
Cheng and Yao Boundary Value Problems  (2017) 2017:70 
DOI 10.1186/s13661-017-0800-2

R E S E A R C H Open Access

New results for Brillouin electron beam
focusing system
Zhibo Cheng1,2* and Shaowen Yao1*

*Correspondence:
czbo@hpu.edu.cn;
yaoshaowen@hpu.edu.cn
1School of Mathematics and
Information Science, Henan
Polytechnic University, Jiaozuo,
454000, China
2Department of Mathematics,
Sichuan University, Chengdu,
610064, China

Abstract
An experimental conjecture on the existence of positive periodic solutions for the
Brillouin electron beam focusing system x′′ + a(1 + cos2t)x = 1

x for a ∈ (0, 12 ) is proved
by applications of the Manasevich-Mawhin theorem.
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1 Introduction
In this paper, we consider the π-periodic boundary value problem for the equation

x′′ + a( + cos t)x =

x

, (.)

where a >  is constant.
The equations arise in the study of electronics and govern the motion of a magnetically

focused axially symmetric electron beam under the influence of a Brillouin flow []. When
the negative pole in a traveling-wave tube is shielded completely by a magnetic field screen,
the electron beam focusing system can be described by (.). Besides, from a mathematical
point of view, equation (.) is a singular perturbation of the Mathieu equation.

Motivated by the results of laboratory experiments experts realized in [], it was con-
jectured that (.) should have a positive periodic solutions if a ∈ (, 

 ) []. In the last fifty
years, many mathematicians have given birth to extensive literature about this topic (see
[–]). Although numerical studies back up the experimental conjecture, an analytical
proof of the existence of periodic solutions of (.) for a ∈ (, 

 ) is still lacking.
The first analytic work on periodic solution of (.) was obtained by Ding []. Ding

proved that (.) had at least one positive periodic solution if a ∈ (, 
 ). Afterwards, Ye and

Wang [] obtained that (.) had at least one positive periodic solution if a ∈ (, .).
In [], Zhang investigated a kind of singular Liénard equation, and by applications of his
theory, they extended the existence result of (.) to a ∈ (, .).

However, in the above works, authors were not able to prove or disprove the result which
was conjectured in []. In this paper, we will show that (.) has at least one positive π-
periodic solution when the parameter a ∈ (, 

 ) other than (, 
 ).
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2 Brillouin electron beam focusing system
Lemma . (Manasevich-Mawhin []) Let � be an open bounded set in C

T := {x ∈
C(R,R) : x(t + T) – x(t) ≡ }. If

(i) The problem

(
φ
(
x′))′ = λf̃

(
t, x, x′), x ∈ C

T , (.)

where f̃ : [, T] ×R×R →R is assumed to be Carathéodory. For each λ ∈ (, ),
problem (.) has no solution on ∂�.

(ii) The equation

F(a) :=

T

∫ T


f̃
(
t, x, x′)dt = ,

has no solution on ∂� ∩R.
(iii) The Brouwer degree of F

deg{F ,� ∩R, } �= .

Then problem (.) has at least one periodic solution on �̄.

Lemma . ([]) Suppose that u ∈ C
T and there exists t ∈ [, T] such that |u(t)| < d.

Then

(∫ T



∣∣u(t)
∣∣ dt

) 
 ≤

(
T
π

)(∫ T



∣∣u′(t)
∣∣t

) 


+ dT

 .

Next, we prove that Brillouin electron beam focusing system (.) has at least one posi-
tive π-periodic solution if a ∈ (, 

 ). Firstly, we consider the following singular equation:

x′′(t) + a(t)x(t) =


x(t)
, (.)

where a(t) ∈ C(R, [, +∞)) and a(t + T) = a(t), ∀t ∈ R.

Theorem . Assume that |a|∞ := maxt∈[,T] |a(t)| < π

T holds. Then (.) has at least one
positive T-periodic solution.

Proof Firstly, we consider the following (homotopy) family of (.):

x′′(t) + λ

(
a(t)x(t) –


x(t)

)
= , λ ∈ (, ]. (.)

Let x(t) ∈ C
T be an arbitrary solution of (.). Integrating (.) from  to T , we get

∫ T



(
a(t)x(t) –


x(t)

)
dt = . (.)

So, we know that there exist positive constants D < D and t ∈ (, T) such that

D ≤ x(t) ≤ D. (.)
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Therefore, we have

∣∣x(t)
∣∣ =

∣
∣∣
∣x(t) +

∫ t

t

x′(s) ds
∣
∣∣
∣ ≤ D +

∫ T



∣∣x′(s)
∣∣ds. (.)

