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Abstract
In this paper, we reduce a linear d-dimensional beam equation with an x-periodic and
t-quasi-periodic potential for most values of the frequency vector via the KAM
theorem. We focus on the measure estimates of small divisor conditions and the
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Keywords: infinite-dimensional Hamiltonian systems; beam equations; reducibility;
invariant torus

1 Introduction
Inspired by an old report of the existence of traveling waves on the Golden Gate Bridge in
San Francisco in , the study of traveling waves in supported beams was begun in []
and []. The first result is the following beam equation in []:

utt + uxxxx + u+ = , x ∈R
. ()

The solutions of the form  + y(x – ct) were found by reducing the partial differential
equation () to the ordinary differential equation on the real line. Later, many solutions
were constructed and calculated by the mountain pass algorithm. Until recently, there has
been little progress on the proof of existence of solutions of the beam equations, espe-
cially x ∈ T

d = R
d/πZd . Recently, Geng and You in [] obtained the higher-dimensional

nonlinear beam equations with periodic boundary conditions by the KAM method, i.e.,

utt + �u + σu + f (u) = , ()

where the nonlinearity f (u) was a real-analytic function near u =  with f () = f ′() = .
Notice that the perturbation in [] satisfied special conditions and did not explicitly con-
taining the space variables and the time variable, which is crucial for the proof. Eliasson,
Grébert, Kuksin [] made a breakthrough in KAM theory for the space-multidimensional
beam equation with the perturbation containing the space variables. In [] they consid-
ered the nonlinear beam equation

utt + �u + mu + ∂uG(x, u) = , t ∈R, x ∈ T
d,
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where G(x, u) = u + O(u). Thanks to those results of admissible sets and the proof of
the KAM theorem we obtain the existence of quasi-periodic solutions of a simper beam
equation.

In this paper we focus us our attention on the following non-autonomous, d-dimensional
beam equation with quasi-periodic forcing:

utt + (–� + M)u + εψ(ωt, x)u = , M > , t ∈R, x ∈ T
d, ()

with periodic boundary conditions

u(t, x, x, . . . , xd) = u(t, x + π , x, . . . , xd) = · · · = u(t, x, x, . . . , xd + π ), ()

where ε is a small parameter, the frequency vector ω = (ω, . . . ,ωm) ∈ [	, 	]m,  < 	 < ,
ψ(ωt, x) is a real-analytic function with x-periodic and t-quasi-periodic.

The forced problem is an important feature of the classical perturbation for Hamiltonian
systems. The reducibility of finite-dimensional systems is interesting itself and remains
open in the general case. In [], Bogoljubov firstly applied KAM-techniques to reduce of
non-autonomous finite-dimensional linear systems to constant coefficient equations. In
[], Bambusi and Graffi gave a general proof of reducibility of quasi-periodically forced
PDEs. Jianguo Si [] considered the existence of small-amplitude quasi-periodic solutions
of the quasi-periodically forced nonlinear wave equations. In [], the author of this pa-
per and Si proved the existence of quasi-periodic solutions of quasi-periodically forced
nonlinear Schrödinger equations with quasi-periodic inhomogeneous terms, i.e.,

iut – uxx + mu + φ(t)|u|u = εg(t).

The reducibility is well developed for one-dimensional Hamiltonian systems. For
higher-dimensional Hamiltonian PDEs, there are few results of reducibility via the KAM
theorem because of the multiplicity of eigenvalues. It is worth noting that in the higher-
dimensional case the multiplicity goes asymptotically to infinity. On one hand, it is due
to the unperturbed part and solving the linearized equations being more complicated in
a KAM iteration; on the other hand, it makes the measure estimation very difficult since
there are so many non-resonance conditions to be satisfied. To overcome this difficulty,
Bourgain [] made the first breakthrough by proving that the two-dimensional nonlinear
Schrödinger equations admitted small-amplitude quasi-periodic solutions by develop-
ing the Craig-Wayne method. Craig-Wayne-Bourgain’s method succeeded in avoiding the
multiplicity by using of the explicitly Hamiltonian structure of the systems. Moreover,
the KAM approach has its own advantages. For example, the linear stability and zero
Liapunov exponents are obtained and the existence results allow one to construct a lo-
cal normal form in a neighborhood of the obtained solutions, which is useful for better
understanding of the dynamics.

Recently, some results were also obtained in higher-dimensional systems by KAM
method. In , Eliasson and Kuksin [] have proved that the following linear d-
dimensional Schrödinger equation with an x-periodic and t-quasi-periodic potential was
reduced to an autonomous equation for most values of the frequency vector:

u̇ = –i
(
�u – εV (ϕ + tω, x;ω)u

)
, x ∈ T

d = R
d/πZd.
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In , Eliasson and Kuksin [] also considered the nonlinear d-dimensional Schröding-
er equations. Their methods of dealing with the multiplicity of the eigenvalues of the linear
operator are the key to our paper. In , Procesi and Xu [] proved the existence and sta-
bility of a quasi-periodic solution of the following nonlinear d-dimensional Schrödinger
equations:

iut – �u + Mξ u + f
(|u|)u = , t ∈R, x ∈ T

d,

where f (y) is a real-analytic function with f () = , Mξ is a Fourier multiplier. In , Pro-
cesi and Procesi [] also proved, through a KAM algorithm, the existence of large families
of stable and unstable quasi-periodic solutions for the NLS in any number of independent
frequencies. Those results are important for KAM theories of space-multidimensional
Hamiltonian PDEs.

Different from one-dimensional Hamiltonian systems, there exist two difficulties in
higher-dimensional beam equations. One is the measure estimate of small divisor con-
ditions. In fact, the first Melnikov conditions and the second Melnikov conditions are
partially violated. To overcome this difficulty we have divided ψ(ωt, x) by its mean value.
Another difficulty is the estimation on the symplectic transformation. We use the spe-
cial assumption of the forced term ψ(ωt, x) to overcome this difficulty. We introduce the
assumptions.

Throughout this paper, we assume that:
(A) ψ(ωt, x) is a real-analytic quasi-periodic function. Moreover,

ψ(θ , x) = ψ +
∑

k∈Zm\{}
ψk(x)e〈k,θ〉, ωt = θ ,  �= ψ ∈R.

(A) There exists a constant C such that
∣∣ψ(ωt, x)

∣∣ ≤ C, |ψ| ≤ C,
∣∣ψk(x)

∣∣ ≤ C.

