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Abstract
In this work we study the following third order differential equation:

Ly := y′′′ + (q(x, y) + λ)y = f ∈ L2(R), R = (–∞,∞),λ > 0, ()

where q(x, y) ≥ 1 is a continuous function in all its variables.
We will deal with the following questions:
(a) The existence of a solution to equation (1) in the space L2(R) where L2(R) is the

space of square summable functions.
(b) Additional conditions on the third derivative of this solution to belong to the

space L2(R).
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1 Introduction
The questions posed in the abstract are equivalent to the so-called ‘separability’ of the
nonlinear differential operator

Ly := –y′′′ +
(
q(x, y) + λ

)
y, x ∈R,λ > ,

on the domain

D(L) =
{

y : y ∈ L(R), Ly ∈ L(R), y′′′ ∈ L,loc(R)
}

.

Statement of the fundamental problem of separability of the differential operator be-
longs to Everittand and Giertz [, ]. They studied the Sturm-Liouville operator, which is
known, in many cases, to be the ‘touchstone’ for the proposed methods of studies. Their
research has been continued by, among others, Atkinson [], Evans and Zettle [], Otel-
baev [] and Boymatov [].

In the last years, many mathematicians have applied the methods of Everita and Giertza
[], which consist in the use of classical techniques for the study of the asymptotic behavior
at infinity of the Green’s function of the considered operator.

In the second half of the seventies of the last century, the study of the separability prob-
lem began to apply new methods proposed by Otelbaev []. In order to solve these issues,
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he proposed some modification on the Titchmarsh method, previously used to solve dif-
ferent problems studied in the works of Kostyuchenko [], Levitan [] and Gasymov [].

Later on, in order to solve the problem on the smoothness of the solutions of differen-
tial equations, Otelbaev proposed the special method of the local representation of the
resolvent, which is called variational method. For unbounded domains, the existence and
smoothness of solutions of nonlinear Sturm-Liouville differential equations (with a singu-
lar potential) were studied in []. However, the smoothness of solutions of nonlinear dif-
ferential equations remains poorly studied compared with the efforts devoted to the study
of linear differential equations. In this case, there are no existing traditional methods that
could be applied to the available large number of problems encountered in applications.
Note that in recent years several studies devoted to this area were published in [–].

2 Main result
The purpose of this work is to study questions related to the existence and smoothness of
solutions of odd order nonlinear differential equations of the type ().

It is very well known that, for even order operators, the following condition is fulfilled:

‖Lu‖ ≥ c‖u‖.

Here ‖ · ‖ is the usual norm in the space L(R) and c is a suitable constant indepen-
dent of u. However, this property fails when an odd order operator is considered. This
fact makes their study more difficult to deal with than the one delivered to even order
operators.

In the sequel, we introduce the hypotheses on the data of the considered equation.
Assume that function q satisfies the following inequality:

q(x, y) ≥ s(x) > , x ∈R,∀y ∈R, ()

where s(x) tends to +∞ whenever |x| → +∞.
Assume that there exist numbers  < A < ∞, T(A) and B(A) such that

sup
|x–η|≤

sup
|C–C|≤A,|C|≤A

q(x, C)
q(η, C)

≤ T(A) < ∞, ()

and they satisfy the Hölder-type conditions

sup
|x–η|≤

sup
|C–C|≤A,|C|≤A

|q(x, C) – q(η, C)|
qa(x, C)[|x – η| + |C – C|α]

≤ B(A) < ∞, ()

where a is a given real constant satisfying the following inequalities:

 – a + α > , a > ,α ∈
[

,



]
.

Now we enunciate the main result of this paper.

Theorem  Assume that conditions ()-() are fulfilled, then, for any right side f ∈ L(R),
there exists a real number μ = μ(A, f ) satisfying

 < max

{

[
T(A)

] α
 ++aB(A)( + A)α ,  

√
T(A), 

(
T(A)‖f ‖

A

)/}
< μ(A, f ),
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such that for all λ > μ equation () has a solution y ∈ W 
 (R) satisfying ‖y‖, ≤ A and

having a quadratically summable third order derivative on the entire axis.

Here and hereinafter, W 
 (R) denotes the classical space of Sobolev with the usual norm

‖ · ‖,.

Remark  Note that the previous theorem implies the smoothness of solutions of equa-
tion () for λ large enough.

