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Abstract

In this paper, we reduce a linear d-dimensional beam equation with an x-periodic and
t-quasi-periodic potential for most values of the frequency vector via the KAM
theorem. We focus on the measure estimates of small divisor conditions and the
estimation on the coordinate transformation.

Keywords: infinite-dimensional Hamiltonian systems; beam equations; reducibility;
invariant torus

1 Introduction
Inspired by an old report of the existence of traveling waves on the Golden Gate Bridge in
San Francisco in 1938, the study of traveling waves in supported beams was begun in [1]

and [2]. The first result is the following beam equation in [2]:
Uy + Ugpne + " =1, x€RL 1)

The solutions of the form 1 + y(x — ct) were found by reducing the partial differential
equation (1) to the ordinary differential equation on the real line. Later, many solutions
were constructed and calculated by the mountain pass algorithm. Until recently, there has
been little progress on the proof of existence of solutions of the beam equations, espe-
cially x € T = R?/27 Z%. Recently, Geng and You in [3] obtained the higher-dimensional

nonlinear beam equations with periodic boundary conditions by the KAM method, i.e.,
Uy + Nu+ou+f(u) =0, (2)

where the nonlinearity f(u) was a real-analytic function near u# = 0 with f(0) = f'(0) = 0.
Notice that the perturbation in [3] satisfied special conditions and did not explicitly con-
taining the space variables and the time variable, which is crucial for the proof. Eliasson,
Grébert, Kuksin [4] made a breakthrough in KAM theory for the space-multidimensional
beam equation with the perturbation containing the space variables. In [4] they consid-

ered the nonlinear beam equation

Uy + Au+mu+9,Gx,u)=0, teRxeT?
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where G(x,u) = u* + O(x®). Thanks to those results of admissible sets and the proof of
the KAM theorem we obtain the existence of quasi-periodic solutions of a simper beam
equation.

In this paper we focus us our attention on the following non-autonomous, d-dimensional
beam equation with quasi-periodic forcing:

Uy + (=A + M)2u + e (wt,)u=0, M>0,teR,xeT? 3)
with periodic boundary conditions
u(t,x1,%0, ..., %4) = u(t,x1 + 27, %0, ..., %g) = -+ - = u(t, %1, %2, ..., %4 + 277), (4)

where ¢ is a small parameter, the frequency vector w = (wy, ..., ®,) € [0,20]",0<0 <1,
¥ (wt, x) is a real-analytic function with x-periodic and ¢-quasi-periodic.

The forced problem is an important feature of the classical perturbation for Hamiltonian
systems. The reducibility of finite-dimensional systems is interesting itself and remains
open in the general case. In [5], Bogoljubov firstly applied KAM-techniques to reduce of
non-autonomous finite-dimensional linear systems to constant coefficient equations. In
[6], Bambusi and Graffi gave a general proof of reducibility of quasi-periodically forced
PDEs. Jianguo Si [7] considered the existence of small-amplitude quasi-periodic solutions
of the quasi-periodically forced nonlinear wave equations. In [8], the author of this pa-
per and Si proved the existence of quasi-periodic solutions of quasi-periodically forced
nonlinear Schrédinger equations with quasi-periodic inhomogeneous terms, i.e.,

ity — Uy + mut + ()| u)?u = eg(t).

The reducibility is well developed for one-dimensional Hamiltonian systems. For
higher-dimensional Hamiltonian PDEs, there are few results of reducibility via the KAM
theorem because of the multiplicity of eigenvalues. It is worth noting that in the higher-
dimensional case the multiplicity goes asymptotically to infinity. On one hand, it is due
to the unperturbed part and solving the linearized equations being more complicated in
a KAM iteration; on the other hand, it makes the measure estimation very difficult since
there are so many non-resonance conditions to be satisfied. To overcome this difficulty,
Bourgain [9] made the first breakthrough by proving that the two-dimensional nonlinear
Schrédinger equations admitted small-amplitude quasi-periodic solutions by develop-
ing the Craig-Wayne method. Craig-Wayne-Bourgain’s method succeeded in avoiding the
multiplicity by using of the explicitly Hamiltonian structure of the systems. Moreover,
the KAM approach has its own advantages. For example, the linear stability and zero
Liapunov exponents are obtained and the existence results allow one to construct a lo-
cal normal form in a neighborhood of the obtained solutions, which is useful for better
understanding of the dynamics.

Recently, some results were also obtained in higher-dimensional systems by KAM
method. In 2009, Eliasson and Kuksin [10] have proved that the following linear d-
dimensional Schrodinger equation with an x-periodic and ¢-quasi-periodic potential was
reduced to an autonomous equation for most values of the frequency vector:

i=—-i(Au-eV(py +to,x0)u), x€ T =R4/277°.
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In 2010, Eliasson and Kuksin [11] also considered the nonlinear d-dimensional Schréding-
er equations. Their methods of dealing with the multiplicity of the eigenvalues of the linear
operator are the key to our paper. In 2013, Procesi and Xu [12] proved the existence and sta-
bility of a quasi-periodic solution of the following nonlinear d-dimensional Schrédinger
equations:

i, — Au+ Mgu+f(Jul)u=0, teRxeT?,

where f(y) is a real-analytic function with f(0) = 0, M; is a Fourier multiplier. In 2015, Pro-
cesi and Procesi [13] also proved, through a KAM algorithm, the existence of large families
of stable and unstable quasi-periodic solutions for the NLS in any number of independent
frequencies. Those results are important for KAM theories of space-multidimensional
Hamiltonian PDEs.