Remark . Assumption (A) on the forcing ψ(ωt, x) is fundamental in order to deal with
the small divisors problem. Indeed it implies in equation () that the coefficients ζ 

nn = 
for k =  and n �= n for any n, n ∈ Z

d . An important consequence is that one can solve
equations () even if the small divisor

〈k,ω〉 – λn,ν + λn,ν = , k = , n �= n, |n| = |n|.

This is the key point to estimate the generator of the change of coordinates and to have
at each step a diagonal normal form. Thanks to this fact at each step the homological
equation is a scalar equation when one passes to the Fourier basis. Without such an as-
sumption one could get only a block diagonal normal form with blocks whose dimension
grows with |n| and the homological equation would be more difficult. This assumption
makes the measure estimate as easy as the one-dimensional case. In order to complete
one KAM step, we need to prove that the perturbation always has the special form along
the KAM iteration.

The paper is organized as follows. In Section , we introduce some notations, the expres-
sion of Hamiltonian and the main result. Section  is devoted to proving the reducibility.
The proof of the measure estimate is given in Section .
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2 The main result
In the following we introduce some notations. Let la,ρ be the Banach spaces of complex
valued sequences z = (. . . , zn, . . .)n∈Zd , and its complex conjugate z̄ = (. . . , z̄n, . . .)n∈Zd with
finite weighted norm

‖z‖a,ρ =
∑

n∈Zd

|zn||n|ae|n|ρ ,

where a ≥ , ρ > , n = (n, . . . , nd), |n| =
√

n
 + · · · + n

d . Denote the average of f by

[f ] =


(π )m

∫

Tm
f (θ ) dθ .

Let A = –� + M and ut = w, then we can rewrite equation () as follows:

ut = w, wt = –Au – εψ(ωt, x)u.

Letting w = A 
 ( v̄–v√

i ) and u = A– 
 ( v̄+v√

 ), the equations become

vt = i
(

Av +
ε√


A– 


(
ψ(ωt, x)A– 



(
v + v̄√



)))
. ()

Equation () can be rewritten as the Hamiltonian equation

vt = i
∂H
∂ v̄

()

and the corresponding Hamiltonian is

H =


〈Av, v̄〉 +

ε



∫

Td
ψ(ωt, x)

(
A– 



(
v + v̄√



))

dx. ()

The operator A with the periodic boundary conditions has eigenvalues {λn} and an ex-
ponential basis {φn(x)} satisfying, respectively,

λn = |n| + M, φn(x) =
ei〈n,x〉

√
(π )d

, n ∈ Z
d.

Let v =
∑

n∈Zd znφn(x). The system () is equivalent to the following equations:

żn = i
(

λnzn + ε
∂P
∂ z̄n

)
, ()

with corresponding Hamiltonian function H =
∑

n∈Zd λnznz̄n + εP(t, z, z̄), where

P(t, z, z̄) ≡
∫

Td

ψ(ωt, x)


( ∑

n∈Zd

znφn√
λn

+
∑

n∈Zd

z̄n φ̄n√
λn

)

dx

:=
∑

n,n∈Zd

(
ζ 

nn (t)zn zn + ζ 
nn (t)zn z̄n + ζ 

nn (t)z̄n z̄n

)
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with

ζ 
nn (t) =



√

λnλn

∫

Td
ψ(ωt, x)φn (x)φn (x) dx,

ζ 
nn (t) =



√

λnλn

∫

Td
ψ(ωt, x)φn (x)φ̄n (x) dx,

ζ 
nn (t) =



√

λnλn

∫

Td
ψ(ωt, x)φ̄n (x)φ̄n (x) dx.

()

We introduce a pair of action-angle variables (J , θ ) ∈R
m ×R

m, θ = ωt with

θ̇ = ω, J̇ = –
∂H
∂θ

, żn = i
∂H
∂ z̄n

, ˙̄zn = –i
∂H
∂zn

, n ∈ Z
d.

Thus, from Assumption (A) and (), the Hamiltonian of () becomes

H = 〈ω, I〉 +
∑

n∈Zd

λnznz̄n + εP, ()

where

P =
∑

n,n∈Zd

(
ζ 

nn (θ )zn zn + ζ 
nn (θ )zn z̄n + ζ 

nn (θ )z̄n z̄n

)
, ()

with

ζ 
nn (θ ) =

ψ


√

λnλn

∫

Td
φn (x)φn (x) dx

+



√

λnλn

∑

k∈Zm\{}

∫

Td
ψk(x)φn (x)φn (x) dxei〈k,θ〉

:=
∑

k∈Zm

ζ k
nn ei〈k,θ〉,

ζ 
nn (θ ) =

ψ


√

λnλn

∫

Td
φn (x)φ̄n (x) dx

+



√

λnλn

∑

k∈Zm\{}

∫

Td
ψk(x)φn (x)φ̄n (x) dxei〈k,θ〉

:=
∑

k∈Zm

ζ k
nn ei〈k,θ〉,

ζ 
nn (t) =

ψ


√

λnλn

∫

Td
φ̄n (x)φ̄n (x) dx

+



√

λnλn

∑

k∈Zm\{}

∫

Td
ψk(x)φ̄n (x)φ̄n (x) dxei〈k,θ〉

:=
∑

k∈Zm

ζ k
nn ei〈k,θ〉.

()
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Moreover, we can get

ζ k
nn = , ζ k

nn = , if k = , n + n = ;

ζ k
nn = , if k = , n – n = .

()

We introduce the following sets. For  < 	 < , let

J := [	, 	]m.

For  �= k ∈ Z
m, let

J
k =

{
ω ∈ J :

∣∣〈k,ω〉∣∣ ≤ 	

C∗|k|m+ , C∗  
}

.

It is easy to see that

meas J
k ≤ C|k|–	m– 	

C∗|k|m+ ≤ 	m

C∗|k|m+ .

Let J =
⋃

�=k∈Zm J
k and Ĵ = J\J, there exists a constant  < γ <  such that

meas Ĵ = 	m –
∑

�=k∈Zm

meas J
k ≥ 	m –

	m

C∗

∑

�=k∈Zb


|k|m+ ≥

(
 –

γ



)
	m

by the convergence of
∑

�=k∈Zb


|k|m+ .

Theorem . For the higher-dimensional beam equation (), there exist a  < ε∗ �  and
a set J ⊂ Ĵ with meas J ≥ meas Ĵ( – O(	m)), such that, for any  < ε < ε∗,ω ∈ J , equations
() and () admit solutions of the form

u(t, x) =
∑

n∈Zd

C cos(μnt)√
λn

φn(x) ()

where

μn = λn + ε
(
cn + c̄n(ε)

)
, ()

with cn = ψ
λn

and c̄n(ε) → , as ε → .