Example  One can verify that an example of an equation whose coefficients satisfy the
conditions of Theorem  is the following one:

–y′′′ +
(
e|x| + e|y| + 

)
y + λy = f ∈ L(R).

Let the function V ∈ W 
 (R) be such that

‖V‖, ≤ A.

To prove Theorem , we consider the closure L̃V on the norm L(R) of the differential
expression

Ly = –y′′′ + q
(
x,V(x)

)
y,

defined on C∞
 (R), where C∞

 (R) is the set of infinitely many differentiable functions in R

that vanish at x ± ∞.
Before obtaining the main result of this paper, we prove some preliminary lemmas.

Lemma  Suppose that conditions ()-() are fulfilled. Then, for all λ > μ(A) (μ(A) is a
large enough number), the following properties hold:

(a) Operator L̃V + λE defined in the space L(R) has a bounded inverse operator.
(b) Operator L̃V is separable.
Moreover, the following estimates hold:

‖y‖ ≤ T(A)
√
λ

‖f ‖,

∥∥y′′′∥∥
 ≤ T(A)‖f ‖.

To prove this lemma, we use the following result.

Assertion  ([], Lemma ) Let K be an integral operator in L(R) with continuous kernel
K(x,η):

(Kf )(x) =
∫ ∞

–∞
K(x,η)f (η) dη.

Then

‖K‖ ≤ sup
x∈R

∫ ∞

–∞

(∣∣K(x,η)
∣
∣ +

∣
∣K(η, x)

∣
∣)dh.
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In order to prove Lemma , we introduce the following kernels for any λ > :

M
(
x,η,V(x),λ

)
=

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

exp [ (x–η)


√q(x,V(x))+λ]

 √(q(x,V(x))+λ)
if x > η,

exp[ (x–η)


√q(x,V(x))+λ]

 √(q(x,V(x))+λ
[cos

√


 (q(x,V(x)) + λ)

 (x – η)

–
√

 sin
√


 (q(x,V(x) + λ)


 (x – η)] if x < η,

M
(
x,η,V(x),λ

)
= –

[
q
(
x,V(x)

)
+ q

(
η,V(η)

)]
M

(
x,η,V(x),λ

)
r(η – x),

M
(
x,η,V(x),λ

)
= –M′′

η

(
x,η,V(x),λ

)
r′
η(η – x) + M′

η

(
x,η,V(x),λ

)
r′′
η(η – x),

M
(
x,η,V(x),λ

)
= –M

(
x,η,V(x),λ

)
r′′′

 (η – x),

M
(
x,η,V(x),λ

)
= M

(
x,η,V(x),λ

)
r(η – x),

where function r ∈ C∞
 (R) is constructed by using the following function:

ω(z) =

⎧
⎨

⎩
C exp(– 

–z ) if |z| < ,

 if |z| ≥ ,

and satisfy the following properties:

r(t) =

⎧
⎪⎪⎨

⎪⎪⎩

 if |t| ≤ ,

 if |t| ≥ ,
∫ t+

t– ω(z) dz if t ∈ (–, –) ∪ (, ),

()

and

sup
|t|≤

{∣∣r′(t)
∣∣,

∣∣r′′(t)
∣∣,

∣∣r′′′(t)
∣∣} ≤ .

Note that at x �= η the following property is fulfilled:

M′′′
η

(
x,η,V(x),λ

)
=

(
q
(
x,V(x)

)
+ λ

)
M

(
x,η,V(x),λ

)
.

Now, let us denote the following operators defined by

(
Mj(λ)f

)
(η) =

∫ ∞

–∞
Mj

(
x,η,V(x),λ

)
f (x) dx (j = , , , ).

Let us prove the following preliminary result.

Lemma  If f ∈ C∞
 (R), then the following equality holds:

(L̃V + λE)M(λ)f = f + M(λ)f + M(λ)f + M(λ)f .
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Proof From the definition of operator M(λ), we have

(
M(λ)f

)
(η) =




∫ ∞

η



√

(q(x,V(x)) + λ)
exp

[
–(x – η) 

√
q
(
x,V(x) + λ

)]
r(η – x)f (x) dx

+



∫ ∞

η



√

(q(x,V(x)) + λ)
exp

[
(x – η)



√

q
(
x,V(x)

)
+ λ)

]

×
[

cos

√



(
q
(
x,V(x)

)
+ λ

) 
 (x – η) –

√
 sin

√



(
q
(
x,V(x)

)
+ λ

) 


]

× r(η – x)f (x) dx.

