρ + 
+

p( – ε)
ρ + 

)

‖ut‖ρ+
ρ+ + ε( – ε)pH(t)

+ ε

((
p( – ε)


– 

)(

 –
∫ t


g(τ ) dτ

)
∥
∥∇u(t)

∥
∥



–


( – ε)p

∫ t


g(τ ) dτ

∥
∥∇u(t)

∥
∥



)

– ε( – ε)pE + εε‖u‖p
p. (.)

For the fourth term on the right side of (.), by (.) and Lemma ., we obtain

(
p( – ε)


– 

)(

 –
∫ t


g(τ ) dτ

)
∥
∥∇u(t)

∥
∥

 –


( – ε)p

∫ t


g(τ ) dτ

∥
∥∇u(t)

∥
∥



=
( p(–ε)

 – )( –
∫ t

 g(τ ) dτ ) – 
(–ε)p

∫ t
 g(τ ) dτ

 –
∫ t

 g(τ ) dτ

(

 –
∫ t


g(τ ) dτ

)
∥
∥∇u(t)

∥
∥



≥ ( p(–ε)
 – )l – 

(–ε)p ( – l)

 –
∫ t

 g(τ ) dτ
β. (.)
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Then, by (.) and (.), we have

L′(t) ≥ ( – σ )H–σ (t)
∥
∥∇ut(t)

∥
∥

 + ε

(


ρ + 
+

p( – ε)
ρ + 

)

‖ut‖ρ+
ρ+ + ε( – ε)pH(t)

+
( p(–ε)

 – )l – 
(–ε)p ( – l)

 –
∫ t

 g(τ ) dτ
εβ – ε( – ε)pE + εε‖u‖p

p. (.)

Since
∫ ∞


g(s) ds <

p/ – 
p/ –  + /p

,

we have
(

p


– 
)(

 –
∫ ∞


g(τ ) dτ

)

–


p

∫ ∞


g(τ ) dτ > .

It is easy to see that there exists ε∗
 > , such that, for  < ε < ε∗

 ,

( p(–ε)
 – )l – 

(–ε)p ( – l)

 –
∫ t

 g(τ ) dτ
β >

( p(–ε)
 – )l – 

(–ε)p ( – l)

 –
∫ t

 g(τ ) dτ
B

– p
p–

 . (.)

Since

E() <
(




–

p

)(

 –


p(p – )
 – l

l

)

B
– p

p–
 =

( p
 – )l – 

p ( – l)
pl

B
– p

p–
 ,

we may choose  < ε <  sufficiently small, and E ∈ (E(), E) sufficiently near E(), such
that

( p(–ε)
 – )l – 

(–ε)p ( – l)

 –
∫ t

 g(τ ) dτ
B

– p
p–

 – p( – ε)E ≥ . (.)

Then, for t > , by (.) and (.), we obtain

L′(t) ≥ ( – σ )H–σ (t)
∥
∥∇ut(t)

∥
∥

 + ε

(


ρ + 
+

p( – ε)
ρ + 

)

‖ut‖ρ+
ρ+

+ ε( – ε)pH(t) + εε‖u‖p
p. (.)

From the above estimate we know there exists a constant γ >  such that

L′(t) ≥ εγ
(‖ut‖ρ+

ρ+ + H(t) + ‖u‖p
p
) ≥ , t > , (.)

where

γ = min
{(


ρ + 

+
p( – ε)
ρ + 

)

, ( – ε)p, ε

}

.

Since

L() = H–σ () +
ε

ρ + 

∫

�

|ut|ρuu dx +
ε



∫

�

|∇u| dx > ,
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combining (.), we have

L(t) ≥ L() > , t > .

We now estimate the term
∫

�
|ut|ρutu dx as follows:

∣
∣
∣
∣

∫

�

|ut|ρutu dx
∣
∣
∣
∣ ≤ ‖ut‖ρ+

ρ+‖u‖ρ+ ≤ C‖ut‖ρ+
ρ+‖u‖p.

Using Young’s inequality, we have

(∣
∣
∣
∣

∫

�

|ut|ρutu dx
∣
∣
∣
∣

) 
–σ ≤ C‖ut‖

ρ+
–σ
ρ+‖u‖ 

–σ
p ≤ C

(‖ut‖
ρ+
–σ μ

ρ+ + ‖u‖ 
–σ θ
p

)
,

where 
μ

+ 
θ

= . By choosing

μ =
( – σ )(ρ + )

ρ + 
> ,

we have

θ

 – σ
=

ρ + 
( – σ )(ρ + ) – (ρ + )

.