Remark . Theorem . can be directly proved by Lemma .. In fact, from the Hamilto-
nian () in Lemma ., v =

∑
n∈Zd znφn(x) and u = A– 

 ( v̄+v√
 ), it is easy to obtain the solution

of the beam equation (). Thus, in this paper we focus on the proof of the Lemma ..

3 Reducibility
3.1 Notations
We introduce the following notations and spaces.

For given σ > , r > , ν = , , . . . , we define sequences {σν} and {rν}:
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() σ = σ , σν = σ( – τν) with τ =  and τν =
∑ν

j= j–


∑∞

j= j– . It is easy to see
σ > σν > σν+ > σ /.

() r = r, rν = r( – τν), ε = ε, εν = ε(+δ)ν . It is easy to see r > rν > rν+ > r/.
Denote

�(σ ) =
{
θ = (θ, . . . , θm) ∈C

m/πZm : | Im θ | < σ
}

and

Da,ρ = Da,ρ(σ , r)

=
{

(θ , J , z, z̄) ∈C
m/πZm ×C

m × la,ρ × la,ρ :

| Im θ | < σ , |J| < r,‖z‖a,ρ < r,‖z̄‖a,ρ < r
}

.

Thus, we get a family of domains:

�(σ) ⊃ �(σ) ⊃ · · · ⊃ �(σν) ⊃ �(σν+) ⊃ · · · ⊃ �

(
σ



)

and

Da,ρ(σ, r) ⊃ · · · ⊃ Da,ρ(σν , rν) ⊃ Da,ρ(σν+, rν+) ⊃ · · · ⊃ Da,ρ
(

σ


,

r



)
.

We rewrite �l := �(σl), Da,ρ
l = Da,ρ(σl, rl), l = , , . . . .

For a one order Whitney smooth function F(ω) on closed bounded set Ĵ , we define

‖F‖∗
Ĵ = max

{
sup
ω∈Ĵ

|F|, sup
ω∈Ĵ

|∂ωF|
}

.

If F(ω) is a vector function from Ĵ to la,ρ (or Rb×b ) which is one order Whitney smooth
on Ĵ , we define

‖F‖∗
a,ρ,Ĵ =

∥∥(∥∥Fi(ω)
∥∥∗

Ĵ

)
i

∥∥
a,ρ

(
or ‖F‖∗

J∗ = max
≤i≤b

∑

≤i≤b

(∥∥Fii (ω)
∥∥∗

J∗
)
)

.

Let w̃ = (θ , J , z, z̄) ∈ Da,ρ , we denote the weighted norm for w̃

|w̃|a,ρ = |θ | +

r |J| +


r
‖z‖a,ρ +


r
‖z̄‖a,ρ .

If F(w̃;ω) is a vector function from Da,ρ × Ĵ to la,ρ which is one order Whitney smooth on
ω, we define

‖F‖∗
a,ρ,Da,ρ×Ĵ = sup

w̃∈Da,ρ
‖F‖∗

a,ρ,Ĵ and ‖F‖∗
Da,ρ×Ĵ = sup

w̃∈Da,ρ
‖F‖∗

Ĵ .

To the function F(θ , J , z, z̄), associate a hamiltonian vector field defined as XF = {FJ , –Fθ ,
iFz̄, –iFz}, we denote the weighted norm for XF by letting

|XF |∗a,ρ,Da,ρ×Ĵ = ‖FJ‖∗
Da,ρ×Ĵ +


r ‖Fθ‖∗

Da,ρ×Ĵ +

r
(‖Fz̄‖∗

a,ρ,Da,ρ×Ĵ + ‖Fz‖∗
a,ρ,Da,ρ×Ĵ

)
. ()
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Let B(w̃;ω) be an operator from Da,ρ to Da,ρ̄ for (w̃;ω) ∈ Da,ρ × Ĵ , we define the operator
norm

∣
∣B(w̃;ω)

∣
∣op
a,ρ̄,ρ,Da,ρ×Ĵ = sup

(w̃;ω)∈Da,ρ×Ĵ
sup
w̃�=

|B(w̃;ω)w̃|a,ρ̄

|w̃|a,ρ
,

∣∣B(w̃;ω)
∣∣∗op
a,ρ̄,ρ,Da,ρ×Ĵ = max

{|B|op
a,ρ̄,ρ,Da,ρ×Ĵ

, |∂ωB|op
a,ρ̄,ρ,Da,ρ×Ĵ

}
.

3.2 Reducibility
Now, we are ready to introduce our reducibility and prove it via the KAM iteration.

Lemma . For the Hamiltonian H in (), there are a  < ε∗ �  and a set J ⊂ Ĵ with
meas J ≥ meas Ĵ( – O(	m)), such that, for any  < ε < ε∗,ω ∈ J , there is a linear symplectic
transformation

�∞ : Da,ρ(σ /, r/) × J → Da,ρ(σ , r)

such that the following statements hold:
(i) There are two absolute constants C >  and  < δ <  such that

∣∣�∞ – id
∣∣∗
a,ρ+,Da,ρ (σ /,r/)×J ≤ Cε

δ
 ,

where id is the identity mapping.
(ii) The transformation �∞ changes Hamiltonian () into

H∞ := H ◦ �∞ = 〈ω, J〉 +
∑

n∈Zd

μnznz̄n, ()

where

μn = λn +
∞∑

s=

εsλ̃n,s, λ̃n, =
ψ

λn
and |λ̃ns| ≤ C, s = , , , . . . . ()

3.3 Proof the Lemma 3.1

Proof We first introduce the measure estimates to treat small divisors in reducing, which
will be proved in Lemma .. For k ∈ Z

m, n, n ∈ Z
d , there exists a family of closed subsets

J l(l = , . . . ,ν)

Jν ⊂ · · · ⊂ J l+ ⊂ J l ⊂ · · · ⊂ J ⊂ Ĵ ⊂ J

such that, for ω ∈ J l ,

∣∣〈k,ω〉 ± (λn,ν ± λn,ν)
∣∣ ≥ 	 meas Ĵ

( + l)(|k| + )m+ ()

and

meas J l ≥ meas Ĵ

(

 – C	m
l∑

i=


 + i

)