Different from one-dimensional Hamiltonian systems, there exist two difficulties in
higher-dimensional beam equations. One is the measure estimate of small divisor con-
ditions. In fact, the first Melnikov conditions and the second Melnikov conditions are
partially violated. To overcome this difficulty we have divided v (wt, x) by its mean value.
Another difficulty is the estimation on the symplectic transformation. We use the spe-
cial assumption of the forced term ¥ (wt, x) to overcome this difficulty. We introduce the
assumptions.

Throughout this paper, we assume that:

(Al) ¥ (wt, x) is a real-analytic quasi-periodic function. Moreover,

YO.x) =Y+ Y W@e*, wt=0,04y€R.

keZm\{0}

(A2) There exists a constant C such that
W@t <C, Yol <C,  |ya)|<C.

Remark 1.1 Assumption (Al) on the forcing ¥ (wt, x) is fundamental in order to deal with
the small divisors problem. Indeed it implies in equation (12) that the coefficients ¢!, =0
for k = 0 and n; # ny for any my, ny € Z%. An important consequence is that one can solve

equations (27) even if the small divisor
(ky ) = v + Auyp =0, k=0,m1 # 1y, |m| = |ma].

This is the key point to estimate the generator of the change of coordinates and to have
at each step a diagonal normal form. Thanks to this fact at each step the homological
equation is a scalar equation when one passes to the Fourier basis. Without such an as-
sumption one could get only a block diagonal normal form with blocks whose dimension
grows with |#| and the homological equation would be more difficult. This assumption
makes the measure estimate as easy as the one-dimensional case. In order to complete
one KAM step, we need to prove that the perturbation always has the special form along
the KAM iteration.

The paper is organized as follows. In Section 2, we introduce some notations, the expres-
sion of Hamiltonian and the main result. Section 3 is devoted to proving the reducibility.
The proof of the measure estimate is given in Section 4.
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2 The main result

In the following we introduce some notations. Let /*# be the Banach spaces of complex
valued sequences z = (...,2y,...),c74, and its complex conjugate z = (...,Zy,...),cz¢ With
finite weighted norm

Izllap = Y lzallnle"?,

neZd

wherea >0, p>0,n=(ny,...,ng), |n| = /n2 +---+ n(zi. Denote the average of f by

1
1= a5 |, FO.

Let A = —A + M and u; = w, then we can rewrite equation (3) as follows:

U =w, w, = —A%u — ey (wt, X)u.

Letting w = A% (Y)Y and u = Ab (22, the equations become
& Vi 2 4

—i(A +iA-%<w( t )A-%(ﬂ») )
v, =il Av 7 wt, x 7 .

Equation (5) can be rewritten as the Hamiltonian equation

=i 6
Vi 1817 (6)

and the corresponding Hamiltonian is

1 _ e 1 v+ \\2
H:E(Av,v)+§ lep(a)t,x)(A (ﬁ)) dx. 7)

The operator A with the periodic boundary conditions has eigenvalues {A,} and an ex-

ponential basis {¢,(x)} satisfying, respectively,

elinx)
=P+ M, $ax) = , nelZl
(2m)d

Letv=2)", 4 2:¢n(x). The system (6) is equivalent to the following equations:

. . P
zn=1<knzn+83_ ), (8)

Zn

with corresponding Hamiltonian function H = ZnEZd MnZnzn + €P(t,2,Z), where

= 7 \2
- wt,x Z z
P(t,z,z) = ¥( )< 2 : mPm + n2¢n2> dx
™ 4 Vn 2 on
m ezl 1 yyezd 2

20 11 b 02 > 3
= Z (é-nl ny (t)ZVll an + é‘nl ny (t)ZVll an + §”1”2 (t)znl an)
ni,ny eZd
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with
20,0 - W f U (@, )b, Wy (3) i,
(0= M — / Y (1, 1), (I, () i, ©)
433l = G [, V00 (9 )

We introduce a pair of action-angle variables (J,6) € R” x R™, 6 = wt with

. H
9: s = -7 4 :.Tx n:_._y GZd«
o JEhg Al BT

Thus, from Assumption (Al) and (9), the Hamiltonian of (8) becomes

+ Z AnZnZy + EP, (10)
nezd
where
P= Z ( n1n2 G §n1n2 (0)z1, 20, + gl’llnz (Q)anznz) (11)
nl,nzeZd
with
= x x)dx
6in0)= 1 [ B
1
b — / Vi) (0 (5) e
MmN kezm\ (0
K20 Ji(ks)
= D bame

kez™m

o, (0) = ——— ; A}Wz / By ()i, ()

> / Vi () by (X) By () dce' ) (12)

2 keZ\{0}

k11 k9)
= D e

kez™

2 oo xnlx

(2, (0=~ / B ()b ()

)“”11)\’712
1

N / V(%) ()i, () dlce!

m kezm\{0}

k02 1 (K, 0
= ) e

kezm
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Moreover, we can get

g =0, -0, ifk=0,m+m=0; .
¢l =0, ifk=0,m-m=0.