By (.), we know

θ

 – σ
< p. (.)

Then, by (.), we have

‖u‖ θ
–σ
p = ‖u‖p–(p– θ

–σ )
p = ‖u‖p

p‖u‖–k
p ≤ ‖u‖p

pCH– k
p (t) ≤ C‖u‖p

pH– k
p (), (.)

where k = p – θ
–σ

is a positive constant. Now, from (.), we have

(∣
∣
∣
∣

∫

�

|ut|ρutu dx
∣
∣
∣
∣

) 
–σ ≤ C

(‖ut‖ρ+
ρ+ + ‖u‖p

pH– p
k ()

)
.

Therefore it follows

L


–σ (t) =
(

H–σ (t) +
ε

ρ + 

∫

�

|ut|ρutu dx +
ε



∫

�

∣
∣∇u(t)

∣
∣ dx

) 
–σ

≤ C
(

H(t) +
∣
∣
∣
∣

∫

�

|ut|ρutu dx
∣
∣
∣
∣


–σ

+
∣
∣
∣
∣

∫

�

∣
∣∇u(t)

∣
∣ dx

∣
∣
∣
∣


–σ

)

≤ C
(
H(t) + ‖ut‖ρ+

ρ+ + ‖u‖p
p +

∥
∥∇u(t)

∥
∥


–σ



)
. (.)

From (.) and (.), we have

∥
∥∇u(t)

∥
∥


–σ

 ≤ C


–σ ≤ C 
–σ

H()
H(t). (.)
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It follows from (.) and (.) that

L


–σ (t) ≤ C
(
H(t) + ‖ut‖ρ+

ρ+ + ‖u‖p
p
)
. (.)

Combining (.) and (.), we arrive at

L′(t) >
εγ

C
L


–σ (t), t > . (.)

By a simple integration of (.) over (, t), we obtain

Lσ /(–σ )(t) ≥ 
L–σ /(–σ )() – εγ tσ /[C( – σ )]

, t > .

This shows that L(t) blows up in finite time T, and

T ≤ C( – σ )
εγ σLσ /(–σ )()

.

Furthermore, we have

lim
t→T–



(‖ut‖ρ+
ρ+ + ‖∇u‖

 + ‖u‖p
p
)

= ∞. (.)

This leads to a contradiction with (.). Thus, the solution of problem (.) blows up in
finite time. �

4 Global existence
In this section we show that the solution of (.) is global if ρ +  ≥ p.

Theorem . Assume that (G), (G) hold and  < p ≤ ρ + . Assume further

ρ +  ≤ (n – )
n – 

.

Then for any initial data (u, u) ∈ H
(�) × L(�), the solution of problem (.) exists glob-

ally.

Proof We set

F(t) =


ρ + 
‖ut‖ρ+

ρ+ +



(

 –
∫ t


g(s) ds

)
∥
∥∇u(t)

∥
∥

 +



(g ◦ ∇u)(t) +

p
∥
∥u(t)

∥
∥p

p

= E(t) +

p
∥
∥u(t)

∥
∥p

p. (.)

Differentiating F(t) and using (.), we get

F ′(t) = E′(t) + 
∫

�

|u|p–uut dx ≤ –‖∇ut‖
 + 

∫

�

|u|p–uut dx. (.)

Using the Hölder inequality and Young’s inequality, we obtain the estimate
∣
∣
∣
∣

∫

�

|u|p–uut dx
∣
∣
∣
∣ ≤ ε̃‖ut‖p

p + C(ε̃)‖u‖p
p, (.)
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in which ε̃ is a small positive constant to be chosen later, and C(ε̃) is a positive constant
depending on ε̃.

Using Lemma ., (.) and the embedding theorem, we obtain

∣
∣
∣
∣

∫

�

|u|p–uut dx
∣
∣
∣
∣ ≤ ε̃‖ut‖

p + Cε̃‖ut‖ρ+
ρ+ + C(ε̃)‖u‖p

p

≤ ε̃B‖∇ut‖
 + Cε̃‖ut‖ρ+

ρ+ + C(ε̃)‖u‖p
p. (.)

Substituting (.) to (.), we have

F ′(t) ≤ –( – ε̃B)‖∇ut‖
 + Cε̃‖ut‖ρ+

ρ+ + C(ε̃)‖u‖p
p. (.)

Choosing ε̃ = 
B in (.), we arrive at

F ′(t) ≤ CF(t).

Furthermore we obtain

F(t) ≤ CeCt .

This completes the proof of the global existence result. �
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