, ()
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where C is a constant depending on d. Moreover, let J =
⋂∞

l= J l , then

meas J ≥ meas Ĵ
(
 – O

(
	m))

()

provided that 	 is small enough.
Let (m, m) = {(, ), (, ), (, )}. We construct an iterative series {Hl} of Hamiltonian

functions of the form

Hl = 〈ω, J〉 +
∑

n∈Zd

λn,lznz̄n + εlPl(θ , J , z, z̄;ω), l = , , . . . ,ν, (E)l

where

Pl(θ , J , z, z̄) =
∑

k∈Zm ,n,n∈Zd

(
ζ k

nn,lzn zn + ζ k
nn,lzn z̄n + ζ k

nn,l z̄n z̄n

)
ei〈k,θ〉

with

ζ
mm
nn,l =

∑

k∈Zm ,n,n∈Zd

ζ
kmm
nn,l ei〈k,θ〉

and

ζ k
nn,l = , ζ k

nn,l = , if k = , n + n = ;
ζ k

nn,l = , if k = , n – n = .
(.)l

Furthermore, the functions ζ
mm
nn,l are analytic on the domain �l × J l ,

ζ
mm
nn,l = ζ

mm∗
nn,l ,

∥∥ζ
mm∗
n,n,l

∥∥∗
�l×Jl

≤ C, n, n ∈ Z
d, l = , , . . . ,ν, (.)l

and

λn, = λn, λn,l = λn +
l–∑

s=

εsλ̃n,s, l = , , , . . . ,ν, (.)l

with

λ̃n,s =


(π )m

∫

Tm
ζ ,

nn,s(θ ,ω) dθ , s = , , , . . . , l – . ()

Clearly, we have Hl|l= = H . For l = , we have P(θ , J , z, z̄) = P(θ , J , z, z̄) defined in ().
From () and Assumption (A), the functions ζ

mm
nn,(θ ;ω) are analytic on the domain

� × J and satisfy (.). Thus, we get

λ̃n, =


(π )m

∫

Tm
ζ 

nn,(θ ;ω) dθ =
ψ

λn
.

This implies that (.) is satisfied.
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We look for a change of variables Sν defined in a domain Da,ρ
ν+ by the time-one map X

Fν

of the Hamiltonian vector field XFν , such that the system (E)ν is transformed into the form
(E)ν+ and satisfies (.)ν+, (.)ν+. In fact, the new Hamiltonian Hν+ can be written as

Hν+ := Hν ◦ X
Fν

= 〈ω, J〉 +
∑

n∈Zd

λn,νznz̄n +
{
〈ω, J〉 +

∑

n∈Zd

λn,νznz̄n,Fν

}

+ ενPν(θ , J , z, z̄;ω)
{
ενPν(θ , J , z, z̄;ω),Fν

}

+
∫ 


( – t)

{{Hν ,Fν},Fν

} ◦ Xt
Fν

dt. ()

Let Fν = ενFν , and Fmm
nn,ν =

∑
k∈Zm Fkmm

nn,ν ei〈k,θ〉 with

Fk
nn,ν = , Fk

nn,ν = , if k = , n + n = ;

Fk
nn,ν = , if k = , n – n = .

We shall find a function F of the form

Fν(θ , J , z, z̄;ω) =
∑

k∈Zm ,n,n∈Zd ,
|k|+||n |–|n||�=

Fk
nn,νzn z̄n ei〈k,θ〉

+
∑

k∈Zm ,n,n∈Zd

(
Fk

nn,νzn zn + Fk
nn,ν z̄n z̄n

)
ei〈k,θ〉 ()

satisfying the homological equation

{
〈ω, J〉 +

∑

n∈Zd

λn,νznz̄n, Fν

}
+ Pν(θ , J , z, z̄;ω) =

∑

n∈Zd

[
ζ 

nn,ν
]
znz̄n. ()

It follows that

{
〈ω, J〉 +

∑

n∈Zd

λn,νznz̄n, Fν

}

= i
∑

k∈Zm ,n,n∈Zd

(〈k,ω〉 – λn,ν – λn,ν
)
Fk

nn,νzn zn ei〈k,θ〉

+ i
∑

k∈Zm ,n,n∈Zd

(〈k,ω〉 + λn,ν + λn,ν
)
Fk

nn,νzn zn ei〈k,θ〉

+ i
∑

k∈Zm ,n,n∈Zd ,
|k|+||n |–|n||�=

(〈k,ω〉 – λn,ν + λn,ν
)
Fk

nn,νzn z̄n ei〈k,θ〉. ()
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By (), it follows that, for k ∈ Z
m, n, n ∈ Z

d , the Fkmm
nn,ν are determined by the following

linear algebraic system:

(〈k,ω〉 – λn,ν – λn,ν
)
Fk

nn,ν = iς k
nn,ν ,

(〈k,ω〉 – λn,ν + λn,ν
)
Fk

nn,ν = iς k
nn,ν , |k| +

∣
∣|n| – |n|

∣
∣ �= ,

(〈k,ω〉 + λn,ν + λn,ν
)
Fk

nn,ν = iς k
nn,ν .

()

For n, n ∈ Z
d , we get

F
nn,ν =

∑

k∈Zm ,
|k|+||n |–|n ||�=

iζ k
nn,ν

〈k,ω〉 – λn,ν + λn,ν
ei〈k,θ〉,

F
nn,ν =

∑

k∈Zm

iζ k
nn,ν

〈k,ω〉 – λn,ν – λn,ν
ei〈k,θ〉,

F
nn,ν =

∑

k∈Zm

iζ k
nn,ν

〈k,ω〉 + λn,ν + λn,ν
ei〈k,θ〉.

()

By Cauchy’s estimate and (.)ν , we get

∣∣ζ kmm
nn,ν

∣∣ ≤ ∥∥ζ mm
nn,ν

∥∥∗
�ν×Jν

e–|k|σν ()

and

∣∣∂ωζ kmm
nn,ν

∣∣ ≤ ∥∥ζ mm
nn,ν

∥∥∗
�ν×Jν

e–|k|σν . ()

Note that () and (), for n, n ∈ Z
d , we get

sup
(θ ;ω)∈�ν+×Jν

∣∣F
nn,ν

∣∣ ≤ C
∥∥ζ 

nn,ν
∥∥∗

�ν×Jν

(
 + ν)

( ∑

|k|+||n |–|n||�=,
k∈Zm

(|k| + 
)m+e–|k|(σν–σν+)

)
,

and for (m, m) = {(, ), (, )},

sup
(θ ;ω)∈�ν+×Jν

∣∣Fmm
nn,ν

∣∣ ≤ C
∥∥ζ mm

nn,ν
∥∥∗

�ν×Jν

(
 + ν) ∑

k∈Zm

(|k| + 
)m+e–|k|(σν–σν+).