We introduce the following sets. For 0 < o <1, let
]0 := [0,20]™.

For 0 # k € Z, let

1 0 Q
]k:{a)ef |k; |_C|k|m+lyc*>>1}-
It is easy to see that
m
measJ; < Clk|™ o™ e <_°

C*|k|m+1 - C*|k|m+2 :

Let J! = Uoskezm T and J = JO\J!, there exists a constant 0 < y <1 such that

A Qm 1 y
meas/ = 0" — Z meas],izg”’—? Z Wz(l—g)gm

0-kezm * 0kezb

by the convergence of ) ;s ‘k‘%

Theorem 2.1 For the higher-dimensional beam equation (3), there exist a 0 < e* K 1 and
aset] Cj with meas] > measj(l - O(0™)), such that, forany 0 < ¢ < e*,w € 7, equations
(3) and (4) admit solutions of the form

u(t) = 37 EN ’“‘"”m( ) (14)
nezd
where
Pn = A+ €(Cn + Cn(€)), (15)

with ¢, = ‘/"’ and ¢,(&) — 0,as & — 0.

Remark 2.2 Theorem 2.1 can be directly proved by Lemma 3.1. In fact, from the Hamilto-
nian (17)inLemma3.1,v= )", ;4 2z.,¢,(x) and u = A3 (%), itis easy to obtain the solution
of the beam equation (3). Thus, in this paper we focus on the proof of the Lemma 3.1.

3 Reducibility
3.1 Notations
We introduce the following notations and spaces.
For giveno >0,r>0,v=1,2,..., we define sequences {0,} and {r,}:
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i

(1) 0p=0,0y, 20'0(1—‘[‘,) with To = 0 and Ty = 5v =2 -
22/:11

It is easy to see

00 >0y >0,,1>0/2.

1+8)Y

() ro=r,r,=ro(1-1,), 80 = ¢, &, = & .Itiseasytoseery >r, >r,1>r/2.

Denote
O©)=1{0=6h,...,0,,) €C"/2nZ" : | Imb| < o'}
and

D% = D*P(o,r)
= {(Q,J,Z,E) ceC"2rZ™ x C" x % x [** .

2 -
| 6| <o, /| <7 1Zllap <7 1Zllap <7}

Thus, we get a family of domains:

©(00) D O(01) D --- D B(0,) DO(0y1) D+ D @(%)

and

oo T
Du,p(ao, 7'0) IDRERNS) Da'p(o'v» rv) D) Da'p(o'wrl’ rv+1) DR D** (?0, §0>

We rewrite ©; := O(0;), D}” = D*"(0y,11),[=0,1,....
For a one order Whitney smooth function F(w) on closed bounded set 7, we define

IFIl; = max{sup |E], sup |8wF|}.

we] we]

If F(w) is a vector function from J to [*# (or R2 *b2) which is one order Whitney smooth

)

on J, we define

I, = V@I, (o 18 = mas 3 ([Funto)

T T 1<izg<bhy

Let w=(0,/,z,z) € D*?, we denote the weighted norm for w
[w] 6] 1|]| 1|| Il 1||_||
Wao =101+ =+ -1z + = 1Zlla.p-
a,p r2 r a,p r a,p

If F(w; ) is a vector function from D% x f to [*? which is one order Whitney smooth on

w, we define

* _ * * _ *
FI s = S0P IFI, 5 and I, 5= sup IS,
To the function F(0,/,z,z), associate a hamiltonian vector field defined as X = {F}, —Fp,
iF;, —iF,}, we denote the weighted norm for Xr by letting

(16)

| XF|* 5= [IFIIT A+i||F I A+1(||F’||* s+ IE " )
Flg o000 <] Tpaesy ™ 21200 papyg ™ A2l g 5 paesj zll g o, a0 xJ)
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Let B(#; ) be an operator from D** to D*” for (w;w) € D** x ], we define the operator

norm
i B(w; )W,z
|B(W; o) :pﬁ o D0 ] = sup  sup M
o (W) eDHP x] W#0 |W|a,p
~ *0p 3 op op
[B(#; ) |a,ﬁ,p,D“'/’ xJ = max( |B|a,/7,,0,D“vP xJ’ |8‘”B|a,ﬁ,p,Da.p xJ }-

3.2 Reducibility
Now, we are ready to introduce our reducibility and prove it via the KAM iteration.

Lemma 3.1 For the Hamiltonian H in (10), there are a 0 < ¢* < 1 and a set ] C ] with
meas] > measj(l —O(0™)), such that, forany 0 < e < £*,w € ], there is a linear symplectic

transformation
2% : D" (0/2,r/2) x ] — D*"(o,7)

such that the following statements hold:
(i) There are two absolute constants C > 0 and 0 < § < 1 such that