Let us write x(t) = x̄ + x̃(t), here x̃(t) := x(t) – x̄, and x̄ := 
T

∫ T
 x(t) dt. Obviously,

∫ T
 x̃(t) dt = . Now (.) for x̃(t) is

x̃′′(t) + λa(t)
(
x̄ + x̃(t)

)
= λ


x(t)

, (.)

since x̄′′ = . Multiplying (.) by x̄ – x̃(t), we have

x̄x̃′′(t) – x̃(t)x̃′′(t) + λa(t)
(
x̄ – x̃(t)

)
= λ

x̄ – x̃(t)
x(t)

.

Integrating this equation over one period and making use of the T-periodicity of x̃(t), we
get

–
∫ T


x̃(t)x̃′′(t) dt + λ

∫ T


a(t)

(
x̄ – x̃(t)

)
dt = λ

∫ T



x̄ – x̃(t)
x(t)

dt.

So, we have

∫ T



∣
∣x̃′(t)

∣
∣ dt = λ

∫ T


a(t)x̃(t) dt – λx̄

∫ T


a(t) dt + λ

∫ T



x̄ – x̃(t)
x(t)

dt.

Since a(t) ≥ , then –x̄ ∫ T
 a(t) dt ≤ . So, we have

∫ T



∣
∣x̃′(t)

∣
∣ dt ≤ λ

∫ T


a(t)x̃(t) dt + λ

∫ T



x̄ – x̃(t)
x(t)

dt

= λ

∫ T


a(t)x̃(t) dt + λ

∫ T



x̄ – x(t)
x(t)

dt

= λ

∫ T


a(t)x̃(t) dt + λ

∫ T



x̄
x(t)

dt – λT

≤
∫ T



∣
∣a(t)

∣
∣
∣
∣x̃(t)

∣
∣ dt + |x̄|

∫ T




|x(t)| dt.

For any ε > , there is g+
ε ∈ L(, T) and g+

ε > 


x(t)

≤ εx(t) + g+
ε (t) (.)

for all x(t) >  and a.e. t ∈ [, T]. So, we have

∫ T



∣∣x̃′(t)
∣∣ ≤

∫ T



∣∣a(t)
∣∣∣∣x̃(t)

∣∣ dt + x̄
∫ T



(
εx(t) + g+

ε (t)
)

dt

≤
∫ T



∣
∣a(t)

∣
∣
∣
∣x̃(t)

∣
∣ dt +


T

∫ T



∣
∣x(t)

∣
∣dt

∫ T



(
εx(t) + g+

ε (t)
)

dt
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≤ |a|∞
∫ T



∣∣x̃(t)
∣∣ dt +

ε

T

(∫ T



∣∣x(t)
∣∣dt

)

+

T

∫ T



∣∣x(t)
∣∣dt

∫ T


g+
ε (t) dt

≤ |a|∞
∫ T



∣
∣x̃(t)

∣
∣ dt + ε

∫ T



∣
∣x(t)

∣
∣ dt

+ 
(∫ T



∣∣x(t)
∣∣ dt

) 

(∫ T



∣∣g+
ε (t)

∣∣ dt
) 


,

where |a|∞ = maxt∈[,T] |a(t)|. Since D ≤ x(t) ≤ D, by Lemma ., we have

(∫ T



∣∣x(t)
∣∣ dt

) 
 ≤

(
T
π

)(∫ T



∣∣x′(t)
∣∣ dt

) 


+ D
√

T . (.)

By applications of Wirtinger’s inequality (in [] Lemma .) and (.), we have

∫ T



∣∣x̃′(t)
∣∣ ≤ |a|∞

(
T

π

) ∫ T



∣∣x̃′(t)
∣∣ dt + ε

((
T
π

)(∫ T



∣∣x′(t)
∣∣ dt

) 


+ D
√

T
)

+ 
((

T
π

)(∫ T



∣
∣x′(t)

∣
∣ dt

) 


+ D
√

T
)∥

∥g+
ε

∥
∥



= |a|∞
(

T
π

) ∫ T



∣
∣x̃′(t)

∣
∣ dt + ε

(
T
π

) ∫ T



∣
∣x′(t)

∣
∣ dt

+ 
(
D

√
Tε +

∥∥g+
ε

∥∥


)
(

T
π

)(∫ T



∣∣x′(t)
∣∣ dt

) 


+ D
Tε + D

√
T

∥∥g+
ε

∥∥
,

where ‖g+
ε ‖ = (

∫ T
 |g+

ε (t)| dt) 
 . Since x̃′(t) = x′(t), then we have

∫ T



∣
∣x′(t)

∣
∣ ≤

(
|a|∞

(
T

π

)

+ ε

(
T
π

))∫ T



∣
∣x′(t)

∣
∣ dt

+ 
(
D

√
Tε +

∥∥g+
ε

∥∥


)
(

T
π

)(∫ T



∣∣x′(t)
∣∣ dt

) 


+ D
Tε + D

√
T

∥
∥g+

ε

∥
∥

.