Furthermore, using Lemma . in [], for (θ ;ω) ∈ �ν+ × Jν , we get

∣
∣Fmm

nn,ν
∣
∣ ≤ C

∥
∥ζ mm

nn,ν
∥
∥∗

�ν×Jν
(ν + )m+, (m, m) =

{
(, ), (, ), (, )

}
. ()

From (.)l , we have

∣∣∂ω(λn,ν ± λn,ν)
∣∣ ≤ Cε, |∂ωλn,ν | ≤ Cε.
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Thus, in view of ()-(), and using Lemma . in [], we have, for (θ ;ω) ∈ �ν+ × Jν ,
n, n ∈ Z

d ,

∣
∣∂ωF

nn,ν
∣
∣ ≤

∑

k∈Zm ,
|k|+||n |–|n||�=

∣∣
∣∣

∂ωζ k
nn,ν

〈k,ω〉 – λn,ν + λn,ν

∣∣
∣∣
∣
∣ei〈k,θ〉∣∣

+
∑

k∈Zm ,
|k|+||n |–|n||�=

∣
∣∣
∣
ζ k

nn,ν∂ω(〈k,ω〉 – λn,ν + λn,ν)
(〈k,ω〉 – λn,ν + λn,ν)

∣
∣∣
∣
∣∣ei〈k,θ〉∣∣

≤ C
∥∥ζ 

nn,ν
∥∥∗

�ν×Jν

(
 + l) ∑

k∈Zm


(|k| + Cε

)(|k| + 
)m+e–|k|(σν–σν+)

≤ C
∥∥ζ 

nn,ν
∥∥∗

�ν×Jν
(ν + )m+, ()

and for (m, m) = {(, ), (, )},

∣
∣∂ωFmm

nn,ν
∣
∣ ≤

∑

k∈Zm

∣∣
∣∣

∂ωζ
kmm
nn,ν

〈k,ω〉 ± (λn,ν + λn,ν)

∣∣
∣∣
∣
∣ei〈k,θ〉∣∣

+
∑

k∈Zm

∣
∣∣
∣
ζ

kmm
nn,ν ∂ω(〈k,ω〉 ± (λn,ν + λn,ν))

(〈k,ω〉 ± (λn,ν + λn,ν))

∣
∣∣
∣
∣∣ei〈k,θ〉∣∣

≤ C
∥∥ζ mm

nn,ν
∥∥∗

�ν×Jν

(
 + l) ∑

k∈Zm


(|k| + Cε

)(|k| + 
)m+e–|k|(σν–σν+)

≤ C
∥∥ζ mm

nn,ν
∥∥∗

�ν×Jν
(ν + )m+. ()

It follows immediately that, for (m, m) = {(, ), (, ), (, )},

∣∣∂ωFmm
nn,ν

∣∣ ≤ C
∥∥ζ mm

nn,ν
∥∥∗

�ν×Jν
(ν + )m+. ()

From (), (), () and (), we have, for (m, m) = {(, ), (, ), (, )},

∥∥Fmm
nn,ν

∥∥∗
�ν+×Jν

≤ C
∥∥ζ mm

nn,ν
∥∥∗

�ν×Jν
(ν + )m+. ()

In view of (), we have

∂θ F
nn,ν =

∑

|k|+||n|–|n||�=

–ζ k
nn,ν

〈k,ω〉 – λn,ν + λn,ν
ei〈k,θ〉 · k,

∂θ F
nn,ν =

∑

k∈Zm

–ζ k
nn,ν

〈k,ω〉 – λn,ν – λn,ν
ei〈k,θ〉 · k,

∂θ F
nn,ν =

∑

k∈Zm

–ζ k
nn,ν

〈k,ω〉 + λn,ν + λn,ν
ei〈k,θ〉 · k,

∂θθ F
nn,ν =

∑

|k|+||n|–|n||�=

–ζ k
nn,ν

〈k,ω〉 – λn,ν + λn,ν
ei〈k,θ〉 · ikkT ,

∂θθ F
nn,ν =

∑

k∈Zm

–ζ k
nn,ν

〈k,ω〉 – λn,ν – λn,ν
ei〈k,θ〉 · ikkT ,
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∂θθ F
nn,ν =

∑

k∈Zm

–ζ k
nn,ν

〈k,ω〉 + λn,ν + λn,ν
ei〈k,θ〉 · ikkT ,

where k is a m column vector and kkT is a m × m matrix. Similar to the above discussion,
we get the following estimates:

∥∥∂θ Fmm
nn,ν

∥∥∗
�ν+×Jν

≤ C
∥∥ζ mm

nn,ν
∥∥∗

�ν×Jν
(ν + )m+,

∥∥∂θθ Fmm
nn,ν

∥∥∗
�ν+×Jν

≤ C
∥∥ζ mm

nn,ν
∥∥∗

�ν×Jν
(ν + )m+.

()

We will give estimates of the flow Xt
Fν

.
For ν = , , . . . , there exists a constant  < δ <  such that

∣∣ε–δ
ν (ν + )m+∣∣ ≤ C, ()

as ε < , where C is an absolute constant independent on ν, ε. From (), for (θ ,ω) ∈ �ν+ ×
Jν , we obtain

∥∥ενFν(θ , J , z, z̄;ω)
∥∥∗

�ν+×Jν
≤ Cεδ

ν

∥∥Pν(θ , J , z, z̄;ω)
∥∥∗

�ν×Jν
. ()

By (), () and () we obtain

∥∥εν∂θ Fν(θ , J , z, z̄;ω)
∥∥∗

�ν+×Jν
≤ Cεδ

ν

∥∥Pν(θ , J , z, z̄;ω)
∥∥∗

�ν×Jν
()

and

∥
∥εν∂θθ Fν(θ , J , z, z̄;ω)

∥
∥∗

�ν+×Jν
≤ Cεδ

ν

∥
∥Pν(θ , J , z, z̄;ω)

∥
∥∗

�ν×Jν
. ()