*

3
< 2
aps1 Do (o /2r2)x] = CE2

|=% —id|

where id is the identity mapping.
(i) The transformation X°° changes Hamiltonian (10) into

H*:=HoX® =(w,]) + Y tnZuZn 17)

neZd

where

Yo

[=S)
Un = An + ;Ssin,s’ j:;'1,0 = I and |5\ns| = st =12,3,.... (18)

n

3.3 Proof the Lemma 3.1

Proof We first introduce the measure estimates to treat small divisors in reducing, which
will be proved in Lemma 4.1. For k € Z™, ny,ny € 74, there exists a family of closed subsets
jl(l: 0,...,\))

JoC--Clmclic---Clocjc)°

such that, for w € J;,

o) = G )| 2 ¢ gmeas] (19)

1+ 2)(|k| + 1)m+3

and

i
_ ~ 1
meas/J; > meas](l - Co™ Z 1 ,2>, (20)
+i

i=0
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where C is a constant depending on d. Moreover, let = (75, ], then
meas/ > measj(l -0(o™)) (21)
provided that o is small enough.

Let (my, my) = {(2,0),(1,1),(0,2)}. We construct an iterative series {H;} of Hamiltonian
functions of the form

Hl = <U),]> + Z }\n,lznén +8[P[(9,],Z,2;w), l= 0,1;'“;1), (E)l
nezd
where
= k20 ki1 - K02 = = \.iko
Pi0,],2,2) = Z (Cno ZmZny + Eopons 12 2y + Cnlnzylznlz,,z)el( )

kGZm,nl,VQEZd

with
mymy _ kmymy i(k,0)
§”1”2rl - Z é‘nlnz,l e
keZ ny,ny €74
and
k20 k02 :
gnlnz,l =0, Cmnz,l =0, ifk=0,m+ny=0; (3.0)
O)
g',]fll,l,z,l = O, ifk= 0, ny —ny = 0.
Furthermore, the functions g“}:i' LZ’? are analytic on the domain ®; x Tu,
mymy _ .mymk mymak || * d j_
§”1”2vl - §n1n2xl ) ||€n1,n2,[ ®l><7l S C: ny,ny € Z 1l = O, ].,.. oV, (31)1
and
-1
Mo =hny i =dnt Y Ehns =123, (3.2)
s=0
with
Rpem — / M 0,w)do, s=0,1,2,...,1-1 (22)
n,s (27[)”1 - nn,s ) ’ » Ly & ’

Clearly, we have Hj|;-o = H. For [ = 0, we have Py(0,/,z,z) = P(6,],z,z) defined in (11).
From (12) and Assumption (A2), the functions ¢,"1""2

005 @) are analytic on the domain
@0 x ] and satisfy (3.1)o. Thus, we get

Yo
Yy

~ 1
Ano = U (0;w)do =
0= G |, Ghotti0)

This implies that (3.2), is satisfied.
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a,0

We look for a change of variables S, defined in a domain D

by the time-one map X’
of the Hamiltonian vector field Xz, , such that the system (E), is transformed into the form

(E)y+1 and satisfies (3.1),,1, (3.2),.1. In fact, the new Hamiltonian H,,; can be written as

H,u = H, o X}

= (@) + Y hnpZuln+ {(a), NED xwznzn,ﬂ}

nelZd neZd

+ SVPV(O,],z,E;w){stv(Q,],z,é; w)rfv}

1
+ / A-o){{H,, F}, Fo} o X dt. (23)
0

mym: kmymsy i .
Let F, = &,F,, and Fpihns = Y 1 cqm Enpignz € %90 with

0 _qo F2 —0, ifk=0,m +ny=0;

ning,v niny,v

FAl 0, ifk=0,1m —ny=0.

nyng,v

We shall find a function F of the form

F0.],2%0) = Z F'flliliz,vzﬂlznzei<k'9)
keZm,nl,nzeZd,
SRR
k20 K02 = =\ iltk#
* Z (F’l(lnzx‘)z”lzm + Fmrlz,vznlznz)el( ) (24)
keZM ny,ny €74
satisfying the homological equation
o+ Emriubi| + o250 = T [eh Je (25)
nezd nezd
It follows that

{(w,n + Y An,uzném}

neZd

. k20 i(k,0
=1 Z ((k; w) - )\nl,v - )"nz,V)Fnlnz,vznlznz el( )

kEZW’,nl,VQGZd

. K02 i(ko
+1i Z ((k, @) + Ay + )L,,Z,U)Fnlnz,vzmznze“ )

keZ ny,ny €74

+i Z (ks ) = R + Ang )l 2y 2y €5 (26)

keZM 1 ny €74,
[k[+]lm |=In2| |70
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By (25), it follows that, for k € 7", n1,ny € 72, the F,mlz"f,z are determined by the following
linear algebraic system:

((k’ w) - )\nl,v - )\nz,v)F]dO = i§k20

niny,v niny,v’
k11 . _kl11
((ky @) = gy + Ao ) Enny o = imins s 1k| + [Ima] = 2] | #0, (27)

k02 _ . k02
((k,a)) + A+ )»,,Z,V)an,v =i

For ny,ny € Z%, we get

k11

Mmoo Z 18y, 0 £k
niny,v )
e om (kr w) - )"nl,v + )"ng,v
|kl +]|my |=In3 170
i;kZO )
FZO _ njng,v i(k,0) (28)
nng,v k A A € ’
keZm ( :w> = A,y T Meng,
ié—kOZ ]
F02 — § nyng,v el(k,G)
nyny,v .
1 e (K@) + Ry + Ay

By Cauchy’s estimate and (3.1),, we get

k * |k
|G| = [Gm 6, 7, (29)
and
k * |k
|00t | < Nemimt 6, 7,6 (30)

Note that (19) and (28), for 1y, 1, € Z%, we get

sup |E, | < C”é-;llnz,v

Hnin,v
(0;0)€0y41 %]y

0., L+ ”2)( > (ki+ 1)’”+3e-k'<""‘”“*”>,

k[ +[1mq |=|n2| |70,
kezm

and for (m, m,) = {(2,0),(0,2)},

sup [Fpaa] < Clemma]n (14 0%) Y (k] + 1) erklovou,

(0;0)€0y 41 %] kezm

Furthermore, using Lemma 3.3 in [14], for (6;®) € ©,,; x J,, we get

|me12 | < C”é-mlmZ

ning,v niny,v

o7, VD my,my) = {(2,0),(1,1),(0,2)}. (31)

From (3.2);, we have

|9 (i £ Amw)| <Ces 90hm ] < Ce.
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Thus, in view of (28)-(31), and using Lemma 3.3 in [14],

Ny, Ny € Zd,
k11
9, Fl1 ‘ Z 008y, ’ei(kﬂ)‘
mnav (k,w) — A + A
zm, ’ ni,v np,v
[kl +[|ny |=Ina 170
k11
nlng,uaw(<k’ ) = Ay + Auy,v)

>

kezm, ((k: a)) - )\nl,v + )‘-nz,v)z

[k|+1m1 |=[m2 ||#0

< Cll¢y

mn,v 1@, xJ,

kezm

(V + 1)6m+24

< C”gﬂlnz, :;u va

and for (m1, m,) = {(2,0),(0,2)},

|ei</<,9) |

oo (L) D7 21k + Ce) (k| +1)"" e ev=u)

)2m+6e_|k‘(0v—0'v+1)

é_le}le
a Frmm < w5nny,v el(k@
| e v| ké;” (k: w) + ()"nl,v + )"}12,\)) | |
. Z ;-nlrf;éfnza ({(k; @) £ o + Agy0)) ‘ |ei<k'9>
kezm ((k7 a) :t ()‘-nl,v + )"nz,\)))z
2
< C|gmm| o, (11 ) > 2(lkl + Ce) (1Kl +1
kezm
= C”{mﬂzyv Oy xJy (\) + 1)6m+24

It follows immediately that, for (m, m,) = {(2,0),(1,1),(0,2)},

’3 Frmm | < C”;mlmz

6m+24
ning,v nyng,v (\) + 1)

®V><]

From (31), (33), (32) and (34), we have, for (11, m,) = {(2,0), (1,1),(0,2)},

Frmm mymy 6m+24
| oy 7, = Clémima N, o7, (v + )
In view of (28), we have
_ k11
BHF:&VIZ v = Z S eltkor . k,
(k’w> - )‘-nl vt )\ng v
[kl+|lm1]~In2]170 ’ ’
_gk20
30F310n2 v = Z — eltko . k,
keZm <k1 Cl)) - )‘-Vll,v - )\nz,v
k02
aﬂpn012n2 v = Z — elkol . k,
ot (k, @) + Xypv + Ay,
_gku
11 mmn,v i(k,0 : T
900 F 11y, = Z (k, w) )»1 +A et kKT,
KL+l |-l l170 oy Ty
k20
8591:310»12, = Z — k9) lkk ’
keZm (k’ w) - }\nl,v - )\nz v

Page 12 of 22

we have, for (0;0) € ©,,1 X J,»

(33)

(34)



Rui and Liu Boundary Value Problems (2017) 2017:82 Page 13 of 22

k02
oo FY2 Z ~Cmma ek ik T
mn.v (ky @) + A0 + )»,,2,

kezm

where k is a m column vector and kk” is a m x m matrix. Similar to the above discussion,
we get the following estimates:

H 89]:'7'11"’12 ”®v+l xJy — CHQ-

6m+24
ning,v ’V(U + 1) " ’

nyng,v

(36)
| 900 iy < Clemnle, g, 0+
We will give estimates of the flow X’
For v =0,1,..., there exists a constant 0 < § < 1 such that
’8‘1)_8(1) + 1)6’”+24| <C, (37)

as ¢ < 1, where C is an absolute constant independent on v, €. From (35), for (6, ) € ©,,1 X
J,, we obtain

|levE(0,],2, . =Ce)||Py(0,),250)|, (38)
By (24), (36) and (37) we obtain
|y 06 F,(6,],2,2; e VACH R (39)
and
|ev66 F,(0,], 2, ; =Ce| P02z 0| . - (40)
It follows from (24) and (38) that
1(F)z,
=&, Z il e ® 1, Z (ER20 |+ Fpon ) zn,e ™ )
keZM oy eZ4, keZM ny,ny €74 Ovs1xJy
Ikl+]1mg =3 170
< |evF(0.],2.70)|
<Cs)||P,(0,].2,% (41)
and similarly
|(F)z, . <Ce)||Py(6.],2,% (42)

Therefore, by using of (39)-(42), we obtain

X7 = 1Frlpe, ||<f ol

a/J

ap+1D I ></v+1 < val

(IIFIIMD AR L e, X,M)

Vv+
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<Cg ||Xpu(9’]’z’2; ) Hz)”j“

=Nl

< Ce2, (43)

5
by &7 || Xz, (0,],2,%; a))||*® W, = C, as € <1, where C is an absolute constant independent

onv,é&.

To get the estimates for X .th , we consider the integral equation
t
X%, :id+/ X7, 0X¥xds, 0<t<l
0

Hence, we obtain from (4.3)

*
a,, T
a,p+LDYf xJya1

=Nl

—
=
S

~

< * <
=Xz, |a,p+1,Dﬁ’f1 xJys1 = Cev.

X5~ id
Let

D[S,

DO T
a,p+1,p,D 1 XJv41

= max{

Notice that F is a polynomial of degree 2 in z,z. By (16), (43) and the Cauchy inequality, it

Ul+li+lel+Bl o

o F ,|j|+|il+|al+|ﬁ|=sz2}.
8)0192¢ 07,

a,0+1,0,00) xT 11

follows that, for any s > 2,

=l

|D°F|” <Cs (45)

a, <
a,0+L,p,00 xT 11

From ¢%. = id + [, Xp o ¢} ds, we have ¢%. : D} — D%, -1 < t < 1, which follows directly
from (45). Since

t

t
D¢t =1d + / (DXp)Dgi-ds = 1d + / J (D’F)Dé}. ds,
0 0

where J = ((I) 61), it follows that

s
t op 2 |opP 2
_ . < . <
’D¢F Id|u,p+l,p,Df‘fl><lv+1 — Z‘D F‘a,erl,p,szlx]Wl — CEV : (46)
Similarly,
|DXY% -1d["” <Cel (47)
Fv = a,p+1,p,Dz‘fl XTvel — &v -

We now estimate the smaller term P,,; and we will finish one cycle of the iteration. Let

= 1
T @)

/ Lo (03 00) A6
TWI
and

)"n,v+1 = )\'VI,U + Sv)&n,v;
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then it is easy to see that 1,,,,; satisfies the conditions (3.2),,;. Moreover, from (23) and
(25), we know that

Hv+1 = (w:]> + Z )\n,v+lzn2n + 8v+1Pv+1(0;], z, 2; w),
nezd

where

8v+1pv+1(9)], z,z; w)

1
={e,P,(0,],2.z0), F, } + / 1 -){{H., Fo}, Fo} o X5z, dt. (48)
0
By a direct calculation we get

_ 2 ~mm _
evi1Pvi1(0,),2,z0) = &, Z Z Cnlilziﬂ(e;a))znmllz:l"zz,

Vll,nzezd my,m

where ¢, |(0;w)s are a linear combination of the product of Fyy%(0;w) and

2 (0;0)'s, with (my, m,) or (7, 1) = {(2,0),(1,1),(0,2)}. Thus, by using of (3.1),, (31)

and (35),

[l 6y, = Clemimilo, 7,00+ D™ (49)
is true. In view of £2-1-9 = ¢ .}, and Cei“sllg“,ﬁ’;;'fi+l||’ém g, D < 1,as £ < 1, we
can suppose that

e = ey Q:ZLT?M (50)

It follows from (49) that

*

”é-mImZ . <
Op1x]y —

nyny,v+1

This implies (E), ., as defined in DJ’}, and the ¢, | satisfy (3.1),,1.

The perturbation P; satisfying (3.0); is used to guarantee that the normal form at each
KAM step has the same form as in the first step. In order to complete one KAM step, we
need to prove that the new perturbation P, ; still has the special form (3.0),,1.