From this and (), it is not difficult to verify that M(λ)f ∈ D(L̃V ).
Further

(L̃V + λE)M(λ)f = –
(
M(λ)f

)′′′
η

+
(
q
(
η,V(η)

)
+ λ

)
M(λ)f .

After simple calculations, we deduce that

(
M(λ)f

)′′′
η

+
(
q
(
η,V(η)

)
+ λ

)
M(λ)f

= f (η) –
∫ ∞

–∞

[
q
(
x,V(x)

)
– q

(
η,V(η)

)]
M

(
x,η,V(x),λ

)
r(η – x)f (x) dx

– 
∫ ∞

–∞
M′′

η

(
x,η,V(x),λ

)
f (x)r′(η – x)

+ M′
η

(
x,η,V(x),λ

)
r′′(η – x)f (x) dx

+
∫ ∞

–∞
M

(
x,η,V(x),λ

)
r′′′(η – x)f (x) dx

= f + M(λ)f + M(λ)f + M(λ)f .

So, Lemma  is proved. �

Proof of Lemma  We start the proof by looking for estimates of the norms of the operators
Mj(λ) (j = , , , ), under the assumptions of Lemma .

By virtue of Assertion , we have

∥∥Mj(λ)
∥∥ ≤ sup

η∈R

∫ ∞

–∞

(∣∣Mj
(
x,η,V(x),λ

)∣∣ +
∣∣Mj

(
x,η,V(η),λ

)∣∣)dx.

Since V ∈ W 
 (R), then V(η) – V(x) =

∫ η

x V ′(t) dt.
By Bunyakovskii’s inequality, using that ‖V‖, ≤ A, we deduce that

∣∣V(η) – V(x)
∣∣ ≤ |x – η| 

 A. ()

Using the representation of M(x,η,V(x),λ), under conditions () and (), and taking ()
into account, we obtain

∥∥M(λ)
∥∥

 ≤ 


T(A)
α
 ++αB(A)

(
 + Aα

)
λ–γ , with γ =




+  – a > .
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Moreover, we have that
∫ ∞

–∞

(∣∣M
(
x,η,V(x),λ

)∣∣ +
∣∣M

(
η, x,V(η),λ

)∣∣)dx

= 
∫ ∞

–∞

(∣∣M′′
η

(
x,η,V(x),λ

)
r′
η(η – x) + M′

η

(
x,η,V(X),λ

)
r′′(η – x)

∣
∣

+
∣∣M′

η

(
x,η,V(η),λ

)
r′
η(η – x) + M′

η

(
x,η,V(η)

)
,λ

)
r′′
η(η – x)

∣∣dx.

So, we can conclude

∥∥M(λ)
∥∥

 ≤ T(A)√
λ

.

In the last two estimates, we have used condition () and equality ().
The norms of M(λ) and M(λ) can be estimated in a similar way.
Denote now

S(λ) = M(λ) + M(λ) + M(λ).

In the sequel, we will prove the following equality:

(L̃V + λE)– = M(λ)
(
E + S(λ)

)–.

Using the norm’s estimations of operators Mj(λ), it follows that for all λ > μ(A), operator
E + S(λ) is bounded along with its inverse and, therefore, the set

M =
{

g, g =
(
E + S(λ)

)
f , f ∈ C∞

 (R)
}

is dense in L(R).
From Lemma , applied to g = B(λ)f , with f ∈ C∞

 (R) and B(λ) = E + S(λ), it follows that

M(λ)f = M(λ)B–(λ)g ∈ D(L̃V ).

As a consequence,

(L̃V + λE)M(λ)B–(λ)g = (L̃V + λE)M(λ)f = B(λ)f = g,

or, which is the same,

(L̃V + λE)M(λ)B–(λ) = E.