It follows from () and () that

∥∥(Fν)zn

∥∥∗
�ν+×Jν

= εν

∥∥∥
∥

∑

k∈Zm ,n,n∈Zd ,
|k|+||n |–|n||�=

Fk
nn,ν z̄n ei〈k,θ〉 + εν

∑

k∈Zm ,n,n∈Zd

(
Fk

nn,ν + Fk
nn,ν

)
zn ei〈k,θ〉

∥∥∥
∥

∗

�ν+×Jν

≤ ∥
∥ενFν(θ , J , z, z̄;ω)

∥
∥∗

�ν+×Jν

≤ Cεδ
ν

∥∥Pν(θ , J , z, z̄;ω)
∥∥∗

�ν×Jν
()

and similarly

∥
∥(Fν)z̄n

∥
∥∗

�ν+×Jν
≤ Cεδ

ν

∥
∥Pν(θ , J , z, z̄;ω)

∥
∥∗

�ν×Jν
. ()

Therefore, by using of ()-(), we obtain

|XFν |∗a,ρ+,Da,ρ
ν+×Jν+

=
∥
∥(Fν)J

∥
∥∗

Da,ρ
ν+×Jν+

+


r
ν+

∥
∥(Fν)θ

∥
∥∗

Da,ρ
ν+×Jν+

+


rν+

(‖Fz̄‖∗
a,ρ,Da,ρ

ν+×Jν+
+ ‖Fz‖∗

a,ρ,Da,ρ
ν+×Jν+

)
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≤ Cεδ
ν

∥∥XPν (θ , J , z, z̄;ω)
∥∥∗

�ν×Jν

≤ Cε
δ

ν , ()

by ε
δ

ν ‖XRν (θ , J , z, z̄;ω)‖∗

�ν×Jν
≤ C, as ε < , where C is an absolute constant independent

on ν, ε.
To get the estimates for Xt

Fν
, we consider the integral equation

Xt
Fν

= id +
∫ t


XFν ◦ Xs

Fν
ds,  ≤ t ≤ .

Hence, we obtain from ()

∣
∣X

Fν
– id

∣
∣∗
a,ρ+,Da,ρ

ν+×Jν+
≤ |XFν |∗a,ρ+,Da,ρ

ν+×Jν+
≤ Cε

δ

ν . ()

Let

∣
∣DsF

∣
∣op
a,ρ+,ρ,Da,ρ

ν+×Jν+

= max

{∣
∣∣
∣
∂ |j|+|i|+|α|+|β|

∂J jθ i∂zα
n∂ z̄β

n
F
∣
∣∣
∣

op

a,ρ+,ρ,Da,ρ
ν+×Jν+

, |j| + |i| + |α| + |β| = s ≥ 
}

.

Notice that F is a polynomial of degree  in z, z̄. By (), () and the Cauchy inequality, it
follows that, for any s ≥ ,

∣
∣DsF

∣
∣op
a,ρ+,ρ,Da,ρ

ν+×Jν+
≤ Cε

δ

ν . ()

From φt
F = id +

∫ t
 XF ◦φs

F ds, we have φt
F : Da,ρ

ν+ → Da,ρ
ν , – ≤ t ≤ , which follows directly

from (). Since

Dφt
F = Id +

∫ t


(DXF )Dφs

F ds = Id +
∫ t


J

(
DF

)
Dφs

F ds,

where J =
(  –I

I 

)
, it follows that

∣∣Dφt
F – Id

∣∣op
a,ρ+,ρ,Da,ρ

ν+×Jν+
≤ 

∣∣DF
∣∣op
a,ρ+,ρ,Da,ρ

ν+×Jν+
≤ Cε

δ

ν . ()

Similarly,

∣∣DX
Fν

– Id
∣∣∗op
a,ρ+,ρ,Da,ρ

ν+×Jν+
≤ Cε

δ

ν . ()

We now estimate the smaller term Pν+ and we will finish one cycle of the iteration. Let

λ̃n,ν =


(π )m

∫

Tm
ζ 

nn,ν(θ ;ω) dθ

and

λn,ν+ = λn,ν + ενλ̃n,ν ,
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then it is easy to see that λn,ν+ satisfies the conditions (.)ν+. Moreover, from () and
(), we know that

Hν+ = 〈ω, J〉 +
∑

n∈Zd

λn,ν+znz̄n + εν+Pν+(θ , J , z, z̄;ω),

where

εν+Pν+(θ , J , z, z̄;ω)

=
{
ενPν(θ , J , z, z̄;ω),Fν

}
+

∫ 


( – t)

{{Hν ,Fν},Fν

} ◦ Xt
Fν

dt. ()

By a direct calculation we get

εν+Pν+(θ , J , z, z̄;ω) = ε
ν

∑

n,n∈Zd

∑

m,m

ζ̃
mm
nn,ν+(θ ;ω)zm

n z̄m
n ,

where ζ̃
mm
nn,ν+(θ ;ω),s are a linear combination of the product of Fmm

nn,ν(θ ;ω) and
ζ

ññ
nn,ν(θ ;ω)

,
s, with (m, m) or (ñ, ñ) = {(, ), (, ), (, )}. Thus, by using of (.)ν , ()

and (),

∥
∥ζ̃

mm
nn,ν+

∥
∥∗

�ν+×Jν
≤ C

∥
∥ζ mm

nn,ν
∥
∥∗

�ν+×Jν
(ν + )m+ ()

is true. In view of ε–(–δ)
ν = εν+, and Cε–δ

ν ‖ζ mm
nn,ν+‖∗

�ν+×Jν
(ν + )m+ ≤ , as ε < , we

can suppose that

ζ
mm
nn,ν+ := ε–δ

ν ζ̃
mm
nn,ν+. ()

It follows from () that

∥
∥ζ

mm
nn,ν+

∥
∥∗

�ν+×Jν
≤ C.

This implies (E)ν+ as defined in Da,ρ
ν+ and the ζ

mm
nn,ν+ satisfy (.)ν+.

The perturbation Pl satisfying (.)l is used to guarantee that the normal form at each
KAM step has the same form as in the first step. In order to complete one KAM step, we
need to prove that the new perturbation Pν+ still has the special form (.)ν+.

From (), we get

{
〈ω, J〉 +

∑

n∈Zd

λn,νznz̄n, Fν

}
= –Pν(θ , J , z, z̄;ω) +

∑

n∈Zd

[
ζ 

nn,ν
]
znz̄n.