From (25), we get

{(wJ) £y An,vznzn,a} ==P,(0,],250) + Y _ [tp ]2nZn-

nezd nezd

It is easy to see that {{w,]) + D_,czd Any2uZn, F,} satisfies (3.0),,1. Thus, from (48), we
only to consider {P,, F, } satisfies (3.0),,1. Let B, = {P,, F, }. Taking (a1, B1), (a2, B2) € {(e, +
€15,0), (€, €n,), (0, €4, + €4,)}, we can assume that

Py= )" Gapne® 22, Fo= Y Fraypy e ™22, (51)
k,o1,81 ko2, B2
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with

Skenprv =0, ifk=0, Z (01 = Pin)n = 0;

neZd

Fkalﬁl,v = 01 ifk = O, Z (aln - ﬂln)}’l =0.

neZd

Since

{P,,F,} = iZ Z Ckalﬂl,vpkalﬂl,v€2i<k’9>Zal_emzﬂlzazéﬁz_em

m ap

: 2i(k,0) 01 zP1—em ,42—em 5
- IZ Z é‘kalﬁl,kaalﬂl,ve { )Z 12‘31 m 72 mZ/S2
m a

+1 Z Z §k‘11ﬂlijkalﬂl,vem(k’a)Zaliemiﬂl Z2zhem
m k0

m k#0

—i 2i(k,0) —em -
= IZZBk(vtl+azfem)(ﬂ1+ﬁ2*em),ve W0) goavar=emZPr+pa-em

m a3

. 2i(k,0 —em 3 —em
1Y Biarrar-emfrspremn@ - 22T s Pmem,
kA0

where a; denotes

k=0, (cim—1=Pum+ Y (o1y—Pu)n=—m,

neZd\(m)

(a2m - (/32m - 1))1’}’1 + Z (Ol2n - ﬂ2n)n =m,

neZ4\{m)

a, denotes

k = O’ (alm - (ﬂlm - 1))m + Z (aln - ﬁln)n =m,
neZd\{m}
(o =1=Bomdm+ Y (ctan— Bou)r = —m,

neZ4\{m)

as denotes

Page 16 of 22

k=0, ((om+oom—1) = (Bum + Pam —1))m + Z (a1n + o = Pin = Pan)n = 0.

neZa\{m)

Thus, one finds that {P,, F, } satisfies (3.0),,1. Moreover, P,,; satisfies (3.0),.1.
Finally, we consider the convergence of transformations TV,
In view of (43) and (47), by letting

1 ap T oo T
Sy =X5x, : Dy X Jpu — DYP xJ,

(52)
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we have

=l

8
1S, —id|* < CeZ, |DS, - Id|**

P T a, T
a,p+1,DJ xT a,0+1L,p,D0 Ty 11

IA

Cey. (53)
Now we are ready to prove the limiting transformation Sp 0 S; o - - - convergent to a linear
symplectic transformation X, which integrates equation (10). For any w € J,N > 1, we
denote by =V the map

SN w) = So(sw) 00 Sy 0) :D?\}p — D*?(o,r1)

as usual, X? is the identity mapping. From the second inequality of (53), we have

N-1
)
(SRS | (S (0
< < <
|D2 |a,p+1,p,D?\}'D xJ = |DSM|a,,0+Lp,Dz'f1 x] = (1 + CSN) < 2
u=0 n=0

provided that ¢ is small enough. Thus, by using the first inequality of (53), we have

*

u,p+1,D7\}i1 xJ

| =Nz <|p=N[** - |Sy — id|*

a,0+L,p,D3 xJ a,p+1L,DYY x]

Z.M\De

<Cse
So the sequence {Z"} converges uniformly in DY to an analytic map
%% : D" (0/2,r/2) — D**(o,r).

We remark that the Hamiltonian (10) satisfies (E),, (3.1), and (3.2), with v = 0, the above
iterative procedure can run repeatedly. So

ey >
. N
Mo =hort ot ;ekkn,k,

where I):n,kl <C,k=1,2,3,....So (i) and (ii) are obtained. This completes the proof. [

4 The small divisors lemma
Now we prove the following the small divisors lemma which has been applied in proving
the above reducibility theorem.

Lemma 4.1 For k € Z", ny, ny € 72, there exists a family of closed subsets J,(=0,...,v)

JoC--Cluclic---Clocjc/®
such that, for w € J;,

0 meas ]

k) £ A £Anyp)| = ——
o @) & G 2 2oni)| 2 G e g8

(54)
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and

/
_ ~ 1
meas]lZmeas](l—CQ”’ E . ,2>, (55)
+i
i=0

where C is a constant depending on d. Moreover, let] = ﬂ}’fo 71, then
meas] > measf(l -0(o™)) (56)
provided that o is small enough.

Proof First of all, from (3.2);, we have

+(mP2+M) £ (> +M)+0O(), [=1,2,...,v,
i A= (N ) £ (I )+ O(e) (57)
+(|m > + M) £ (|n2)? + M), =0,

and
(k,w) = ki + - - + k. (58)
By (22), it follows that
|0 hn il < Ced,).
Case 1. k = 0. From (28), we need to estimate (k,w) & (A1 + Ay ).

’(k,a)) + ()"nl,l + )le,l)| = |)\n1,l + )\n2,1|
= |(Im* + M) + (Inz* + M) + O(e)|

0 measf

2 CIVMI 2 1+ 2)(k|+ 1)

holds provided that ¢ and ¢ are small enough.
Case 2. k #0.
Case 2.1. We consider the following set:

o meas ) }

-l A
Jimyny = {w €] (k@) = Ay + Ayt < A+ 2)(k| + 1y

We suppose that |#;|? — |#;|> = a > 0, then
|Any = Amy —al < O(|”11|76)'
Let fb = (k,w) — Ayl + Anz,l,f,f;nl := (k,w) + a and

knyng *

o meas j

Ta = {0 7 o) ] <« e s + 0mr) |



Rui and Liu Boundary Value Problems (2017) 2017:82 Page 19 of 22

It is easy to see that 7;1,12 C 7;}“, and 7;,41 C 72;,,,0 for |m| > |mo].