Since the set M is dense in L(R), we obtain that

(L̃V + λE)– = M(λ)B–(λ). ()

Obviously, operator q(x,V(x))(L̃V + λE)– is bounded if and only if operator
q(x,V(x))M(λ) is also bounded. Therefore, to ensure the separability of operator L̃V , it is
sufficient to show the boundedness of operator q(x,V(x))M(λ).
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By virtue of condition () and the properties of function r, we deduce that the kernel
M(x,η,V(x),λ) of operator q(x,V(x))M(λ) satisfies the following inequality:

∣
∣M

(
x,η,V(x),λ

)∣∣

≤

⎧
⎪⎨

⎪⎩





√

T(A)q(η,V(η)) + λ exp [–(x – η) 
√

q(η,V(η))+λ

T(A) ] if x > η, |x – η| ≤ ,





√

T(A)q(η,V(η) + λ exp [ (x–η)



√

q(η,V(η))+λ

T(A) ] if x > η, |x – η| ≤ .

Hence, after simple calculations, we conclude that

∫ ∞

–∞

(∣∣M
(
x,η,V(x),λ

)∣∣ +
∣∣M

(
η, x,η,V(η),λ

)∣∣)dx ≤ T(A).

So, by means of this inequality, we can verify the conditions of Assertion  and obtain
the boundedness of operator q(x,V(x))M(λ), and besides

∥
∥q

(
x,V(x)

)
M(λ)

∥
∥

 ≤ T(A). ()

Further, we have

∥∥y′′′∥∥
 ≤ ‖L̃V‖ +

∥∥q
(
x,V(x)

)
y(x)

∥∥
 = ‖f ‖ +

∥∥q
(
x,V(x)

)
(L̃V + λE)–f

∥∥


≤ ‖f ‖ + 
∥∥q

(
x,V(x)

)
M(λ)f

∥∥
 ≤ (

 + 
∥∥q

(
x,V(x)M(λ)

)∥∥)‖f ‖.

By virtue of (), it follows that

∥∥y′′′∥∥
 ≤ T(A)‖f ‖.

Since (L̃V + λE)– exists and is bounded, we have that

y = (L̃V + λE)–f .

Therefore, by ()

‖y‖ ≤ ∥∥(L̃V + λE)–f
∥∥

 =
∥∥M(λ)

(
E + S(λ)

)–f
∥∥



≤ ∥∥M(λ)
∥∥



∥∥(
E + S(λ)

)–∥∥
‖f ‖.

It is clear that for all λ > μ(A), from the estimations on the norms of Mj(λ) (j = , , , ),
we deduce that ‖S(λ)‖ ≤ 

 , hence, by the well-known theory of inverse operators, we
arrive at

∥
∥E + S(λ)

∥
∥

 ≤ ,

and we obtain the inequality

‖y‖ ≤ T(A)
√
λ

‖f ‖,

and the proof of Lemma  is finished. �
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Lemma  Let V ∈ W 
 (R) be such that ‖V‖, ≤ A. Suppose that the conditions of Lemma 

are fulfilled. Then, for all λ > μ(A), the equation

L̃Vy ≡ –y′′′ +
(
q
(
x,V(x)

)
+ λ

)
y = f ∈ L̃V (R)

has a solution y ∈ W 
 (R) satisfying

‖y‖, ≤ 


A. ()

Proof By the embedding theorem, the following inequality holds:

∥
∥y′∥∥

 ≤ ∥
∥y′′′∥∥

 + ‖y‖
. ()

After replacing x = at, inequality () has the form

a–∥∥y′∥∥
 ≤ 

a

∥
∥y′′′∥∥

 + ‖y‖
.

Hence, from Lemma , the following inequality is attained:

∥
∥y′∥∥

 ≤ a–∥∥y′′′∥∥
 + a‖y‖

 ≤
[

a–T(A) +
aT(A)

√
λ

]
‖f ‖



= a–
[

T(A) + a ,T(A)
√
λ

]
‖f ‖

.

Putting a = λ/, we have

∥∥y′∥∥
 ≤ ,λ–/T(A)‖f ‖

.

From these inequalities we deduce

‖y‖
, =

∥∥y′∥∥
 + ‖y‖

 ≤ λ– 
 T(A)‖f ‖

.

Therefore, for all λ > ( T(A)‖f ‖
A )


 , we obtain the validity of estimate () and the result

is proved. �

Lemma  Let conditions ()-() be fulfilled and λ ≥ μ(A). Then, for a fixed f ∈ L(R), the
set

{
y; y = (L̃V + λE)–f ,‖V‖, ≤ A

}

is compact in the space W 
 (R).