It is easy to see that {〈ω, J〉 +
∑

n∈Zd λn,νznz̄n, Fν} satisfies (.)ν+. Thus, from (), we
only to consider {Pν , Fν} satisfies (.)ν+. Let Bν = {Pν , Fν}. Taking (α,β), (α,β) ∈ {(en +
en , ), (en , en ), (, en + en )}, we can assume that

Pν =
∑

k,α,β

ζkαβ,νei〈k,θ〉zα z̄β , Fν =
∑

k,α,β

Fkαβ,νei〈k,θ〉zα z̄β , ()
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with

ζkαβ,ν = , if k = ,
∑

n∈Zd

(αn – βn)n = ;

Fkαβ,ν = , if k = ,
∑

n∈Zd

(αn – βn)n = .

Since

{Pν , Fν} = i
∑

m

∑

a

ζkαβ,νFkαβ,νei〈k,θ〉zα–em z̄β zα z̄β–em

– i
∑

m

∑

a

ζkαβ,νFkαβ,νei〈k,θ〉zα z̄β–em zα–em z̄β

+ i
∑

m

∑

k �=

ζkαβ,νFkαβ,νei〈k,θ〉zα–em z̄β zα z̄β–em

– i
∑

m

∑

k �=

ζkαβ,νFkαβ,νei〈k,θ〉zα z̄β–em zα–em z̄β

= i
∑

m

∑

a

Bk(α+α–em)(β+β–em),νei〈k,θ〉zα+α–em z̄β+β–em

+ i
∑

m

∑

k �=

Bk(α+α–em)(β+β–em),νei〈k,θ〉zα+α–em z̄β+β–em ,

where a denotes

k = , (αm –  – βm)m +
∑

n∈Zd\{m}
(αn – βn)n = –m,

(
αm – (βm – )

)
m +

∑

n∈Zd\{m}
(αn – βn)n = m,

a denotes

k = ,
(
αm – (βm – )

)
m +

∑

n∈Zd\{m}
(αn – βn)n = m,

(αm –  – βm)m +
∑

n∈Zd\{m}
(αn – βn)n = –m,

a denotes

k = ,
(
(αm + αm – ) – (βm + βm – )

)
m +

∑

n∈Zd\{m}
(αn + αn – βn – βn)n = .

Thus, one finds that {Pν , Fν} satisfies (.)ν+. Moreover, Pν+ satisfies (.)ν+.
Finally, we consider the convergence of transformations �N .
In view of () and (), by letting

Sν = X
Fν

: Da,ρ
ν+ × Jν+ �−→ Da,ρ

ν × Jν ()
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we have

|Sν – id|∗a,ρ+,Da,ρ
ν+×Jν+

≤ Cε
δ

ν , |DSν – Id|∗op

a,ρ+,ρ,Da,ρ
ν+×Jν+

≤ Cε
δ

ν . ()

Now we are ready to prove the limiting transformation S ◦ S ◦ · · · convergent to a linear
symplectic transformation �∞, which integrates equation (). For any ω ∈ J , N ≥ , we
denote by �N the map

�N (·;ω) = S(·;ω) ◦ · · · ◦ SN–(·;ω) : Da,ρ
N �−→ Da,ρ(σ , r)

as usual, � is the identity mapping. From the second inequality of (), we have

∣
∣D�N ∣

∣∗op
a,ρ+,ρ,Da,ρ

N ×J ≤
N–∏

μ=

|DSμ|∗op
a,ρ+,ρ,Da,ρ

μ+×J
≤

∏

μ≥

(
 + Cε

δ

N
) ≤ 

provided that ε is small enough. Thus, by using the first inequality of (), we have

∣∣�N+ – �N ∣∣∗
a,ρ+,Da,ρ

N+×J ≤ ∣∣D�N ∣∣∗op
a,ρ+,ρ,Da,ρ

N ×J · |SN – id|∗a,ρ+,Da,ρ
N+×J

≤ Cε
δ

N .

So the sequence {�N } converges uniformly in Da,s
N to an analytic map

�∞ : Da,ρ(σ /, r/) �−→ Da,ρ(σ , r).

We remark that the Hamiltonian () satisfies (E)ν , (.)ν and (.)ν with ν = , the above
iterative procedure can run repeatedly. So

μn = λn +
εψ

λn
+

∞∑

k=

εkλ̃n,k ,

where |λ̃n,k| ≤ C, k = , , , . . . . So (i) and (ii) are obtained. This completes the proof. �

4 The small divisors lemma
Now we prove the following the small divisors lemma which has been applied in proving
the above reducibility theorem.

Lemma . For k ∈ Z
m, n, n ∈ Z

d , there exists a family of closed subsets J l (l = , . . . ,ν)

Jν ⊂ · · · ⊂ J l+ ⊂ J l ⊂ · · · ⊂ J ⊂ Ĵ ⊂ J

such that, for ω ∈ J l ,

∣
∣〈k,ω〉 ± (λn,ν ± λn,ν)

∣
∣ ≥ 	 meas Ĵ

( + l)(|k| + )m+ ()
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and

meas J l ≥ meas Ĵ

(

 – C	m
l∑

i=


 + i

)

, ()

where C is a constant depending on d. Moreover, let J =
⋂∞

l= J l , then

meas J ≥ meas Ĵ
(
 – O

(
	m))

()

provided that 	 is small enough.

Proof First of all, from (.)l , we have

±λn,l ± λn,l =

⎧
⎨

⎩
±(|n| + M) ± (|n| + M) + O(ε), l = , , . . . ,ν,

±(|n| + M) ± (|n| + M), l = ,
()

and

〈k,ω〉 = kω + · · · + kmωm. ()

By (), it follows that

|∂ωλ̃n,l| ≤ Cελ–
n .

Case . k = . From (), we need to estimate 〈k,ω〉 ± (λn,l + λn,l).

∣∣〈k,ω〉 ± (λn,l + λn,l)
∣∣ = |λn,l + λn,l|

=
∣∣(|n| + M

)
+

(|n| + M
)

+ O(ε)
∣∣

≥ C|√M| ≥ 	 meas Ĵ
( + l)(|k| + )m+

holds provided that ε and 	 are small enough.
Case . k �= .
Case .. We consider the following set:

J l–
knn :=

{
ω ∈ Ĵ :

∣∣〈k,ω〉 – λn,l + λn,l
∣∣ <

	 meas Ĵ
( + l)(|k| + )m+

}
.

We suppose that |n| – |n| = a ≥ , then

|λn – λn – a| ≤O
(|n|–δ̄

)
.