Now we estimate measfi;lnz and 72:"1 , by the Fubini theorem. It is sufficient to estimate
the one-dimensional measure of the intersection of 7;”1 with every line parallel with some
fixed direction. In particular, in the direction given by the vector k|k| ™. The intersection
offi;nl with the line L, = {n + tk|k|™ : £ € R,n € R™} is equal to the set

{teR: )] < ¢ gmeas] } (59)

1+ 2)(|k| +1)m+3
where w(t) = ((k, w) + @)| =1 - It is easy to see that @ = |k|, so for t; > t;, we get
w(ty) — w(ty) = |k|(t - t2)

as ¢ small enough. Thus, by Appendix C in [15], we see that the measure of the set (59) is

no larger than | gmeas]

B R This estimate jointly with the Fubini theorem implies that

——
meas /;,, <

" ( omeas] O(|m0|-5))
—CA+2) ’

KK+ 173 k]

Similarly, we also have

71_ - o” meas ]
meas .
kmma = (1 + 2)|k| (k| + 1)+3

Let

jl_z U U ji_nlnz'

O#kGZm ny,ny EZd

It yields

meas], = meas< U U 72,,1,,2) =meas< U U 72,11”2)

O0AKELM py iy e OAKEL™ |y 2~ |na[2=a

- —-
< E E meas/y, .. + E meas/y,,,.

07keZ |n1|<|mg| 0#keZm
Co™ ' meas) ( cu 1 5 1
< Certmens] (o Y L o) e Y
2 7
1+7 N (|k| + 1)m+ oz k| +1
Co™ measj

=T ien (01mol 9@ + O(lmo| )

by using of the convergence of } ¢y zm W and 3 o com Iklﬁ By choosing

0lmo|€@ = O(|lmy| ), i.e.,

N
lmo| =g <@+,
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, i
we have o|m19|“@ = |my|™ = o €@+ | It follows that

meas];, <
Case 2.2. We consider the following set:

=+

meas]'
]knlng {(‘) E] | k, :t ()\nl,l + )\'Vlz,l)| < © }

1+ 2)(|k| +1)m+3
Letf,mln2 (k, ) &= (Apy 1 + Ay ). When |11]? or |n2]? > |k]|w] + 1, then

(ks @) £ Qo + Ay t)| = |(kw) £ ((Im)* + M) + (Im2]? + M) + O(e))|
|(|n1| +M) + (Ina]* + M) | - |kl |w| - |O(e)|

o meas/
=110 G py e
holds provided that ¢ and o are small enough, which implies the set ﬁ;l n, 18 empty. So, we
only need to consider the case |2, |1,|? < |k||w| + 1.

Now we estimate 75;1,12 by the Fubini theorem. It is sufficient to estimate the one-
dimensional measure of the intersection of 72;1 n, With every line parallel with some fixed
direction. In particular, in the direction given by the vector k|k|™. The intersection of
75;1,12 with the line L, = {n + tk|k|™ : £ € R,n € R™} is equal to the set

Qmeasf
teR: H<——F 60
(e loto = e e ) ©0
where w(£) = ((k, @) £ (A1 + Ay )| womyrekii-1 - It is €asy to see that 252 = k|, so for t; > t,

we get

olt) - w(t2>>|k|<r1—tz>—e(t1—t2)>Um-m

as ¢ small enough. Thus, by Appendix C in [15], we see that the measure of the set (60) is

20 meds]

no larger than W

This estimate jointly with the Fubini theorem implies that

20" meas]
@+ 2) k(K| +1)m+3”

=+
meas/ kg =

Let

—+ —l+
Jr= U U i

0FkEZ™ ny,nyez4

It yields

measf,+ = meas( U U 7;1;12)

07kezZ™ Vll,nzezd
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by using of the convergence of } ) 7m

meas( U U 72:11@)

OFKEZ™ |n1 |2, |n3 |2 <|K| | +1

I+
Z Z meas/ knyny

OFKEZ™ |ny |2, |n2| 2 <|K||w]+1

IA

- Co" meas] Z 1 <CQ meas/
1+ /2

1
(Ik|+1)m+2

Letting

To=I\Go+To+T0)  Tua =T\ (Tl +Toa +T0t)s 1= 0,100 =1, (61)

then (54) and (56) hold true. Let J = (1,5, ], then

meas/ = lim measf[
)

>meas7 1—C’”i 1 _C’”"C(j):gi 1 _C mi 1
B € — 1 + % ¢ c— 1+ 42 e L] 442
i=0 i=0 i=0
=1
> meas /| 1-3Co™
B / ° ,Zl+i2
i=0
> mess](1-0(e"). ©)
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