Proof Since conditions () and () are satisfied, using Lemma  for any y ∈ D(L̃V ), it is not
difficult to verify the validity of the next inequality

∥∥y′′′∥∥
 +

∥∥q
(
x,V(x)

)
y
∥∥

 ≤ T(A)‖f ‖ ≡ M.
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Thus, using equation () and Lemma , we deduce that

y ∈ W 
 (R) and ‖y‖, ≤ A


.

Now, since y is a continuous function, we conclude that the following inclusion is ful-
filled:

{
y, y = (LV + λE)–f ,‖V‖, ≤ A

} ⊂ {
y;

∥∥y′′′∥∥
 +

∥∥q
(
x,V(x)

)
y
∥∥

 ≤ M
} ≡ N .

So, to prove Lemma , it is enough to verify the compactness of the set N in W 
 (R). And

this, by virtue of condition (), follows from the results given in []. �

So, we are in a position to prove the main result of this paper, Theorem .
To this end, we start by proving the continuity of operator

Zf (V) := (L̃V + λE)–f ,

which transforms, for a fixed f ∈ L(R), any function V ∈ W 
 (R) into the function (L̃V +

λE)–f ∈ W 
 (R).

Let

V ∈ E(, A) :=
{
V ∈ W 

 (R);‖V‖, ≤ A
}

and

Vn → V ∈ L(R), Vn ∈ E(, A).

Suppose that

(L̃V + λE)y ≡ –y′′′ + q(x,V) + λy = f

and

(L̃Vn + λE)yn ≡ –y′′′
n + q(x,Vn) + λyn = f ,

where f ∈ L(R) is a given function.
Then we have

–(yn – y)′′′ + q
(
x,Vn(x)

)
yn – q

(
x,V(x)

)
y + λ(yn – y) = ,

or, which is the same,

 = – (yn – y)′′′ + q
(
x,Vn(x)

)
yn – q

(
x,V(x)

)
yn + q

(
x,V(x)

)
yn

– q
(
x,V(x)

)
y + λ(yn – y)

= – (yn – y)′′′ + q
(
x,Vn(x)

)
(yn – y) + λ(yn – y)

=
[
q
(
x,Vn(x)

)
– q

(
x,V(x)

)]
yn,
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that is,

yn – y = (L̃V + λE)–[q
(
x,Vn(x)

)
– q

(
x,V(x)

)]
yn. ()

By the embedding theorem, V(x) and Vn(x) are continuous functions. Then, since q(x, y)
is continuous in both arguments, it is clear that

q
(
x,V(x)

) ∈ Cloc(R). ()

Let [a, b] be any compact interval of R. Then by () and () we deduce that there is a
positive constant C, for which the following inequalities are fulfilled:

lim
n→∞‖yn – y‖

[a,b] ≤ C lim
n→∞

∥∥[
q
(
x,Vn(x)

)
– q

(
x,V(x)

)]
yn

∥∥
,[a,b]

≤ C lim
n→∞ sup

x∈[a,b]

∥∥q
(
x,Vn(x)

)
– q

(
x,V(x)

)∥∥‖yn‖
,[a,b]

≤ CA lim
n→∞ sup

x∈[a,b]

∣∣q
(
x,Vn(x)

)
– q

(
x,V(x)

)∣∣ = . ()

On the other hand, by Lemma  and the known embedding theorem [], we conclude
that there exists z ∈ L(R) such that yn → z strongly in L(R).

According to Lemma , we have that the following estimation is fulfilled:

‖y‖ ≤ T(A)
√
λ

‖f ‖ and
∥
∥y′′′∥∥

 ≤ T(A)‖f ‖.

Therefore, it is enough to study the behavior of the norm in L(R). Taking into account
(), we conclude that z = y and, as a consequence, operator Zf is continuous.

On the other hand, operator Zf , as follows from Lemma , applies the ball E(, A) into
itself. From Lemma  and the continuity of operator Zf we can deduce that it is completely
continuous. Consequently, according to the principle of Schauder [], operator Zf has a
fixed point in the ball E(, A)⊂ W 

(R).
Therefore the equation

Ly ≡ –y′′′ + q(x, y)y + λy = f ∈L(R)

has a solution y which lies in a ball of radius A in W 
 (R).

As a consequence, all the conditions of Lemma  for operator L̃V + λE at V(x) = y(x) are
satisfied.

This completes the proof of Theorem .

Remark  Similar results can be proved for the equation

Ly ≡ –y(n+) + q(x, y)y + λy = f , λ > ,

in the space L(R).
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