Let f l–
knn

:= 〈k,ω〉 – λn,l + λn,l , f l–
kan

:= 〈k,ω〉 + a and

J l–
kan :=

{
ω ∈ Ĵ :

∣
∣〈k,ω〉 + a

∣
∣ <

	 meas Ĵ
( + l)(|k| + )m+ + O

(|n|–δ̄
)}

.
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It is easy to see that J l–
knn ⊆ J l–

kan , and J l–
kan ⊆ J l–

kam for |n| ≥ |m|.
Now we estimate meas J l–

knn and J l–
kan by the Fubini theorem. It is sufficient to estimate

the one-dimensional measure of the intersection of J l–
kan with every line parallel with some

fixed direction. In particular, in the direction given by the vector k|k|–. The intersection
of J l–

kan with the line Lη = {η + tk|k|– : t ∈R,η ∈ R
m} is equal to the set

{
t ∈R :

∣∣ω(t)
∣∣ ≤ 	 meas Ĵ

( + l)(|k| + )m+

}
()

where ω(t) = (〈k,ω〉 + a)|ω=η+tk|k|– . It is easy to see that ∂〈k,ω〉
∂t = |k|, so for t > t, we get

ω(t) – ω(t) ≥ |k|(t – t)

as ε small enough. Thus, by Appendix C in [], we see that the measure of the set () is
no larger than 	 meas Ĵ

(+l)|k|(|k|+)m+ . This estimate jointly with the Fubini theorem implies that

meas J l–
kan ≤ 	m–

C( + l)

(
	 meas Ĵ

|k|(|k| + )m+ +
O(|m|–δ̄)

|k|
)

.

Similarly, we also have

meas J l–
knn ≤ 	m meas Ĵ

( + l)|k|(|k| + )m+ .

Let

J–
l =

⋃

�=k∈Zm

⋃

n,n∈Zd

J l–
knn .

It yields

meas J–
l = meas

( ⋃

�=k∈Zm

⋃

n,n∈Zd

J l–
knn

)
= meas

( ⋃

�=k∈Zm

⋃

|n|–|n|=a

Jl–
knn

)

≤
∑

�=k∈Zm

∑

|n|≤|m|
measJ l–

knn +
∑

�=k∈Zm

measJ l–
kam

≤ C	m– meas Ĵ
 + l

(
	|m|C(d)

∑

�=k∈Zm


(|k| + )m+ + O

(|m|–δ̄
)

+
∑

�=k∈Zm


|k| + 

)

≤ C	m meas Ĵ
 + l

(
	|m|C(d) + O

(|m|–δ̄
))

by using of the convergence of
∑

�=k∈Zm


(|k|+)m+ and
∑

�=k∈Zm


|k|+ . By choosing
	|m|C(d) = O(|m|–δ̄), i.e.,

|m| = 	
– 

C(d)+δ̄ ,
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we have 	|m|C(d) = |m|–δ̄ = 	
δ̄

C(d)+δ̄ . It follows that

meas J –
l ≤ C	m meas Ĵ

 + l 	
δ̄

C(d)+δ̄ .

Case .. We consider the following set:

J l+
knn :=

{
ω ∈ Ĵ :

∣
∣〈k,ω〉 ± (λn,l + λn,l)

∣
∣ <

	 meas Ĵ
( + l)(|k| + )m+

}
.

Let f l+
knn

:= 〈k,ω〉 ± (λn,l + λn,l). When |n| or |n| ≥ |k||ω| + , then

∣
∣〈k,ω〉 ± (λn,l + λn,l)

∣
∣ =

∣
∣〈k,ω〉 ± ((|n| + M

)
+

(|n| + M
)

+ O(ε)
)∣∣

≥ ∣
∣(|n| + M

)
+

(|n| + M
)∣∣ – |k||ω| –

∣
∣O(ε)

∣
∣

≥  –
∣
∣O(ε)

∣
∣ ≥ 	 meas Ĵ

( + l)(|k| + )m+

holds provided that ε and 	 are small enough, which implies the set J l+
knn is empty. So, we

only need to consider the case |n|, |n| < |k||ω| + .
Now we estimate J l+

knn by the Fubini theorem. It is sufficient to estimate the one-
dimensional measure of the intersection of J l+

knn with every line parallel with some fixed
direction. In particular, in the direction given by the vector k|k|–. The intersection of
J l+

knn with the line Lη = {η + tk|k|– : t ∈R,η ∈R
m} is equal to the set

{
t ∈R :

∣∣ω(t)
∣∣ ≤ 	 meas Ĵ

( + l)(|k| + )m+

}
()

where ω(t) = (〈k,ω〉± (λn,l + λn,l))|ω=η+tk|k|– . It is easy to see that ∂〈k,ω〉
∂t = |k|, so for t > t,

we get

ω(t) – ω(t) ≥ |k|(t – t) – ε(t – t) ≥ |k|


(t – t)

as ε small enough. Thus, by Appendix C in [], we see that the measure of the set () is
no larger than 	 meas Ĵ

(+l)|k|(|k|+)m+ . This estimate jointly with the Fubini theorem implies that

meas J l+
knn ≤ 	m meas Ĵ

( + l)|k|(|k| + )m+ .

Let

J+
l :=

⋃

�=k∈Zm

⋃

n,n∈Zd

J l+
knn .

It yields

meas J+
l = meas

( ⋃

�=k∈Zm

⋃

n,n∈Zd

J l+
knn

)
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= meas

( ⋃

�=k∈Zm

⋃

|n|,|n|<|k||ω|+

J l+
knn

)

≤
∑

�=k∈Zm

∑

|n|,|n|<|k||ω|+

measJ l+
knn

≤ C	m meas Ĵ
 + l

∑

�=k∈Zm


(|k| + )m+ ≤ C	m meas Ĵ

 + l

by using of the convergence of
∑

�=k∈Zm


(|k|+)m+ .
Letting

J = Ĵ \ (
J

 + J–
 + J+


)
, J l+ = J l \

(
J

l+ + J–
l+ + J+

l+
)
, l = , , . . . ,ν – , ()

then () and () hold true. Let J =
⋂∞

l= J l , then

meas J = lim
l→∞

meas J l

≥ meas Ĵ

(

 – C	m
∞∑

i=


 + i – C	

m+ δ̄

C(d)+δ̄

∞∑

i=


 + i – C	m

∞∑

i=


 + i

)

≥ meas Ĵ

(

 – C	m
∞∑

i=


 + i

)

≥ meas Ĵ
(
 – O

(
	m))

. ()
�
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