From |a|∞ < π

T for ε >  sufficiently small, there exists a positive constant M′
 such that

∫ T



∣
∣x′(t)

∣
∣ dt ≤ M′

.

From (.) and by applying Hölder’s inequality, we have

|x|∞ ≤ D +
∫ T



∣
∣x′(s)

∣
∣ds ≤ D +

√
T

(∫ T



∣
∣x′(s)

∣
∣ ds

) 
 ≤ D +

√
TM′ 


 = M. (.)

On the other hand, from x() = x(T), we know that there is a point t ∈ [, T] such that
x′(t) = , and then |x′(t)| = |x′(t) +

∫ t
t

x′′(s) ds| ≤ ∫ T
 |x′′(s)|ds. From (.) and (.), we
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have

∣∣x′∣∣∞ ≤
∫ T



∣∣x′′(t)
∣∣dt

≤ λ

∫ T



∣∣a(t)
∣∣∣∣x(t)

∣∣dt + λ

∫ T




x(t)

dt

≤ λ|a|∞MT + λ

∫ T



(
εx(t) + g+

ε (t)
)

dt

≤ λ|a|∞MT + λεMT + λ
√

T
(∫ T



∣∣g+
ε (t)

∣∣ dt
) 



≤ λ|a|∞MT + λεMT + λ
√

T
∥∥g+

ε

∥∥
 := λM,

i.e.,

∣∣x′∣∣∞ ≤ λM. (.)

Multiplying (.) by x′(t), we get

x′′(t)x′(t) + λa(t)x(t)x′(t) = λ
x′(t)
x(t)

. (.)

Let τ ∈ [, T] be as in (.). For any τ ≤ t ≤ T , we integrate (.) on [τ , t] and get

λ

∫ x(t)

x(τ )


u

du = λ

∫ t

τ

x′(s)
x(t)

ds

=



x′(t) –



x′(τ ) + λ

∫ t

τ

a(s)x(s)x′(s) ds.

(.)

By (.) we have

x′(t) ≤ λM
,

∣∣∣
∣

∫ t

τ

a(s)x(s)x′(s) ds
∣∣∣
∣ ≤ λ|a|∞MMT .

With these inequalities we can derive from (.) that

∣
∣∣
∣

∫ x(t)

x(τ )


u

du
∣
∣∣
∣ ≤ M

 + |a|∞MMT . (.)

So, we know that there exists M >  such that

x(t) ≥ M, ∀t ∈ [τ , T], (.)

since limx→+
∫ x



u du = +∞. The case t ∈ [, τ ] can be treated similarly.

Having in mind (.), (.), (.) and (.), we define

� =
{

x ∈ C
T : E < x(t) < E and

∣∣x′(t)
∣∣ < E ∀t ∈R

}
, (.)
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where  < E < min{M, D}, E > max{M, D} and E > M. Then condition (i) of
Lemma . is satisfied. For a constant x ∈ ker L, x > , we have

ḡ(x) :=

T

∫ T



(
a(t)x(t) –


x(t)

)
dt.

Obviously, ḡ(x) <  for all x ∈ (, E), ḡ(x) >  for all x > E, so condition (ii) of Lemma .
holds. Set

H(x,μ) = μx + ( – μ)

T

∫ T



(
a(t)x(t) –


x(t)

)
dt,

we have xH(x,μ) > . Thus H(x,μ) is a homotopic transformation and

deg{F ,� ∩R, } = deg

{

T

∫ T



(
a(t)x(t) –


x(t)

)
dt,� ∩R, 

}

= deg{x,� ∩R, } �= .

Thus assumption (iii) of Lemma . is also verified. Therefore (.) has at least one positive
T-periodic solution. �

Next, we apply Theorem . to Brillouin electron beam focusing system (.). Equa-
tion (.) is of the form (.) with a(t) = a( + cos t).

Theorem . If a ∈ (, 
 ), then (.) has at least one positive π -periodic solution.

Proof If a < 
 , then

|a|∞ = a <  =
π

T ,

i.e., |a|∞ < π

T holds. Theorem . implies that (.) has at least one π-periodic positive
solution. �

Finally, we present an example to illustrate our result.

Example . Consider the second order differential equation with singularity:

x′′(t) + ( + cos t) =

x

. (.)

It is clear that T = π , a(t) =  + cos t. Obviously,

|a|∞ = max
t∈[,T]

| + cos t| =  <  =
π

π .

Therefore, (.) has at least one π-periodic solution by application of Theorem ..
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